Module 3: Bayesian Nonparametrics

Gaussian Processes

 cont'dSTAT/BIOSTAT 527, University of Washington Emily Fox
May $2^{\text {nd }}, 2013$

Gaussian Processes

- Distribution on functions
$\square f \sim \mathrm{GP}(\mathrm{m}, \mathrm{k})$
- m: mean function
- к: covariance function = kernel function
\Downarrow iff $\forall n$ and any x_{1}, \ldots, x_{n}
$\square \mathrm{p}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, K)$
- $\mu=\left[m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right]$
- $K_{i j}=k\left(x_{i}, x_{j}\right)$ Gram matriX

- Idea: If x_{i}, x_{j} are similar according to the kernel, then $f\left(x_{i}\right)$ is similar to $f\left(x_{j}\right)$

$$
\begin{aligned}
& \text { similar outputs } \\
& \text { captured by } K
\end{aligned}
$$

Induced Multivariate Gaussian

- Evaluating the GP-distributed function at any set of locations, we have

Relating GPs to Splines

Recall smoothing spline objective

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Consider the following model

$$
f(x)=\beta_{0}+\beta_{1} x+r(x)
$$

where

- One can show that the MAP estimate of $f(x)$ is a cubic smoothing spline when $p\left(\beta_{j}\right) \propto 1$
- Penalty parameter $\boldsymbol{\lambda}$ is now given by $\sigma_{y}^{2} / \sigma_{f}^{2}$

Relating GPs to Splines

- The spline kernel leads to a smooth posterior mode/mean, but posterior samples are not smooth.

Again, as in lasso, regularizers do not always make good priors

(a), spline covariance

(b), squared exponential cov.

- See Rasmussen and Williams 2006 for more details

GP Regression Recap

Linear Basis
 Expansion

Gaussian
Process

Prior

$$
\begin{aligned}
\beta & \sim N\left(0, \alpha^{-1} I_{M}\right) \\
f(x) & =\sum_{m=1}^{M} \beta_{m} \phi_{m}(x)
\end{aligned} \quad f \sim \operatorname{GP}\left(0, \kappa\left(x, x^{\prime}\right)\right)
$$

Distribution
on x_{1}, \ldots, x_{n}

$$
f \sim N\left(0, \alpha^{-1} \Phi \Phi^{T}\right) \quad f \sim N(0, K)
$$

Choices

- Choose M
- Choose $\kappa\left(x, x^{\prime}\right)$
- Choose bases
- Choose covariance hyperparameters

Effective Degrees of Freedom

- For the training set, the fit is given by

$$
\hat{f}=K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1} y
$$

- Since K is a positive definite Gram matrix, it has eigendecomp

$$
K=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

- Using this, one can show that $K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1}$ has eigenvals

$$
\frac{\lambda_{i}}{\lambda_{i}+\sigma_{y}{ }^{2}}
$$

- Therefore, the effective degrees of freedom is

$$
\begin{aligned}
& \text { erefore, the effective degrees of freedom is } \\
& v=\operatorname{tr}\left(K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1}\right)=\sum_{i} \frac{\lambda_{i}}{\lambda_{i}+\sigma_{y}^{2}}
\end{aligned}
$$

- Remember that this specifies how "wiggly" the curve is

Choice of Covariance Function

- Definitions
\square Stationary kernel - only depends on $x-x^{\prime}$
\square Isotropic kernel - furthermore only depends on $\left\|x-x^{\prime}\right\|$
- Examples
\square Squared exponential - $\kappa_{S E}(r)=e^{-\frac{r}{2 \ell^{2}}}$
- Kernel is infinitely differentiable \rightarrow GP has mean square derivatives of all orders \rightarrow resulting functions are very smooth

Matern $-\quad \kappa_{\text {Matern }}(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{v}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)$

- When $\nu \rightarrow \infty$: squared exponential
- When $\nu=\frac{1}{2} \quad: \begin{gathered}\text { exponential kernel } \kappa_{\text {exp }}(r)=e^{-\frac{r}{\ell}} \text { equal to Brownian motion in 1D ** }\end{gathered}$

Sample Paths using Matern Kernel

- Can produce very rough sample paths

Figure from Rasmussen and Williams 2006

Family of Gaussian Processes

Module 3: Bayesian Nonparametrics

Finite Mixture Models

STAT/BIOSTAT 527, University of Washington Emily Fox
May $2^{\text {nd }}, 2013$

Density Estimation

- Estimate a density based on x_{1}, \ldots, x_{N}

Density as Mixture of Gaussians

- Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

$$
p\left(x_{i} \mid \pi, \mu, \Sigma\right)=
$$

Density as Mixture of Gaussians

- Approximate with density with a mixture of Gaussians

Mixture of 3 Gaussians

Our actual observations

C. Bishop $p_{\text {efly }}$ Patterrn Recognition \& Machine Learning

Clustering our Observations

- Imagine we have an assignment of each x_{i} to a Gaussian

 by true cluster assignments
C. Bishop $p_{\text {ell }}$ Pattern Recognition \& Machine Learning

