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Review of GLMs
= JEE

m Mean parameters are a linear combination of inputs, passed
through a possibly nonlinear function

m Assume a distribution in the exponential family

y@(a}) B b(e(x)) + c(y, 0_2)

p(y | v) = exp

Using theory of exponential families,
ElY | z] =
var(Y | z) =
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m Mean parameters are a linear combination of inputs, passed
through a possibly nonlinear function

m A parametric GLM assumes

g(u(z)) ="

With a canonical link function,

0(z) = g(p(z))

The link function is assumed to be invertible

Examples ply ) = exp [ IO gy )
" S

m Linear regression

Hq 2
Yili — 5 1 (y;
log p(yi | xi,8,0%) = Lﬁ 5 <U—Z2 + 10g(27m2)>




Examples Pl 1) = e [ 100

m Binomial regression

Uy
logp(yi | zi, B,0%) = y; log ( ) +mlog(l — m;) + log (

1_7Ti

)
Yi

Examples R

m Poisson regression

logp(yi | i, B,07) = yilog wi

— i — log(y;!)




ML Estimation  swio=eo 2000 0
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m Maximize the log-likelihood

logp(y1,.--uUn | B) =

de;  de; do;
dg; ~ db; dp;

m No closed-form solution, so use iterative methods
2n order methods like IRLS require Hessian

_ _ YT —dj 7
H = 02X SX S dlag(del,...,den

ML Estimation  swio-e 20000 0

" JEE—
m |IRLS Newton updates:

Bt-i—l = (XTStX)_lXTStZt

2 =0, + S (y — )

_ -1
0, — X8, Ht =g (Xﬁt)




Nonparametrics + GLMs
* JEE—
yo(z) — b(6(x))

p(y | v) = exp

m Consider a more general form

9(u(x)) = f(x) 0(x) = g(u())

m Can consider many forms for f(x) that we have studied in this
course, e.g.
Smoothing splines
Penalized regression splines
Local regression (kernel methods)

Smoothing Splines + GLMs
* JEE——

m For the standard L, loss we considered a penalized RSS:
mln g f(z:))? +)\/f"(a: ) dx
With normal, additive errors, this is equivalent to penalized log-likelihood

o 1 "
mj}nzlogp(yi |z f) — §A/f (z)*dx
=1

For GLMs, we just use the specified exponential family distribution instead
of a normal likelihood




Smoothing Splines + GLMs
* JEE—
m Penalized log-likelihood with a roughness penalty
L 1 "o
m}niz_;logp(yi |z, f) — EA/f (z)"dx
m Example = logistic regression

Bernoulli observations

log p(yi | i) = yilog (%) +log(1 — p(xi))

modeled as (
log p(yi | i, ) = yif (i) — log(1 + /(%))

Smoothing Splines + GLMs
" JEE
m Penalized log-likelihood with a roughness penalty

N Yif (@) = b(f(zi) 1 "Nz
mfm; = —EA/f (x)“dx

m Result is a finite-dimensional natural spline with knots at the
unique values of x, just as before

f(@) =D Nj(@)B;




Penalized Reg. Splines + GLMs
" S

m Penalized log-likelihood with a roughness penalty

i 30U M) A e
=1

m Recall that fis assumed to be some spline basis expansion
» Derivative with respect to 5;

Penalized Reg. Splines + GLMs
* JEE—
m Penalized log-likelihood with a roughness penalty
aéy, _ — dpi yi — i
dp; = dB; oV,
m Again, no closed-form solution as with parametric GLMs
m Use “penalized” IRLS

—ADB; =0

Biy1 = (XTS, X + AD) ' XTS, 2
ze=0,+ 5 (y — )

dpy /dby dfin /dOy,

St:dlag( 0_2‘/1 ,...,W)

m Return: [* = X(XTSX + AD)'XTs




Local Linear Regression
" JEEE

m Consider locally weighted linear regression instead
= Local linear model around fixed target x, :

ﬂoxo + /glxo(x- X")

m Minimize:

2
Mmin Z K, (¥, %) (\/;- Bosy - 15.,(,(&40\5

7 0

m Return: £

A
¢ (Yo) = /5,;{0 &— Gt wc %

(
Nokcz nok equ; volent ko C;k&.ﬂﬂs a IOCA’ wonstant .
m Fit a new local polynomial for every target x,
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Local Polynomial Regression
" JE

m Local linear regression is biased in regions of curvature
“Trimming the hills” and “filling the valleys”

m Local quadratics tend to eliminate this bias, but at the cost of
increased variance

Local Linear in Interior Local Quadratic in Interior

(o) N f(z0)

From Hastie, Tibshirani, Friedman book

©Emily Fox 2013 16




Local Polynomial Regression
" S

m Consider local polynomial of degree d centered about x,

Pao(@820) = Breys By, (X937 Byte (x-xY + -+
2. J
. * Bly (x-x,)
Minimize: %1361512:21 Ky (20, 2:)(yi — Poy (25 Bey))?
. . T
Equivalently: " {\/_’ )(xo Ax,B \,Jxo ( y, Xx, }.?)
% '\k[l X, - (&%{f)

|‘ Xn"XV T (Xn‘yi)‘

n A
Return: (:(Xﬂ: Bax, ]
Bias only has components of degree d+7 and higher
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Local Likelihood Methods
" JEE
m Just as with spline methods, replace RSS with log-likelihood
m For 9, =27

n
(B) =ty ] B)
i=1
m Under a local polynomial model,

((B) = Z K (w0, 2:)0(yi, Puo (235 8))

=1




Local Likelihood Methods
* JEE
((B) =Y Ko, 2:)l(yi, Py (i3 B))
i=1
m Example: multiclass logistic regression
m For

65j0+/3f37
PriG=j|X=1z) =

1+ Zi;ll eBro+Bl x

m Under a local polynomial model,

> K, a){ Bo(eo) + By (o) (o~ )

=1

J—1

1+ exp(Bro(zo) + Br(wo)” (z; — o)

k=1

—log

k

Local Likelihood Methods
“
() = ZK/\(JUO,%)E(%, Py (25 8))
m Example: multic;;ss logistic regression
= For pBiot+B]
PriG=j|X=12)=

1+ Zi;ll eBro+Bl T

m Return:
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Example
" JEE
m Bronchopulmonary dysplasia (BPD) and birthweight data
m Logistic regression model with binomial observations

log p(yi | i, f) = yi f* () — nilog(1 + efk(mi))

m Choose A by AIC S T T w77 1
o | TN — Cubic Spline
S ] N\ --- Local Likelihood
. . Linear Logistic From
= Notice that behavior for o Wakefield

high birthweights is quite g textbook
different from that of

linear logistic model
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Example
“
m Bronchopulmonary dysplasia (BPD) and birthweight data
m Logistic regression model with binomial observations

log p(yi | x4, f) = yif(x:) — nilog(1 + e (@)
m For the local likelihood fit, we have

=1 ?

m Fit uses tri-cube kernel
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Local Fits of Autoregressions
" JEE
(B) =Y Kx(zo,2:)l(yi, Poy (235 8))

i=1
m An autoregressive time series model of order k
Yt = Bo + Brye—1 + Boye—2 + - + Bryi—k + €
=z B+e

m Using a local likelihood approach, can consider kernel
K)\(z07 Zt)

m Allows for fit of the autoregressive coefficients to vary in time by
considering only a short history
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