

Dirichlet Distributions

The Dirichlet distribution is defined on the simplex

$$\pi \sim \operatorname{Dir}(\omega_1, \dots, \omega_K)$$

$$\Rightarrow \sum \pi_k = 1$$

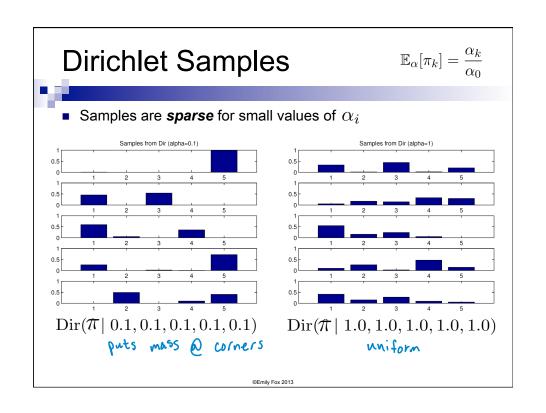
$$\pi \sim \operatorname{Dir}(\omega_1, \dots, \omega_K)$$

$$\Rightarrow \sum \pi_k = 1$$

$$\prod_k \Gamma(\alpha_k) \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

$$\operatorname{Moments:} \mathbb{E}_{\alpha}[\pi_k] = \frac{\alpha_k}{\alpha_0}$$

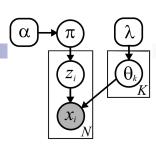
$$\operatorname{Var}_{\alpha}[\pi_k] = \frac{K - 1}{K^2(\alpha_0 + 1)}$$
SEMILY FOX 2013



Model In Pictures

Mixture weights

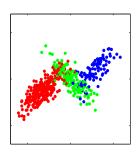
 π



For each observation,

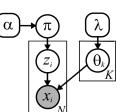
$$z_i \sim \pi$$

$$x_i \mid z_i \sim N(\mu_{z_i}, \Sigma_{z_i})$$



©Emily Fox 2013

GMM Sampler



Recall model

☐ Generative model:

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \qquad z_i \sim \pi$$

$$\{\mu_k, \Sigma_k\} \sim \text{NIW}(\lambda) \qquad x_i \mid z_i, \{\theta_k\} \sim N(\mu_{z_i}, \Sigma_{z_i})$$

Iteratively sample

Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \, \delta(z_i, k)$$

$$Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K) \qquad N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

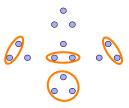
$$\theta_k^{(t)} \sim p(\theta_k \mid \left\{x_i \mid z_i^{(t)} = k\right\}, \lambda)$$
 @Emily Fox 2013

Mixtures Induce Partitions

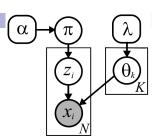
If our goal is clustering, the output grouping is defined by assignment indicator variables:

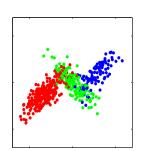
$$z_i \sim \pi$$

- The number of ways of assigning N data points to K mixture components is KN
- If $K \geq N$ this is much larger than the number of ways of partitioning that data:

