
1 

1 

Gaussian Processes 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 25th, 2013 

©Emily Fox 2013 

Module 3: Bayesian Nonparametrics 

Again: Linear Basis Expansion 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

The image cannot be displayed. Your computer may 
not have enough memory to open the image, or the 
image may have been corrupted. Restart your 
computer, and then open the file again. If the red x 
still appears, you may have to delete the image and 
then insert it again.

The image cannot 

The image cannot be displayed. Your computer may not have 
enough memory to open the image, or the image may have 

The image cannot be displayed. Your computer may not 
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Bayesian Linear Regression 
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n  More generally, consider a conjugate prior on the basis 
expansion coefficients: 

n  Combining this with the Gaussian likelihood function, and 
using standard Gaussian identities, gives posterior  

 
    where 

The image cannot be displayed. Your computer may 
not have enough memory to open the image, or the 

p(� | y) = N(� | µn,⌃n)

Predictive Distribution 
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n  Predict y* at new locations x* by integrating over parameters �

p(y⇤ | y) =
Z

p(y⇤ | �)p(� | y)d�
p(� | y) = N(� | µn,⌃n)

p(y | x,�,�2) = N(y | f(x),�2)
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Example: Gaussian Basis Expansion 
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n  Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  func8ons,	  	  
4	  data	  points	  

yy

William of Ockham 

“Plurality must never be posited 
without necessity.” 

n  Parametric Bayes:  Consider a finite list of possible models, 
average according to posterior probability  
(or in practice, just select the most probable) 

n  Nonparametric Bayes:  Consider a single infinite model, 
integrate over parameters when making predictions or infer which 
finite subset is exhibited in your dataset 

Bayesian Ockham’s Razor 
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Going Infinite… 
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n  Nonparametric Gaussian regression: 
Would like to let the number of “features” M à ∞ 

n  Prior: 

n  Predictions:  

n  Gaussian process models replace explicit basis function 
representation with a direct specification in terms of a  
positive definite kernel function  

h(x) ! �(x)

Change of notation: 

p(� | 0,↵�1IM )

f = ��

Mercer Kernel Functions 
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n  Predictions are of the form 
 
 
 
where the Gram matrix K is defined as 
 

 
n  K is a Mercer kernel if the Gram matrix is positive definite for 

any n and any x1, …, xn 

Kij =

p(f) = N(f | 0,↵�1��T )



5 

Mercer’s Theorem 
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n  If K is positive definite, we can compute the eigendecomp: 
 
 
n  Then 
n  Define         so that 

n  If a kernel is Mercer, there exists a function     s.t. 

Kij =
�(x) = ⇤

1
2
U·i

Kij =

� : X ! Rd

Example Mercer Kernels 
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n  Example #1: (non-stationary) polynomial kernel 

n  For M=2, γ = r = 1,  

n  This can be written as     , with 

¨  Equivalent to working in a 6-dimensional feature space 
¨  For general M, basis contains all terms up to degree M 

n  Example #2: Gaussian kernel 

¨  Feature map lives in an infinite-dimensional space 

(x, x0) = (�xT
x

0 + r)M

(1 + x

T
x

0)2 = (1 + x1x
0
1 + x2x

0
2)

2

�(x)T�(x0)

�(x) =

(x, x

0
) = exp

✓
�1

2

(x� x

0
)

T
⌃

�1
(x� x

0
)

◆
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Gaussian Processes 
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n  Dispense of parametric view (prior on    ) and consider prior on 
functions themselves (prior on f) 

n  Seems hard, but we have shown that it is feasible when we 
look at a finite set of values x1, …, xn 

n  Defined by a Mercer kernel 

n  More generally, a Gaussian process provides a distribution 
over functions  

�

p(f) = N(f | 0,K)

Gaussian Processes 

n  Distribution on functions 
¨  f ~ GP(m,κ) 

n  m: mean function 
n  κ: covariance function 

¨ p(f(x1), . . . , f(xn)) ∼ Nn(µ, K) 
n  µ = [m(x1),...,m(xn)] 
n  Kij = κ (xi,xj) 

n  Idea: If xi, xj are similar according to the kernel, then f(xi) 
is similar to f(xj) 

,
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κ: covariance function 

High	  lengthscale	  

Low	  lengthscale	  

(x, x

0
) = �

2
f exp

✓
� 1

2`

2
(x� x

0
)

2

◆

m: mean function 
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m: mean function 

n  Evaluating the GP-distributed function at any 
set of locations, we have 

Induced Multivariate Gaussian 

x3x1x2 xn. . .
x
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n  Comparing length-scales: 

Induced Multivariate Gaussian 

x3x1x2 xn. . .
x
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2D Gaussian Processes 
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GPs for Regression 
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n  Start with noise-free scenario: directly observe the function 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 

n  Therefore,  

D = {(xi, fi), i = 1, . . . , n}
X⇤

✓
f
f⇤

◆
⇠ N

✓✓
µ
µ⇤

◆
,

✓
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KT
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◆◆
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Noise-Free Observations 

1D Noise-Free Example 

n  Interpolator, where uncertainty increases with distance 
n  Useful as a computationally cheap proxy for a complex simulator 

¨  Examine effect of simulator params on GP predictions instead of doing 
expensive runs of the simulator 
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GPs for Regression 
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n  Noisy scenario: observe a noisy version of underlying function 

