Module 3: Bayesian Nonparametrics

Gaussian Processes

STAT/BIOSTAT 527, University of Washington Emily Fox
April 25 th, 2013

Again: Linear Basis Expansion

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features" In this lecture, we'll focus on these forms
- Linear basis expansions maintain linear form in terms of these transformations

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x) t^{\text {trans. }}
$$

- What transformations should we use?
$h_{m}(x)=x_{m} \rightarrow$ linear model
$\square h_{m}(x)=x_{j}^{2}, \quad h_{m}(x)=x_{j} x_{k} \rightarrow$ polynomial reg.
$\square h_{m}(x)=I\left(L_{m} \leq x_{k} \leq U_{m}\right) \rightarrow$ pilcewise constant

Bayesian Linear Regression

- More generally, consider a conjugate prior on the basis expansion coefficients:

$$
p(\beta)=N\left(\beta \mid \mu_{0}, \Sigma_{0}\right)
$$

- Combining this with the Gaussian likelihood function, and using standard Gaussian identities, gives posterior

$$
p(\beta \mid y)=N\left(\beta \mid \mu_{n}, \Sigma_{n}\right)
$$

where

$$
\begin{aligned}
& M_{n}=\Sigma_{n}\left(\Sigma_{0}^{-1} \mu_{0}+\sigma^{-2} H^{\top} y\right) \\
& \Sigma_{n}^{-1}=\Sigma_{0}^{-1}+\sigma^{-2} H^{\top} H
\end{aligned}
$$

Predictive Distribution

- Predict y^{*} at new locations x^{*} by integrating over parameters β

$$
S_{\sim}^{l y} N\left(\mu_{n}, \varepsilon_{n}\right)
$$

$\in \sim N\left(0, \sigma^{2}\right)$

$$
{ }^{i_{\beta}{ }^{\top} h(x)}
$$

$\mu_{n}^{*}\left(x^{*}\right)=E\left[y^{*} \mid y\right]=\mu_{n}^{\top} h\left(x^{*}\right)$
$\sum_{n}^{*}\left(x^{*}\right)=\operatorname{Cov}\left(y^{*} \mid y\right)=h^{(}\left(x^{*}\right)^{\top} \operatorname{cov}\left(B B^{\top}\right) h\left(x^{*}\right)+\sigma^{2}=h^{\top}\left(x^{*}\right) \Sigma_{n} h\left(x^{*},\right)^{*}$
$p\left(y^{*} \mid y\right)=N\left(\mu_{n}^{*}\left(x^{*}\right), \sum_{n}^{*}\left(x^{*}\right)\right)$

Example: Gaussian Basis Expansion

- Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

- Parametric Bayes: Consider a finite list of possible models, average according to posterior probability (or in practice, just select the most probable)
- Nonparametric Bayes: Consider a single infinite model, integrate over parameters when making predictions or infer which finite subset is exhibited in your dataset

Going Infinite...

- Nonparametric Gaussian regression:

Would like to let the number of "features" $M \rightarrow \infty$

- Prior: $p\left(\beta \mid 0, \alpha^{-1} I_{M}\right)$
- Predictions: $f=\Phi \beta$
- Gaussian process models replace explicit basis function representation with a direct specification in terms of a positive definite kernel function

Mercer Kernel Functions

- Predictions are of the form

$$
p(f)=N\left(f \mid 0, \alpha^{-1} \Phi \Phi^{T}\right)
$$

where the Gram matrix K is defined as

$$
K_{i j}=
$$

- K is a Mercer kernel if the Gram matrix is positive definite for any n and any x_{1}, \ldots, x_{n}

Mercer's Theorem

- If K is positive definite, we can compute the eigendecomp:
- Then $K_{i j}=$
- Define $\phi(x)=\Lambda^{\frac{1}{2}} U_{. i}$ so that

$$
K_{i j}=
$$

- If a kernel is Mercer, there exists a function $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$ s.t.

Example Mercer Kernels

- Example \#1: (non-stationary) polynomial kernel

$$
\kappa\left(x, x^{\prime}\right)=\left(\gamma x^{T} x^{\prime}+r\right)^{M}
$$

- For $M=2, \gamma=r=1$,
$\left(1+x^{T} x^{\prime}\right)^{2}=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}$
- This can be written as $\phi(x)^{T} \phi\left(x^{\prime}\right)$, with

$$
\phi(x)=
$$

\square Equivalent to working in a 6-dimensional feature space
\square For general M, basis contains all terms up to degree M

- Example \#2: Gaussian kernel

$$
\kappa\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2}\left(x-x^{\prime}\right)^{T} \Sigma^{-1}\left(x-x^{\prime}\right)\right)
$$

Feature map lives in an infinite-dimensional space

Gaussian Processes

- Dispense of parametric view (prior on β) and consider prior on functions themselves (prior on f)
- Seems hard, but we have shown that it is feasible when we look at a finite set of values x_{1}, \ldots, x_{n}

$$
p(f)=N(f \mid 0, K)
$$

- Defined by a Mercer kernel
- More generally, a Gaussian process provides a distribution over functions

Gaussian Processes

- Distribution on functions$f \sim \operatorname{GP}(m, k)$
- m: mean function
- к: covariance function

$\square \mathrm{p}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, K)$
- $\mu=\left[m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right]$
- $\mathrm{K}_{\mathrm{ij}}=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)$
- Idea: If $x_{i j} x_{j}$ are similar according to the kernel, then $f\left(x_{i}\right)$ is similar to $f\left(x_{j}\right)$