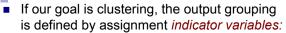


N=3: 5 partitions versus $3^3 = 27$





Mixtures Induce Partitions

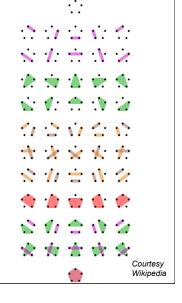


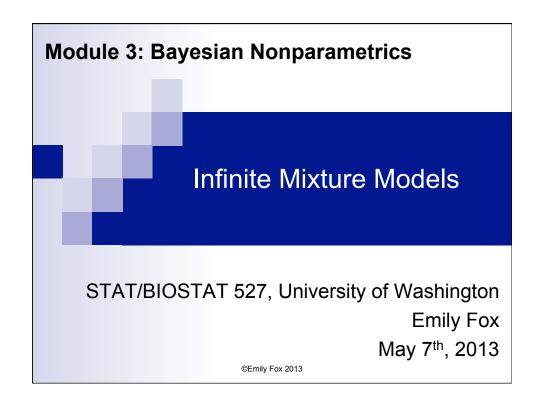
$$z_i \sim \pi$$

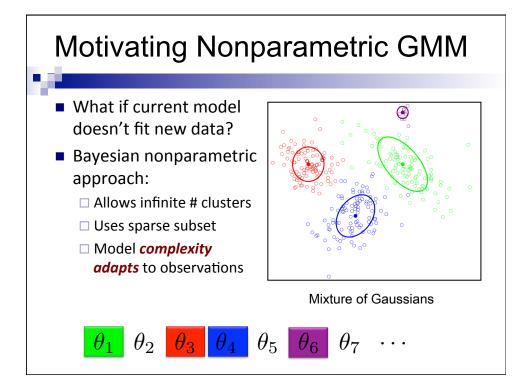
- $\hbox{ The number of ways of assigning N data } \\ \hbox{ points to K mixture components is } \\ K^N$
- If $K \ge N$ this is much larger than the number of ways of partitioning that data:

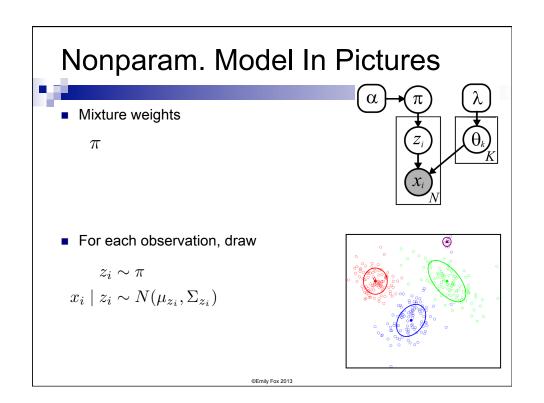
For any clustering, there is a unique partition, but many ways to label that partition's blocks.

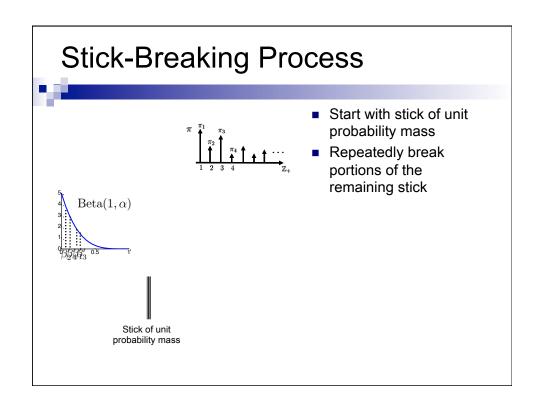
N=5: 52 partitions versus $\,5^5=3125\,$