Clustering our Observations

- Imagine we have an assignment of each x_{i} to a Gaussian

- Introduce latent cluster indicator variable z_{i}
- Then we have
$p\left(x_{i} \mid z_{i}, \pi, \mu, \Sigma\right)=$
C. Bishop sefly $_{\text {Pattern }}$ Recognition \& Machine Learning

Clustering our Observations

- We must infer the cluster assignments from the observations

- Posterior probabilities of assignments to each cluster *given* model parameters:
$r_{i k}=p\left(z_{i}=k \mid x_{i}, \pi, \theta\right)=$
C. Bishop $p_{\text {enly }}$ Patterrn Recognition \& Machine Learning

Summary of GMM Concept

- Estimate a density based on x_{1}, \ldots, x_{N}

Summary of GMM Components

- Observations

$$
x_{i} \in \mathbb{R}^{d}, \quad i=1,2, \ldots, N
$$

- Hidden cluster labels $z_{i} \in\{1,2, \ldots, K\}, \quad i=1,2, \ldots, N$
- Hidden mixture means $\quad \mu_{k} \in \mathbb{R}^{d}, \quad k=1,2, \ldots, K$
- Hidden mixture covariances $\quad \Sigma_{k} \in \mathbb{R}^{d \times d}, \quad k=1,2, \ldots, K$
- Hidden mixture probabilities

$$
\pi_{k}, \quad \sum_{k=1}^{K} \pi_{k}=1
$$

Gaussian mixture marginal and conditional likelihood :

$$
\begin{aligned}
& p\left(x_{i} \mid \pi, \mu, \Sigma\right)=\sum_{z_{i}=1}^{K} \pi_{z_{i}} \mathcal{N}\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right) \\
& p\left(x_{i} \mid z_{i}, \pi, \mu, \Sigma\right) \underset{\text { oemiveraxos }}{=} \mathcal{N}\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Generative Model

- We can think of sampling observations from the model
- For the GMM, define model parameters

\square Cluster means and covariances
\square Cluster weights
- For each observation i,
\square Sample a cluster assignment
\square Sample the observation from the selected Gaussian

A Bayesian GMM

- In a Bayesian approach, we place priors on the model parameters
- Conjugate priors are a computationally
 convenient choice
- Conjugate prior for θ_{k}
\square Known variance: Gaussian prior on mean
\square Unknown mean \& variance: normal inverse-Wishart
- Conjugate prior for π ???

The Simplex in 3D

- The simplex defines the hyperplane of vectors that sum to 1

Dirichlet Distributions

- The Dirichlet distribution is defined on the simplex

Dirichlet Samples
$\mathbb{E}_{\alpha}\left[\pi_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}}$

- Samples are sparse for small values of α_{i}

$\operatorname{Dir}(\pi \mid 0.1,0.1,0.1,0.1,0.1)$

Model Summary

- Prior on model parameters
\square E.g., symmetric Dirichlet for π

\square Normal inverse Wishart prior for θ_{k}
- Sample observations as

$$
\begin{aligned}
z_{i} & \sim \pi \\
x_{i} \mid z_{i} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Samples Generated from GMM

Posterior Computations

- From our observations, we want to infer model params
- MAP estimation can be done using expectation maximization (EM) algorithm:

$$
\hat{\theta}^{M A P}=\arg \max _{\theta} p(\theta \mid x)
$$

- What if we want a full characterization of the posterior?
\square Maintain a measure of uncertainty
\square Estimators other than posterior mode (different loss functions)
\square Predictive distributions for future observations
- Often no closed-form characterization (e.g., mixture models)
- Alternatives:
\square Markov chain Monte Carlo (MCMC) providing samples from posterior
\square Variational approximations to posterior

Gibb Sampling

■ Let z indicate the set of all variables in the model: e.g., cluster indicators and parameters

- Want draws:
- Construct Markov chain whose steady state distribution is
- Simplest case:

