Module 2: Spline and Kernel Methods

Spline and Kernel Methods for GLMs

STAT/BIOSTAT 527, University of Washington Emily Fox May 7th, 2013

©Emily Fox 2013

Review of GLMs

- - Mean parameters are a linear combination of inputs, passed through a possibly nonlinear function
 - Assume a distribution in the exponential family

$$p(y \mid x) = \exp \left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2) \right]$$

□ Using theory of exponential families,

$$E[Y \mid x] =$$
$$var(Y \mid x) =$$

Review of GLMs $p(y \mid x) = \exp \left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2) \right]$

- Mean parameters are a linear combination of inputs, passed through a possibly nonlinear function
- A parametric GLM assumes

$$g(\mu(x)) = \beta^T x$$

□ With a canonical link function,

$$\theta(x) = g(\mu(x))$$

☐ The link function is assumed to be invertible

Examples

$$p(y \mid x) = \exp\left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2)\right]$$

Linear regression

$$\log p(y_i \mid x_i, \beta, \sigma^2) = \frac{y_i \mu_i - \frac{\mu_i^2}{2}}{\sigma^2} - \frac{1}{2} \left(\frac{y_i^2}{\sigma^2} + \log(2\pi\sigma^2) \right)$$

Examples

$$p(y \mid x) = \exp\left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2)\right]$$

Binomial regression

$$\log p(y_i \mid x_i, \beta, \sigma^2) = y_i \log \left(\frac{\pi_i}{1 - \pi_i}\right) + m \log(1 - \pi_i) + \log {m \choose y_i}$$

Examples

$$p(y \mid x) = \exp\left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2)\right]$$

Poisson regression

$$\log p(y_i \mid x_i, \beta, \sigma^2) = y_i \log \mu_i - \mu_i - \log(y_i!)$$

ML Estimation
$$p(y \mid x) = \exp \left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2) \right]$$

Maximize the log-likelihood

$$\log p(y_1,\ldots,y_n\mid\beta) =$$

$$\frac{d\ell_i}{d\beta_j} = \frac{d\ell_i}{d\theta_i} \frac{d\theta_i}{d\beta_j} =$$

- No closed-form solution, so use iterative methods
 - □ 2nd order methods like IRLS require Hessian

$$H = -\frac{1}{\sigma^2} X^T S X$$
 $S = \operatorname{diag}(\frac{d\mu_1}{d\theta_1}, \dots, \frac{d\mu_n}{d\theta_n})$

ML Estimation
$$p(y \mid x) = \exp \left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2) \right]$$

IRLS Newton updates:

$$\beta_{t+1} = (X^T S_t X)^{-1} X^T S_t z_t$$

$$z_t = \theta_t + S_t^{-1} (y - \mu_t)$$

$$\theta_t = X \beta_t$$

$$\mu_t = g^{-1} (X \beta_t)$$

Nonparametrics + GLMs

$$p(y \mid x) = \exp \left[\frac{y\theta(x) - b(\theta(x))}{\sigma^2} + c(y, \sigma^2) \right]$$

Consider a more general form

$$g(\mu(x)) = f(x)$$
 $\theta(x) = g(\mu(x))$

- Can consider many forms for f(x) that we have studied in this course, e.g.
 - □ Smoothing splines
 - □ Penalized regression splines
 - □ Local regression (kernel methods)
 - -----

Smoothing Splines + GLMs

• For the standard L_2 loss we considered a penalized RSS:

$$\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

□ With normal, additive errors, this is equivalent to penalized log-likelihood

$$\min_{f} \sum_{i=1}^{n} \log p(y_i \mid x_i, f) - \frac{1}{2} \lambda \int f''(x)^2 dx$$

□ For GLMs, we just use the specified exponential family distribution instead of a normal likelihood

Smoothing Splines + GLMs

Penalized log-likelihood with a roughness penalty

$$\min_{f} \sum_{i=1}^{n} \log p(y_i \mid x_i, f) - \frac{1}{2} \lambda \int f''(x)^2 dx$$

■ Example = *logistic regression*

Bernoulli observations

$$\log p(y_i \mid x_i) = y_i \log \left(\frac{p(x_i)}{1 - p(x_i)} \right) + \log(1 - p(x_i))$$
 modeled as

$$\log p(y_i \mid x_i, f) = y_i f(x_i) - \log(1 + e^{f(x_i)})$$

Smoothing Splines + GLMs

Penalized log-likelihood with a roughness penalty

$$\min_{f} \sum_{i=1}^{n} \frac{y_i f(x_i) - b(f(x_i))}{\sigma^2} - \frac{1}{2} \lambda \int f''(x)^2 dx$$

 Result is a finite-dimensional natural spline with knots at the unique values of x, just as before

$$f(x) = \sum_{j=1}^{n} N_j(x)\beta_j$$

Penalized Reg. Splines + GLMs

Penalized log-likelihood with a roughness penalty

$$\min_{f} \sum_{i=1}^{n} \frac{y_i f(x_i) - b(f(x_i))}{\sigma^2} - \frac{\lambda}{2} \beta^T D \beta$$

- Recall that f is assumed to be some spline basis expansion
- Derivative with respect to β_j