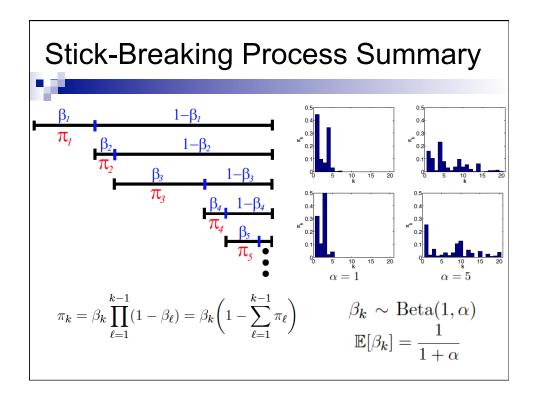


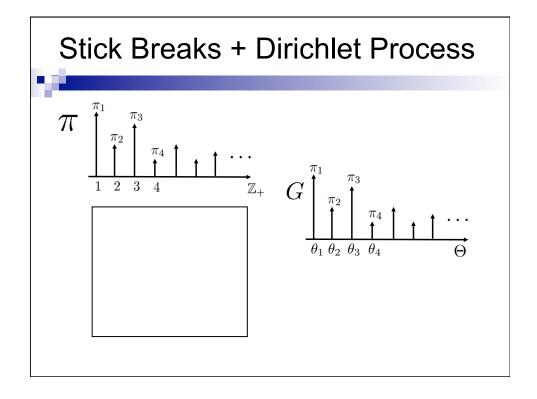












Dirichlet Process Mixture Model

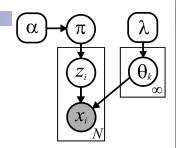
 Place Dirichlet process prior on weights and mixture parameters:

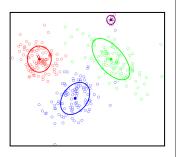
$$G \sim \mathrm{DP}(\alpha, H)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k} \qquad \frac{\pi}{\theta_k}$$

■ For each observation, draw

$$z_i \sim \pi$$
$$x_i \mid z_i \sim N(\mu_{z_i}, \Sigma_{z_i})$$





©Emily Fox 2013

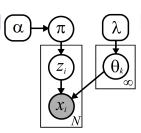
Finite versus DP Mixtures

DP Mixture

$$\pi \sim \operatorname{Dir}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right)$$
 $\pi \sim \operatorname{Stick}(\alpha)$

$$z_i \sim \pi$$

$$x_i \sim F(\theta_{z_i})$$



THEOREM: For any measureable function f, as $K \to \infty$

$$\int_{\Theta} f(\theta) dG^{K}(\theta) \xrightarrow{\mathcal{D}} \int_{\Theta} f(\theta) dG(\theta)$$

$$G^{K}(\theta) = \sum_{k=1}^{K} \pi_{k} \delta_{\theta_{k}}(\theta) \qquad G \sim \mathrm{DP}(\alpha, H)$$

Induced Partitions

- Recall that mixture models induce partitions of the data $z_i \sim \pi$
- For a given prior on mixture weights, some partitions are more likely than others apriori
 - \square Example 1: $\pi \sim \mathrm{Dir}(1,\ldots,1)$

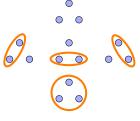
 $\hfill\Box$ Example 2: $\pi \sim \mathrm{Dir}(0.01, \dots, 0.01)$

Induced Partitions

Recall that mixture models induce partitions of the data

$$z_i \sim \pi$$

- For a given prior on mixture weights, some partitions are more likely than others apriori
 - \square Example 3 (DP mix): $\pi \sim \operatorname{Stick}(\alpha)$



- What is the induced distribution on z_1, \ldots, z_N ?
 - □ Do we expect many unique clusters?

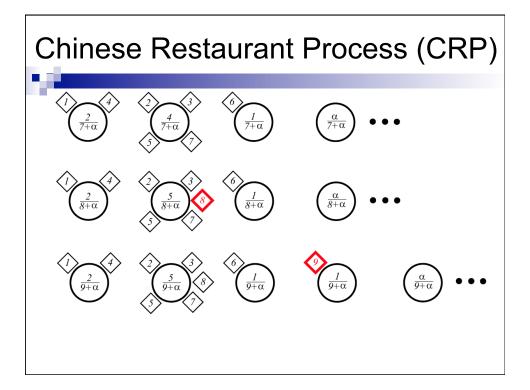
Chinese Restaurant Process (CRP)

- Distribution on induced partitions described via the CRP
- Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant:

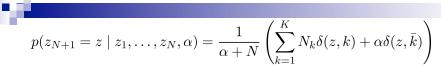
customers observed data to be clustered tables distinct clusters

The first customer sits at a table. Subsequent customers randomly select a table according to:

$$p(z_{N+1} = z \mid z_1, \dots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^K N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right)$$