Example - GMM

Recall model
\square Observations: x_{1}, \ldots, x_{N}

\square Cluster indicators: z_{1}, \ldots, z_{N}
\square Parameters: $\pi, \theta_{k} \quad \pi=\left[\pi_{1}, \ldots, \pi_{K}\right]$

$$
\theta_{k}=\left\{\mu_{k}, \Sigma_{k}\right\}
$$

\square Generative model:

$$
\begin{aligned}
\pi & \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) & z_{i} & \sim \pi \\
\left\{\mu_{k}, \Sigma_{k}\right\} & \sim \operatorname{NIW}(\lambda) & x_{i} \mid z_{i},\left\{\theta_{k}\right\} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Iteratively sample

Complete Conditional $p\left(z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\}\right)$

- We have
$z_{i} \sim \pi$

$$
x_{i} \mid z_{i},\left\{\theta_{k}\right\} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
$$

- As before, we can compute the "responsibility" of each cluster to the observation

$$
r_{i k}=p\left(z_{i}=k \mid x_{i}, \pi, \theta\right)=\frac{\pi_{k} p\left(x_{i} \mid \theta_{k}\right)}{\sum_{\ell=1}^{K} \pi_{\ell} p\left(x_{i} \mid \theta_{\ell}\right)}
$$

- Sample each cluster indicator as

Complete Conditional $p\left(\pi \mid\left\{z_{i}\right\}\right)$

- Recall conjugate Dirichlet prior

$$
\pi \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \quad p(\pi \mid \alpha)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \pi_{k}^{\alpha_{k}-1}
$$

- Dirichlet posterior
\square Assume we condition on cluster indicators $z_{i} \sim \pi$
\square Count occurrences of $z_{i}=k$
\square Then,
$p\left(\pi \mid \alpha, z_{1}, \ldots, z_{N}\right) \propto$
\square Conjugacy: This posterior has same form as prior

Complete Conditional $p\left(\theta_{k} \mid\left\{z_{i}\right\},\left\{x_{i}\right\}\right)$

- Recall NIW prior...Let's consider 1D example \rightarrow N-IG

$$
\mu_{k} \left\lvert\, \sigma_{k}^{2} \sim N\left(0, \gamma \sigma_{k}^{2}\right) \quad \sigma_{k}^{2} \sim \mathrm{IG}\left(\frac{\nu_{0}}{2}, \frac{\nu_{0} S_{0}}{2}\right)\right.
$$

- Normal inverse gamma posterior
\square Consider observation indices i such that $z_{i}=k$
\square For these observations, $x_{i} \mid z_{i}=k \sim N\left(\mu_{k}, \Sigma_{k}\right)$
\square Then,
$\mu_{k} \mid \sigma_{k}^{2},\left\{z_{i}\right\},\left\{x_{i}\right\} \sim N\left(\frac{1}{N_{k}+\gamma^{-1}} \sum_{i: z_{i}=k} x_{i}, \frac{1}{N_{k}+\gamma^{-1}} \sigma_{k}^{2}\right)$ $\sigma_{k}^{2} \mid\left\{z_{i}\right\},\left\{x_{i}\right\} \sim \mathrm{IG}\left(\frac{\nu_{0}+N_{k}}{2}, \frac{\nu_{0} S_{0}+\sum_{i: z_{i}=k} x_{i}^{2}-\left(N_{k}+\gamma^{-1}\right)^{-1}\left(\sum_{i: z_{i}=k} x_{i}\right)^{2}}{2}\right)$
\square Conjugacy: This posterior has same form as prior

Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\left\{\theta_{k}^{(t-1)}\right\}_{k=1}^{K}$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_{i} to one of the K clusters by sampling the indicator variables $z=\left\{z_{i}\right\}_{i=1}^{N}$ from the following multinomial distributions:

$$
z_{i}^{(t)} \sim \frac{1}{Z_{i}} \sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right) \delta\left(z_{i}, k\right) \quad Z_{i}=\sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right)
$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$
\pi^{(t)} \sim \operatorname{Dir}\left(N_{1}+\alpha / K, \ldots, N_{K}+\alpha / K\right) \quad N_{k}=\sum_{i=1}^{N} \delta\left(z_{i}^{(t)}, k\right)
$$

3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$
\theta_{k}^{(t)} \sim p\left(\theta_{k} \mid\left\{x_{i} \mid z_{i}^{(t)}=k\right\}, \lambda\right)
$$

Standard Sampler: 2 Iterations

$\log p(x \mid \pi, \theta)=-539.17$

$\log p(x \mid \pi, \theta)=-497.77$

Standard Sampler: 10 Iterations

$\log p(x \mid \pi, \theta)=-404.18$

$\log p(x \mid \pi, \theta)=-454.15$

Standard Sampler: 50 Iterations

$\log p(x \mid \pi, \theta)=-397.40$

$\log p(x \mid \pi, \theta)=-442.89$

Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

