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Density Estimation
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m Estimate a density based on x,,...,xy
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Density as Mixture of Gaussians
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m Prior on model parameters
0 E.g., symmetric Dirichlet for 77

Model Summary
(2)
9,

0 o

1 Normal inverse Wishart prior for Qk

m Sample observations as

Zi ~ T
Ty | Zq ™ N(:u’zmzzi)
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Dirichlet Distributions
* JEE—
m The Dirichlet distribution is defined on the simplex
r-'D’\((.vL\;u ) O(K\)
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Moments: E,[r;] = 2k
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m Samples are sparse for small values of ¢;
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m Mixture weights

™

m For each observation,

Model In Pictures
(&)
@,

Zy ~ T
x| 2 ~ N(phs, 22,)
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GMM Sampler
(2)
@,

m Recall model K
Observations: L1,...,TN
W i Cluster indicators: 21, - -, ZN
st Parameters: T, Hkﬁﬂ = [m1,.. ., K]
k= {1k, Bk}
Generative model:
7 ~ Dir(ay,...,ak) Zj~ T

m lteratively sample
2, 1%, 188, .5 &N
w1 s, 3 D
00 K 128, 155 el K
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Standard Finite Mixture Sampler
" JEE

Given mixture weights 7(*~1) and cluster parameters {9,(:71)}?:1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points z; to one of the K clusters by sampling
the indicator variables z = {2;}¥, from the following multinomial distributions:

K K
1 _ _ _ _
A e Y e 00 8 ) Zi= S A0 | 0)
b k=1 k=1

2. Sample new mixture weights according to the following Dirichlet distribution:

1

N
7® ~ Dir(N; + a/K, ..., Ng + a/K) Ne =Y 0" k)
F— — P

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

0 ~ p(Or | {ai | 2 =k}, A)
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Mixtures Induce Partitions

L yrrpomrem——— ()
m If our goal is clustering, the output grouping
a N

is defined by assignment indicator variables:
Zi ™~ T

m  The number of ways of assigning N data
points to K mixture components is KN

m |f K > N thisis much larger than the
number of ways of partitioning that data:

o

b & 8

N=3: 5 partitions versus 3% = 27




Mixtures Induce Partitions
= JEE

m [f our goal is clustering, the output grouping
is defined by assignment indicator variables:

2y T

m The number of ways of assigning N data > w A o @
points to K mixture components is KN o s

m If K > N thisis much larger than the
number of ways of partitioning that data:

..........

For any clustering, there is a
unique partition, but many ways to
label that partition’s blocks.

N=5: 52 partitions versus 55 = 3125

Courtesy
Wikipedia
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Motivating Nonparametric GMM
" JEE
m What if current model ] @
doesn’t fit new data? \j ‘

m Bayesian nonparametric
approach:
Allows infinite # clusters
Uses sparse subset

Model complexity
adapts to observations

Mixture of Gaussians

0 o [ - 8 -

Nonparam. Model In Pictures
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m Mixture weights

\ )

L1 K

m For each observation, draw

Zi ~ T

x|z ~ N(ps, 22,)
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Stick-Breaking Process

m Start with stick of unit

TP om probability mass
K - m Repeatedly break
T 23 4 z, portions of the

remaining stick

Stick of unit
probability mass

Stick-Breaking Process Summary
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Stick Breaks + Dirichlet Process
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Dirichlet Process Mixture Model

* JEE—
m Place Dirichlet process prior on
weights and mixture parameters:

G ~ DP(a, H)

G: iﬂ'k(SQk T
- Ok

m For each observation, draw
Zi ~ T

wi | zi ~ N(pz,, Xz,)
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Finite versus DP Mixtures

" JE
Finite Mixture DP Mixture
Dn(n ) e Stick ®
T 1r<K KZ> s ick(a) a y Oo
. ~ T

THEOREM: For any measureable function f,as K — oo

/ £(6) dGX(0) 2 / £(6) dG(9)
© ©

G(0) = mido, () G ~ DP(a, H)
=1

Induced Partitions
= JEEE

m Recall that mixture models induce partitions of the data
Z; T
m For a given prior on mixture weights, some partitions are more
likely than others apriori

Example 1: 7 ~ Dir(1,...,1) °

o O

o
O @ @ O
Example 2: 7 ~ Dir(0.01,...,0.01)

10



Induced Partitions
= JEE

m Recall that mixture models induce partitions of the data
Z; ™~ T
m For a given prior on mixture weights, some partitions are more
likely than others apriori
Example 3 (DP mix): 7 ~ Stick(c)

m What is the induced distribution on z, ..., z,?
Do we expect many unique clusters?