CRPs & Exchangeable Partitions



■ The probability of a seating arrangement of *N* customers is *independent* of the order they enter the restaurant:

□ Denominator terms:

CRPs & Exchangeable Partitions

$$p(z_{N+1} = z \mid z_1, \dots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^K N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right)$$

■ The probability of a seating arrangement of *N* customers is *independent* of the order they enter the restaurant:

□ Denominator terms:

$$\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha} = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

Number of new tables:
 Numerator term for each new table:
 Combined:

CRPs & Exchangeable Partitions

$$p(z_{N+1} = z \mid z_1, \dots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^K N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right)$$

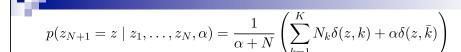
■ The probability of a seating arrangement of *N* customers is *independent* of the order they enter the restaurant:

□ Denominator terms:

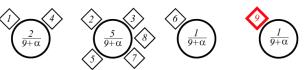
$$\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha} = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$$

- $\hfill\Box$ New table numerator terms: α^K
- □ Customers joining *k*th occupied table:

CRPs & Exchangeable Partitions



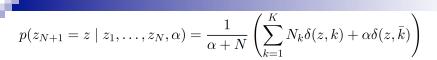
■ The probability of a seating arrangement of *N* customers is *independent* of the order they enter the restaurant:



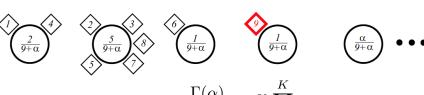
- $\ \, \Box \ \, \text{ Denominator terms: } \quad \frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha} = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
- $\hfill\Box$ New table numerator terms: α^K
- \Box Customers joining k^{th} occupied table:

$$1 \cdot 2 \cdots (N_k - 1) = (N_k - 1)! = \Gamma(N_k)$$

CRPs & Exchangeable Partitions

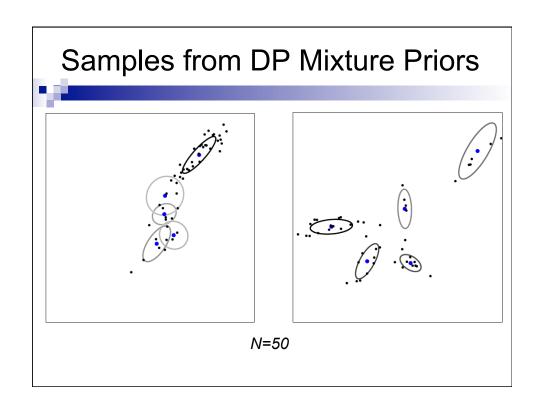


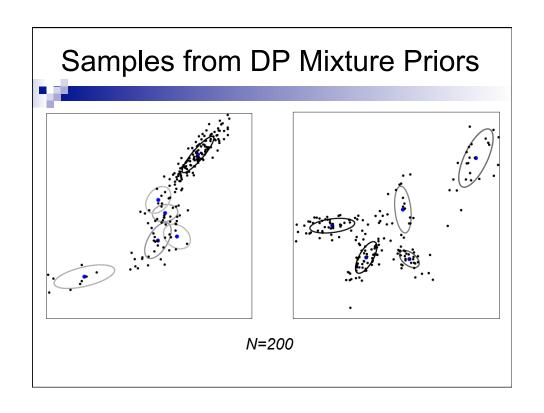
■ The probability of a seating arrangement of *N* customers is *independent* of the order they enter the restaurant:

