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Module 2: Spline and Kernel Methods 

Review of GLMs 

n  Mean parameters are a linear combination of inputs, passed 
through a possibly nonlinear function 

n  Assume a distribution in the exponential family 

¨  Using theory of exponential families, 

p(y | x) = exp


y✓(x)� b(✓(x))
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E[Y | x] =
var(Y | x) =
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Review of GLMs 

n  Mean parameters are a linear combination of inputs, passed 
through a possibly nonlinear function 

n  A parametric GLM assumes  

¨  With a canonical link function, 

¨  The link function is assumed to be invertible 

p(y | x) = exp


y✓(x)� b(✓(x))
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2
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g(µ(x)) = �

T
x

✓(x) = g(µ(x))

Examples 

n  Linear regression 
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
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Examples 

n  Binomial regression 

 

p(y | x) = exp


y✓(x)� b(✓(x))
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2
+ c(y,�

2
)

�

log p(yi | xi,�,�
2
) = yi log

✓
⇡i
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+m log(1� ⇡i) + log

✓
m

yi

◆

Examples 

n  Poisson regression 

p(y | x) = exp


y✓(x)� b(✓(x))

�

2
+ c(y,�

2
)

�

log p(yi | xi,�,�
2
) = yi logµi � µi � log(yi!)
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ML Estimation 

n  Maximize the log-likelihood 

n  No closed-form solution, so use iterative methods  
¨  2nd order methods like IRLS require Hessian 

p(y | x) = exp


y✓(x)� b(✓(x))

�

2
+ c(y,�

2
)

�

log p(y1, . . . , yn | �) =

d`i
d�j

=
d`i
d✓i

d✓i
d�j

=

H = � 1

�2
XTSX S = diag(

dµ1

d✓1
, . . . ,

dµn
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ML Estimation 

n  IRLS Newton updates: 

p(y | x) = exp


y✓(x)� b(✓(x))

�

2
+ c(y,�

2
)

�

�t+1 = (XTStX)�1XTStzt

zt = ✓t + S�1
t (y � µt)

✓t = X�t

µt = g�1(X�t)
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Nonparametrics + GLMs 

n  Consider a more general form  

n  Can consider many forms for f(x) that we have studied in this 
course, e.g. 
¨  Smoothing splines 
¨  Penalized regression splines 
¨  Local regression (kernel methods) 
¨  … 

p(y | x) = exp


y✓(x)� b(✓(x))

�

2
+ c(y,�

2
)

�

✓(x) = g(µ(x))g(µ(x)) = f(x)

Smoothing Splines + GLMs 

n  For the standard L2 loss we considered a penalized RSS: 

¨  With normal, additive errors, this is equivalent to penalized log-likelihood 

¨  For GLMs, we just use the specified exponential family distribution instead 
of a normal likelihood 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

min

f

nX
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log p(yi | xi, f)�
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�

Z
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Smoothing Splines + GLMs 

n  Penalized log-likelihood with a roughness penalty 

 

n  Example = logistic regression 
 
Bernoulli observations 
 
 
modeled as 

min

f

nX

i=1

log p(yi | xi, f)�
1

2

�

Z
f

00
(x)

2
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log p(yi | xi) = yi log

✓
p(xi)

1� p(xi)

◆
+ log(1� p(xi))

log p(y
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)� log(1 + e

f(xi)
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Smoothing Splines + GLMs 

n  Penalized log-likelihood with a roughness penalty 

 

n  Result is a finite-dimensional natural spline with knots at the 
unique values of x, just as before 

f(x) =
nX

j=1

Nj(x)�j

min
f

nX

i=1

yif(xi)� b(f(xi))
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Penalized Reg. Splines + GLMs 

n  Penalized log-likelihood with a roughness penalty 

 

n  Recall that f is assumed to be some spline basis expansion 
n  Derivative with respect to  

min
f

nX

i=1

yif(xi)� b(f(xi))

�

2
� �

2
�

T
D�

�j

Penalized Reg. Splines + GLMs 

n  Penalized log-likelihood with a roughness penalty 

 

n  Again, no closed-form solution as with parametric GLMs 
n  Use “penalized” IRLS 

n  Return: 

d`p
d�j

=
nX

i=1

dµi

d�j

yi � µi

�2Vi
� �D�j = 0

zt = ✓t + S�1
t (y � µt)

St = diag(
dµ1/d✓1
�2V1

, . . . ,
dµn/d✓n
�2Vn

)

L� = X(XTSX + �D)�1XTS

�t+1 = (XTStX + �D)�1XTStzt
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Local Linear Regression 