Chinese Restaurant Process (CRP)
" JE

m Distribution on induced partitions described via the CRP

m Visualize clustering as a sequential process of customers
sitting at tables in an (infinitely large) restaurant:

customers ==y oObserved data to be clustered
tables = distinct clusters

m The first customer sits at a table. Subsequent customers
randomly select a table according to:

K

1 ,

peNt1 =2 21, .., 2N, ) = o (; Nio(z, k) + a5(2’»k))
& @
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.Chinese Restaurant Process (CRP)
O EH O O
O i ©
T e® B o

CRPs & Exchangeable Partitions

K
1 _
p(ant1 =2 | 21,0, 2N, Q) = TIN < g Nio(z, k) + a5(z,k))
k=1

m The probability of a seating arrangement of N customers is
independent of the order they enter the restaurant:

0 G~ & &
Ho v o

Denominator terms:
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CRPs & Exchangeable Partitions

K
1 _
peNt1 =2 21,...,2N,a) = P (E Ni6(z, k) +045(Z,k)>
k=1

m The probability of a seating arrangement of N customers is
independent of the order they enter the restaurant:

O~ O~ & &
o D o
1 1 1 ()

Denominator terms:

1+a.2—|—a.”N—1+a:F(N+a)

Number of new tables:
Numerator term for each new table:
Combined:

CRPs & Exchangeable Partitions

K
1 _
p(ant1 =2 | 21,0, 2N, Q) = TIN < g Nio(z, k) + a5(z,k))
k=1

m The probability of a seating arrangement of N customers is
independent of the order they enter the restaurant:

G~ O~ & &
Ho v o
1 1 1 (o)

Denominator terms:

l+a 24a N-l+a TI(N+a)

New table numerator terms: a€
Customers joining kt occupied table:
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CRPs & Exchangeable Partitions

[
1 K _
plenyr =2 | 21,000, 28,0) = P (; Nid(z, k) + 045(2,7‘3))
m The probability of a seating arrangement of N customers is
independent of the order they enter the restaurant:

JO o
Denominator terms: . ... L _ Tl
enominator terms: l+a 2+a N—l—i—a_F(N—l—a)

New table numerator terms: o™
Customers joining ki occupied table:
1-2--+ (N —1) = (N — ) =T(Nyg)
CRPs & Exchangeable Partitions
[

K
1 _
p(ant1 =2 | 21,0, 2N, Q) = TIN < g Nio(z, k) + a5(z,k))
k=1

m The probability of a seating arrangement of N customers is
independent of the order they enter the restaurant:

O~ O~ & &
Ho v o

p(z1,.. ., 2N | @) = %QK H I'(Ng)

m Thus, the CRP is a prior on an infinitely exchangeable sequence
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Samples from DP Mixture Priors
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N=50

Samples from DP Mixture Priors
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Samples from DP Mixture Priors

N=1000

Finite GMM Sampler

" JEE (z) | |6
m Recall model K

Observations: L1,...,TN N
W i Cluster indicators: 21, - -y ZN
st Parameters: W,Hkmﬂ = [m1,..., K]

k= {1k, Bk}
Generative model:
m ~ Dir(ay,...,ax) Zj~ T

m lteratively sample
2, 1%, 188, .5 &N
w1 s, 3 D
0.\ % 15, 1w,k

ox 2013
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“ JE
m Can’t sample 7 directly
m Integrate out all infinite-dimensional params

m lteratively sample the cluster indicators

oljio

Collapsed DP Mixture Sampler

/bw

Collapsed Sampler Intuition

m Previously, plzi = k| @i, m,0) o< mpp(w; | Ok)
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Predictive Likelihood Term

" JEE
m Recall NIW prior...Let’'s consider 1D example - N-IG

S
i | 02~ N(0,702) 02 ~ 1G (@ Yo )