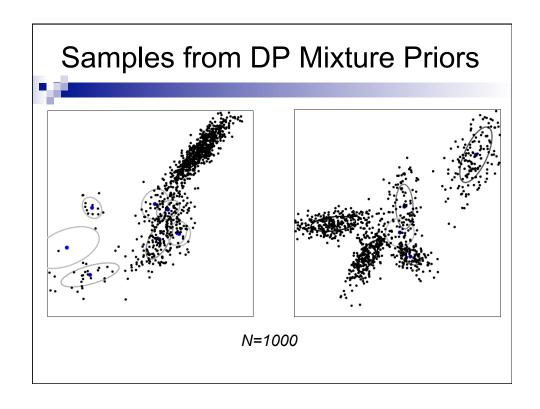


$$p(z_1, \dots, z_N \mid \alpha) = \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^K \prod_{k=1}^K \Gamma(N_k)$$

Thus, the CRP is a prior on an infinitely exchangeable sequence



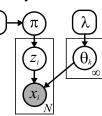






Collapsed DP Mixture Sampler

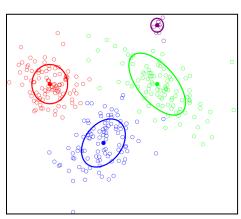
- Can't sample π directly
 - Integrate out all infinite-dimensional params



Iteratively sample the cluster indicators

Collapsed Sampler Intuition

- Previously, $p(z_i = k \mid x_i, \pi, \theta) \propto \pi_k p(x_i \mid \theta_k)$
- If you're not told π, θ_k



©Emily Fox 2013

Predictive Likelihood Term

■ Recall NIW prior…Let's consider 1D example → N-IG

$$\mu_k \mid \sigma_k^2 \sim N(0, \gamma \sigma_k^2) \quad \sigma_k^2 \sim \text{IG}\left(\frac{\nu_0}{2}, \frac{\nu_0 S_0}{2}\right)$$

- Normal inverse gamma posterior
 - → Student t predictive likelihood

$$p(x \mid \{x_j | z_j = k, j \neq i\}) = t_{\nu_0 + N_k^{-i}} \left(\frac{1}{\gamma + N_k^{-i}} \sum_{j: z_j = k, j \neq i} x_j, \frac{N_k^{-i} + \gamma^{-1} + 1}{(N_k^{-i} + \gamma^{-1})(\nu_0 + N_k^{-i})} \left(\nu_0 S_0 + \sum_{j: z_j = k, j \neq i} x_j^2 - (N_k + \gamma^{-1})^{-1} (\sum_{j: z_j = k, j \neq i} x_j)^2 \right) \right)$$

□ Conjugacy: This integral is tractable

©Emily Fox 2013

Collapsed DP Mixture Sampler

- 1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1,\ldots,N\}$.
- 2. Set $\alpha = \alpha^{(t-1)}$ and $z = z^{(t-1)}$. For each $i \in \{\tau(1), \dots, \tau(N)\}$, resample z_i as follows:
 - (a) For each of the K existing clusters, determine the predictive likelihood

$$f_k(x_i) = p(x_i \mid \{x_j \mid z_j = k, j \neq i\}, \lambda)$$

Also determine the likelihood $f_{\bar{k}}(x_i)$ of a potential new cluster \bar{k}

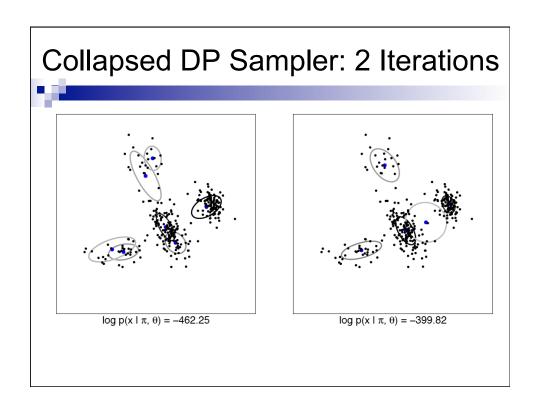
$$p(x_i \mid \lambda) = \int_{\Theta} f(x_i \mid \theta) h(\theta \mid \lambda) d\theta$$