¨  Not required to interpolate, just come “close” to observed data 

 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 
 

n  Therefore,  

X⇤
D = {(xi, yi), i = 1, . . . , n}

✓
y
f⇤

◆
⇠ N

✓
0,

✓
Ky K⇤
KT

⇤ K⇤⇤

◆◆

y = f(x) + ✏ ✏ ⇠ N(0,�2
y)

cov(y|X) =

p(f⇤ | X⇤, X, y) =

GPs for Regression 
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n  For a single point x* 
 
 
so 

p(f⇤ | X⇤, X, y) = N(KT
⇤ K

�1
y y,K⇤⇤ �KT

⇤ K
�1
y K⇤)

p(f⇤ | X⇤, X, y) = N(kT⇤ K
�1
y y, k⇤⇤ � kT⇤ K

�1
y k⇤)

f̄⇤ = kT⇤ K
�1
y y =
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CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 

Mixing Kernels for CO2 GP Analysis 

Smooth global trend 

Seasonal periodicity 

Medium term irregularities 

Correlated Observation Noise 
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CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 

Estimating Hyperparameters 
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n  How should we choose the kernel parameters? 

¨  Example: squared exponential kernel parameterization 

¨  Hyperparameters 
¨  As we saw before, can choose 

n  As in other nonparametric methods, choice can have large effect 

M = `�2I M = diag(`�2
1 , . . . , `�2

d ) M = ⇤⇤0 + diag(`�2
1 , . . . , `�2

d ) . . .
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Estimating Hyperparameters 
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n  Options: 
¨  #1: Define a grid of possible values and use cross validation 

¨  #2: Full Bayesian analysis: Place prior on hyperparameters and integrate 
over these as well in making predictions 

¨  #3: Maximize the marginal likelihood 

p(y | X, ✓) =

Z
p(y | f,X)p(f | X, ✓)df

log p(y | X, ✓) =

Estimating Hyperparameters 
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¨  For short length-scale, the fit is good, but K is nearly diagonal 

¨  For large length-scale, the fit is bad, but K is almost all 1’s 

n  Can show: 

¨  Optimize to choose hyperparameters 
¨  Complexity is 
¨  Objective is non-convex, so local minima are a problem 

log p(y | X, ✓) = �1

2

yTK�1
y y � 1

2

log |Ky|�
n

2

log 2⇡

@

@✓j
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Example of Estimating Hypers 
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Relating GPs to Kernel Methods 
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n  GPs as linear smoothers 
¨  Recall that the predictive posterior mean of a GP is 

 
n  In kernel regression, the weight function was derived from a 

smoothing kernel instead of a Mercer kernel 
¨  Clear that smoothing kernels have local support 
¨  Less clear for GPs since the weight function depends on the inverse of K 

n  For some GP kernels, can analytically derive equivalent kernel 
¨  As with smoothing kernels,  
¨  Computing a linear combination, but not a convex combination of yi’s 
¨  Interestingly, the weight function is local even when the GP kernel is not 
¨  Furthermore, the effective bandwidth of the GP equivalent kernel 

automatically decreases with n, where as in kernel smoothing such tuning 
must be done by hand 

f̄(x⇤) = k

T
⇤ (K + �

2
yIn)

�1
y
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Effective Degrees of Freedom 
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n  For the training set, the fit is given by 

n  Since K is a positive definite Gram matrix, it has eigendecomp 

n  Using this, one can show that    has eigenvals 

n  Therefore, the effective degrees of freedom is  

n  Remember that this specifies how “wiggly” the curve is 
 

f̂ = K(K + �2
yIn)

�1y

K =
nX

i=1

�iuiu
T
i

K(K + �2
yIn)

�1

Relating GPs to Splines 
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n  Recall smoothing spline objective 

n  Consider the following model 
 
 
where  

 
n  One can show that the MAP estimate of f(x) is a cubic 

smoothing spline when 

n  Penalty parameter λ is now given by  

 

f(x) = �0 + �1x+ r(x)

p(�j) / 1

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

�2
y/�

2
f
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Relating GPs to Splines 
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n  The spline kernel leads to a smooth posterior mode/mean, but 
posterior samples are not smooth. 
¨  Again, as in lasso, regularizers do not always make good priors 

n  See Rasmussen and Williams 2006 for more details 

 

Figure from 
Rasmussen 
and Williams 

2006 

More on Covariance Functions 
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n  Definitions 
¨  Stationary kernel – only depends on 
¨  Isotropic kernel – furthermore only depends on 

n  Examples 
¨  Squared exponential – 

n  Kernel is infinitely differentiable à GP has mean square derivatives of all orders  
 à resulting functions are very smooth 

 
 

¨  Matern –  

n  When    :  squared exponential 

n  When   : exponential kernel 
    ** equal to Brownian motion in 1D **     

 

x� x

0

||x� x

0||

SE(r) = e�
r

2`2

Matern(r) =
21�⌫

�(⌫)

 p
2⌫r

`

!⌫

Kv

 p
2⌫r

`

!

⌫ ! 1

⌫ =
1

2

exp

(r) = e�
r
`
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Sample Paths using Matern Kernel 
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n  Can produce very rough sample paths 

 

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
⇣

�
p

2⌫r

`

⌘ �(p + 1)
�(2p + 1)

p
X

i=0

(p + i)!
i!(p� i)!

⇣

p
8⌫r

`

⌘p�i

. (4.16)

It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which

k⌫=3/2(r) =
⇣

1 +
p

3r

`

⌘

exp
⇣

�
p

3r

`

⌘

,

k⌫=5/2(r) =
⇣

1 +
p

5r

`
+

5r2

3`2

⌘

exp
⇣

�
p

5r

`

⌘

,

(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Figure from Rasmussen and Williams 2006 
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