27 2
m Normal inverse gamma posterior
- Student t predictive likelihood

o 1
p(@ [ {zjlz =k, j #i}) = t, N (7+N*i > @
ko gkt

—1i —1 —1i
(N " +971) (0 + N Jizy =i Jizy =i

N4y 141 )<V050+ SNty )T D] “"J’)Q))

Conjugacy: This integral is tractable
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Collapsed DP Mixture Sampler
* JEE—

1. Sample a random permutation 7(-) of the integers {1,...,N}.
2. Set @ = '™V and z = 2(!=1). For each i € {7(1),...,7(N)}, resample z; as follows:
(a) For each of the K existing clusters, determine the predictive likelihood
fi(@i) = p(ei | {z; | 25 = k,j # i}, )
Also determine the likelihood f;(z;) of a potential new cluster k

plei | ) = /e f(i | 6)h(8 | A) db

(b) Sample a new cluster assignment z; from the following (K + 1)-dim. multinomial:
K K
1 7 —i —i
i~ (@8 + NS Ae)d b)) 2= o) + YN i)
v k=1 k=1
Nk,’i is the number of other observations currently assigned to cluster k.
(c) Update cached sufficient statistics to reflect the assignment of z; to cluster z;. If
z; = k, create a new cluster and increment K.
3. Set z() = 2.

4. If any current clusters are empty (N, = 0), remove them and decrement K accordingly.
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Collapsed DP Sampler: 2 Iterations

cN

)\ toe
. o Sy,

log p(x I , 8) = —462.25

log p(x | T, 6) = —399.82

Collapsed DP Sampler: 10 Ilterations

log p(x | , 8) = -398.32

log p(x | &, 8) = -399.08
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Collapsed DP Sampler: 50 lterations

log p(x | , ©) = —397.67

log p(x I , ©) = —396.71

log p(x I m, 6)
|

DP vs. Finite Mixture Samplers

550
—— Dirichlet Process Mixture; === Dirichlet Process Mixture|
—— Finite Mixture = Finite Mixture
-600 . -600 .
10° 10' 10° 10° 10° 10' 10°
Iteration Iteration
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DP Posterior Num
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DP Mixture Size
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DC Violent Crime
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Time series = crime counts

Data

m 188 census tracts

m Weekly crime counts from
2001-2008

m Violent crime types:
ADW, arson, robbery, rape
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DC Violent Crime Data

* JE—
Average Weekly
Crime Counts

Average Crime Count

(1.665,2.641]
(1.381,1.665]
(1.155,1.381]
(1.032,1.155]
(0.9077,1.032]
(0.8223,0.9077]
(0.7368,0.8223]
(0.6203,0.7368]
(0.5085,0.6203]
(0.4087,0.5085]
(0.3307,0.4087]
(0.229,0.3307]
(0.07365,0.229]
(0.009569,0.07365]
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Goal: Forecast next week’s map

DC Violent Crime Data

* JEE
Average Weekly
Crime Counts

Average Crime Count

(1.665,2.641]
(1.381,1.665]
(1.155,1.381]
(1.032,1.155]
(0.9077,1.032]
(0.8223,0.9077]
(0.7368,0.8223]
(0.6203,0.7368]
(0.5085,0.6203]
(0.4087,0.5085]
(0.3307,0.4087]
(0.229,0.3307]
(0.07365,0.229]
(0.009569,0.07365]
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Similar behavior in spatially disjoint tracts
- Cluster census tracts




Poisson Integer-Valued

- AllQIRgIEssIons
A — 0 Cusbermersiiis in
i — V2 teetiootitiigrne t
V/

Yit = @O Yir—1 1 € t(\)

Poisson new
customers

Thinning of customers
previously in queue ~ Rate of arrivals
in location i

m Cluster regions based on rate
of arriving crimes
m Pool info within clusters

m Unknown number of clusters
-> Dirichlet process

Aldor-Noiman, Brown, Fox, and Stine, arXiv:1304.5642, April 2013

Prediction Results

" JEEE—
1.2

& Simple Poisson
Process

0.7217 ¥ Conditional Least
Squares PoINAR

DP PoINAR

Mean Square Error (MSE)
o
(o))

Aldor-Noiman, Brown, Fox, and Stine, arXiv:1304.5642, April 2013
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