©Emily Fox 2013 15 

n  Consider locally weighted linear regression instead 
n  Local linear model around fixed target x0 :  

n  Minimize: 

n  Return: 
 

n  Fit a new local polynomial for every target x0  

Local Polynomial Regression 

©Emily Fox 2013 16 

n  Local linear regression is biased in regions of curvature 
¨  “Trimming the hills” and “filling the valleys” 

n  Local quadratics tend to eliminate this bias, but at the cost of 
increased variance 6.1 One-Dimensional Kernel Smoothers 197

Local Linear in Interior
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Local Quadratic in Interior
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression,
∑N

i=1 li(x0) = 1 and∑N
i=1(xi − x0)li(x0) = 0. Hence the middle term equals f(x0), and since

the bias is Ef̂(x0) − f(x0), we see that it depends only on quadratic and
higher–order terms in the expansion of f .

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)



yi − α(x0)−
d∑

j=1

βj(x0)x
j
i




2

(6.11)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. In fact, an expansion such as

(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model yi = f(xi) + εi, with
εi independent and identically distributed with mean zero and variance
σ2, Var(f̂(x0)) = σ2||l(x0)||2, where l(x0) is the vector of equivalent kernel
weights at x0. It can be shown (Exercise 6.3) that ||l(x0)|| increases with d,
and so there is a bias–variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two

From Hastie, Tibshirani, Friedman book 
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Local Polynomial Regression 

©Emily Fox 2013 17 

n  Consider local polynomial of degree d centered about x0 

 
n  Minimize: 
 
n  Equivalently: 

n  Return: 
n  Bias only has components of degree d+1 and higher 

P

x0(x;�x0) =

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2

Local Likelihood Methods 

n  Just as with spline methods, replace RSS with log-likelihood 
n  For  

n  Under a local polynomial model,  

`(�) =
nX

i=1

`(yi, x
T
i �)

✓i = x

T
i �

`(�) =
nX

i=1

K

�

(x0, xi

)`(y
i

, P

x0(xi

;�))
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Local Likelihood Methods 

n  Example: multiclass logistic regression 
n  For  

n  Under a local polynomial model,  

`(�) =
nX

i=1

K

�

(x0, xi

)`(y
i

, P

x0(xi

;�))

Pr(G = j | X = x) =
e

�j0+�

T
j x

1 +
P

J�1
k=1 e

�k0+�

T
k x

nX

i=1

K�(x0, xi)

⇢
�gi0(x0) + �gi(x0)

T (xi � x0)

� log

"
1 +

J�1X

k=1

exp(�k0(x0) + �k(x0)
T
(xi � x0)

#�

Local Likelihood Methods 

n  Example: multiclass logistic regression 
n  For  

n  Return: 

`(�) =
nX

i=1

K

�

(x0, xi

)`(y
i

, P

x0(xi

;�))

Pr(G = j | X = x) =
e

�j0+�

T
j x

1 +
P

J�1
k=1 e

�k0+�

T
k x



11 

Example 

n  Bronchopulmonary dysplasia (BPD) and birthweight data 
n  Logistic regression model with binomial observations 

n  Choose λ by AIC  

n  Notice that behavior for 
high birthweights is quite 
different from that of 
linear logistic model 

2012 Jon Wakefield, Stat/Biostat 527

We fit a cubic spline model (92) with K = 10 knots, and pick the

smoothing parameter using AIC. For this model

AICλ = −2l
(
fλ

)
+ 2pλ,

where pλ is the effective degrees of freedom.

Figure 34 gives the resultant fit, which has an effective degrees of

freedom of 3.0.

It is difficult to determine the adequacy of the fit with binary data,

but in terms of smoothness and monotonicity the curve appears

reasonable.

Notice that the behavior for high birthweights is quite different to

the linear logistic model.

274

2012 Jon Wakefield, Stat/Biostat 527

Figure 34: Penalized cubic spline and local likelihood fits to the

BPD/birthweight data, with linear logistic fit for comparison.

275

From 
Wakefield 
textbook 

log p(y
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f
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Example 

n  Bronchopulmonary dysplasia (BPD) and birthweight data 
n  Logistic regression model with binomial observations 

n  For the local likelihood fit, we have 

n  Fit uses tri-cube kernel 

log p(y

i

| x
i

, f) = y

i

f

�

(x

i

)� n

i

log(1 + e

f

�(xi)
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nX
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K
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)
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Local Fits of Autoregressions 

n  An autoregressive time series model of order k  

n  Using a local likelihood approach, can consider kernel  

n  Allows for fit of the autoregressive coefficients to vary in time by 
considering only a short history 

`(�) =
nX

i=1

K

�

(x0, xi

)`(y
i

, P

x0(xi

;�))

yt = �0 + �1yt�1 + �2yt�2 + · · ·+ �kyt�k + ✏t

= zTt � + ✏t

K�(z0, zt)