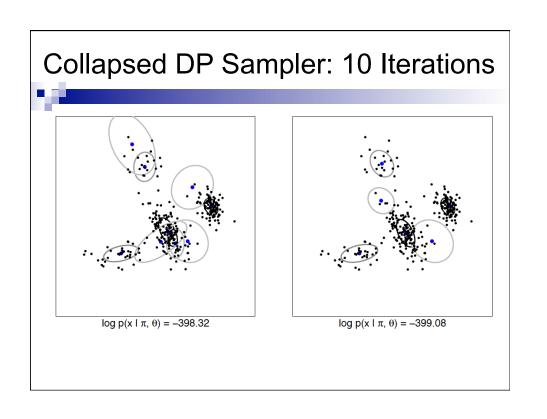
(b) Sample a new cluster assignment z_i from the following (K+1)-dim. multinomial:

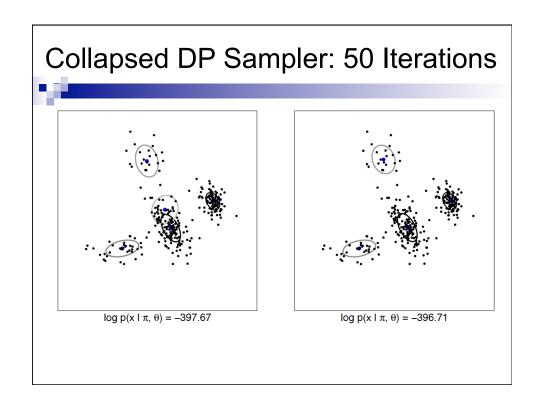
$$z_i \sim \frac{1}{Z_i} \left(\alpha f_{\bar{k}}(x_i) \delta(z_i, \bar{k}) + \sum_{k=1}^K N_k^{-i} f_k(x_i) \delta(z_i, k) \right) \qquad Z_i = \alpha f_{\bar{k}}(x_i) + \sum_{k=1}^K N_k^{-i} f_k(x_i) \delta(z_i, k)$$

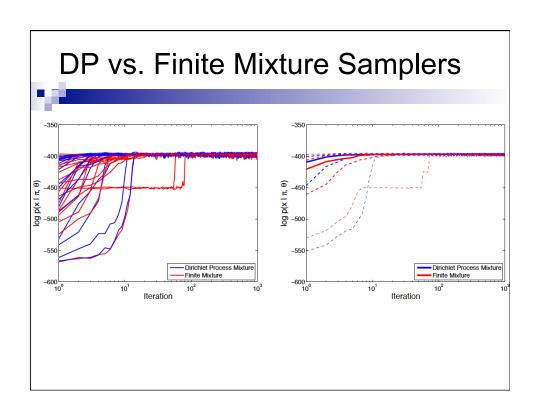
 N_k^{-i} is the number of other observations currently assigned to cluster k.

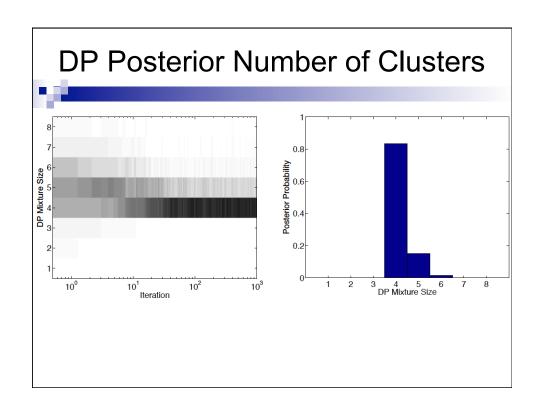
- (c) Update cached sufficient statistics to reflect the assignment of x_i to cluster z_i . If $z_i = \bar{k}$, create a new cluster and increment K.
- 3. Set $z^{(t)} = z$
- 4. If any current clusters are empty $(N_k = 0)$, remove them and decrement K accordingly.