Penalized Reg. Splines + GLMs

Penalized log-likelihood with a roughness penalty

$$\frac{d\ell_p}{d\beta_j} = \sum_{i=1}^n \frac{d\mu_i}{d\beta_j} \frac{y_i - \mu_i}{\sigma^2 V_i} - \lambda D\beta_j = 0$$

- Again, no closed-form solution as with parametric GLMs
- Use "penalized" IRLS

$$\beta_{t+1} = (X^T S_t X + \lambda D)^{-1} X^T S_t z_t$$

$$z_t = \theta_t + S_t^{-1} (y - \mu_t)$$

$$S_t = \operatorname{diag}(\frac{d\mu_1/d\theta_1}{\sigma^2 V_1}, \dots, \frac{d\mu_n/d\theta_n}{\sigma^2 V_n})$$

• Return: $L^{\lambda} = X(X^TSX + \lambda D)^{-1}X^TS$

Local Linear Regression

- Consider locally weighted linear regression instead
- Local linear model around fixed target x₀:

$$\beta_{0x_0} + \beta_{1x_0}(x - x_0)$$

Minimize:

$$\min_{\underline{\beta}_{x_0}} \sum_{i} K_{\lambda}(x_0, x_i) \left(y_i - \beta_{0x_0} - \beta_{1x_0}(x_i - x_0) \right)^2$$

■ Return:
$$\hat{f}(X_0) = \hat{\beta}_{0X_0}$$
 ← fit at X_0

Note: not equivalent to fitting a local constant!

• Fit a new local polynomial for every target x_0

©Emily Fox 2013

Local Polynomial Regression

- Local linear regression is biased in regions of curvature □ "Trimming the hills" and "filling the valleys"
- Local quadratics tend to eliminate this bias, but at the cost of increased variance

Local Polynomial Regression

Consider local polynomial of degree d centered about x₀

$$P_{x_0}(x;\beta_{x_0}) = \beta_{\textbf{ox}, \textbf{x}} \beta_{\textbf{ix}_0}(\textbf{x}-\textbf{y}_0) + \beta_{\textbf{ox}_0}(\textbf{x}-\textbf{x}_0)^2 + \cdots$$

$$= \text{Minimize: } \min_{\beta_{x_0}} \sum_{i=1}^n K_{\lambda}(x_0,x_i)(y_i - P_{x_0}(x;\beta_{x_0}))^2$$

- Bias only has components of degree d+1 and higher

Local Likelihood Methods

- Just as with spline methods, replace RSS with log-likelihood
- For $\theta_i = x_i^T \beta$ $\ell(\beta) = \sum_{i=1}^{n} \ell(y_i, x_i^T \beta)$
- Under a local polynomial model,

$$\ell(\beta) = \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) \ell(y_i, P_{x_0}(x_i; \beta))$$

Local Likelihood Methods

$$\ell(\beta) = \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) \ell(y_i, P_{x_0}(x_i; \beta))$$

- Example: *multiclass logistic regression*
- For

$$Pr(G = j \mid X = x) = \frac{e^{\beta_{j0} + \beta_j^T x}}{1 + \sum_{k=1}^{J-1} e^{\beta_{k0} + \beta_k^T x}}$$

Under a local polynomial model,

$$\sum_{i=1}^{n} K_{\lambda}(x_0, x_i) \left\{ \beta_{g_i 0}(x_0) + \beta_{g_i}(x_0)^T (x_i - x_0) - \log \left[1 + \sum_{k=1}^{J-1} \exp(\beta_{k0}(x_0) + \beta_k(x_0)^T (x_i - x_0)) \right] \right\}$$

Local Likelihood Methods

$$\ell(\beta) = \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) \ell(y_i, P_{x_0}(x_i; \beta))$$

- Example: multiclass logistic regression
- For

$$Pr(G = j \mid X = x) = \frac{e^{\beta_{j0} + \beta_j^T x}}{1 + \sum_{k=1}^{J-1} e^{\beta_{k0} + \beta_k^T x}}$$

Return:

Example

- Bronchopulmonary dysplasia (BPD) and birthweight data
- Logistic regression model with binomial observations $\log p(y_i \mid x_i, f) = y_i f^{\lambda}(x_i) n_i \log(1 + e^{f^{\lambda}(x_i)})$
- Choose λ by AIC
- Notice that behavior for high birthweights is quite different from that of linear logistic model

Example

- Bronchopulmonary dysplasia (BPD) and birthweight data
- Logistic regression model with binomial observations

$$\log p(y_i \mid x_i, f) = y_i f^{\lambda}(x_i) - n_i \log(1 + e^{f^{\lambda}(x_i)})$$

• For the local likelihood fit, we have

$$\ell(\beta) = \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) n_i \left[\frac{y_i}{n_i} P_{x_0}(x_i; \beta) - \log(1 + e^{P_{x_0}(x_i; \beta)}) \right]$$

Fit uses tri-cube kernel

Local Fits of Autoregressions

$$\ell(\beta) = \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) \ell(y_i, P_{x_0}(x_i; \beta))$$

- An autoregressive time series model of order k $y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \dots + \beta_k y_{t-k} + \epsilon_t$ $= z_t^T \beta + \epsilon_t$
- Using a local likelihood approach, can consider kernel

$$K_{\lambda}(z_0,z_t)$$

 Allows for fit of the autoregressive coefficients to vary in time by considering only a short history