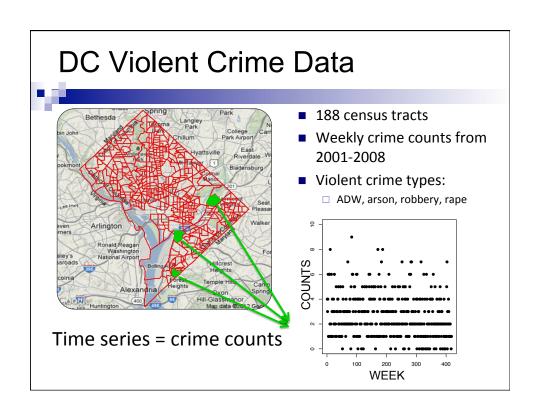


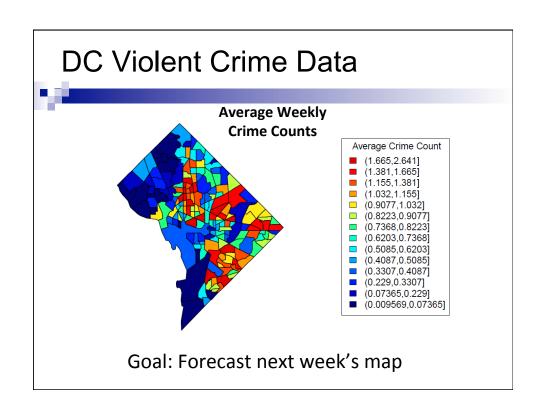


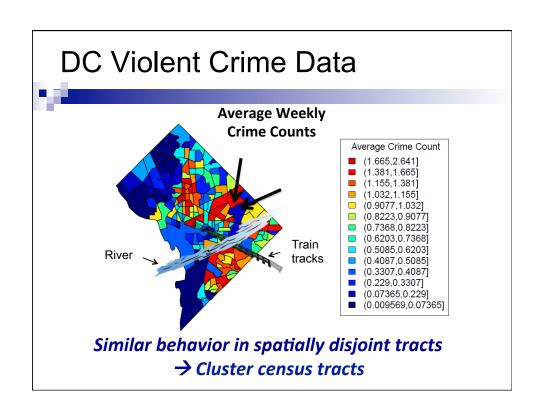


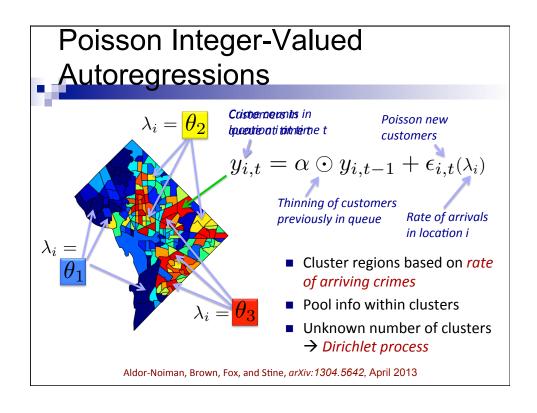


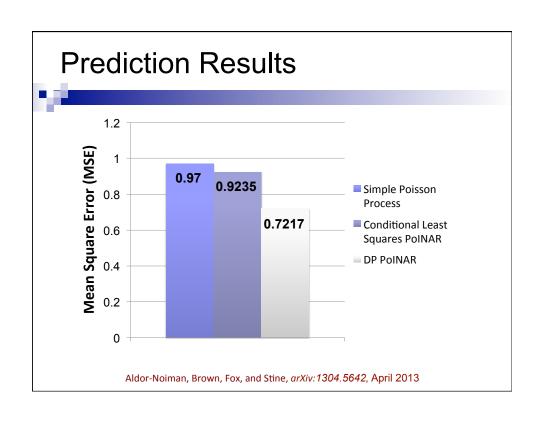












Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

©Emily Fox 2013