к: covariance function

$$
\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2 \ell^{2}}\left(x-x^{\prime}\right)^{2}\right)
$$

High lengthscale

m: mean function

Induced Multivariate Gaussian

- Evaluating the GP-distributed function at any set of locations, we have

2D Gaussian Processes

GPs for Regression

- Start with noise-free scenario: directly observe the function
- Training data $\mathcal{D}=\left\{\left(x_{i}, f_{i}\right), i=1, \ldots, n\right\}$
- Test data locations $X^{*} \rightarrow$ predict f^{*}
- Jointly, we have

$$
\binom{f}{f^{*}} \sim N\left(\binom{\mu}{\mu_{*}},\left(\begin{array}{cc}
K & K_{*} \\
K_{*}^{T} & K_{* *}
\end{array}\right)\right)
$$

- Therefore,

```
p(f* | X*,X,f)=
```


1D Noise-Free Example

Samples from Prior
$\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2 \ell^{2}}\left(x-x^{\prime}\right)^{2}\right)$

Posterior Given 5 Noise-Free Observations

- Interpolator, where uncertainty increases with distance
- Useful as a computationally cheap proxy for a complex simulator
\square Examine effect of simulator params on GP predictions instead of doing expensive runs of the simulator

GPs for Regression

- Noisy scenario: observe a noisy version of underlying function

$$
y=f(x)+\epsilon \quad \epsilon \sim N\left(0, \sigma_{y}^{2}\right)
$$

Not required to interpolate, just come "close" to observed data

$$
\operatorname{cov}(y \mid X)=
$$

- Training data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$
- Test data locations $X^{*} \rightarrow$ predict f^{*}

■ Jointly, we have $\binom{y}{f^{*}} \sim N\left(0,\left(\begin{array}{cc}K_{y} & K_{*} \\ K_{*}^{T} & K_{* *}\end{array}\right)\right)$

- Therefore, $p\left(f^{*} \mid X^{*}, X, y\right)=$

GPs for Regression

$p\left(f^{*} \mid X^{*}, X, y\right)=N\left(K_{*}^{T} K_{y}^{-1} y, K_{* *}-K_{*}^{T} K_{y}^{-1} K_{*}\right)$

- For a single point x^{*}
$p\left(f^{*} \mid X^{*}, X, y\right)=N\left(k_{*}^{T} K_{y}^{-1} y, k_{* *}-k_{*}^{T} K_{y}^{-1} k_{*}\right)$
so
$\bar{f}^{*}=k_{*}^{T} K_{y}^{-1} y=$

CO2 Concentration Over Time

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95\% predicted confidence

Mixing Kernels for CO2 GP Analysis

Smooth global trend

$$
\begin{aligned}
& \text { th global trend } \\
& \kappa_{1}\left(x, x^{\prime}\right)=\theta_{1}^{2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{2}^{2}}\right)
\end{aligned}
$$

Seasonal periodicity

$$
\kappa_{2}\left(x, x^{\prime}\right)=\theta_{3}^{2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{4}^{2}}-\frac{2 \sin ^{2}\left(\pi\left(x-x^{\prime}\right)\right)}{\theta_{5}^{2}}\right)
$$

Medium term irregularities

$$
\kappa_{3}\left(x, x^{\prime}\right)=\theta_{6}^{2}\left(1+\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{8} \theta_{7}^{2}}\right)^{-\theta_{8}}
$$

Correlated Observation Noise

$$
\kappa_{4}\left(x_{p}, x_{q}\right)=\theta_{9}^{2} \exp \left(-\frac{\left(x_{p}-x_{q}\right)^{2}}{2 \theta_{10}^{2}}\right)+\theta_{11}^{2} \delta_{p q}
$$

CO2 Concentration Over Time

(a)

(b)

Estimating Hyperparameters

- How should we choose the kernel parameters?
\square Example: squared exponential kernel parameterization
$\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(\frac{-1}{2}\left(x_{p}-x_{q}\right)^{T} M\left(x_{p}^{\prime}-x_{q}^{\prime}\right)\right)+\sigma_{y}^{2} \delta_{p q}$
\square Hyperparameters
\square As we saw before, can choose
$M=\ell^{-2} I \quad M=\operatorname{diag}\left(\ell_{1}^{-2}, \ldots, \ell_{d}^{-2}\right) \quad M=\Lambda \Lambda^{\prime}+\operatorname{diag}\left(\ell_{1}^{-2}, \ldots, \ell_{d}^{-2}\right) \ldots$
- As in other nonparametric methods, choice can have large effect

Estimating Hyperparameters

- Options:
\square \#1: Define a grid of possible values and use cross validation
\square \#2: Full Bayesian analysis: Place prior on hyperparameters and integrate over these as well in making predictions
\square \#3: Maximize the marginal likelihood
$p(y \mid X, \theta)=\int p(y \mid f, X) p(f \mid X, \theta) d f$
$\log p(y \mid X, \theta)=$

Estimating Hyperparameters

$\log p(y \mid X, \theta)=-\frac{1}{2} y^{T} K_{y}^{-1} y-\frac{1}{2} \log \left|K_{y}\right|-\frac{n}{2} \log 2 \pi$
\square For short length-scale, the fit is good, but K is nearly diagonal
\square For large length-scale, the fit is bad, but K is almost all 1 's

- Can show:

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} \log p(y \mid X, \theta) & =\frac{1}{2} y^{T} K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}} K_{y}^{-1} y-\frac{1}{2} \operatorname{tr}\left(K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}}\right) \\
& =\frac{1}{2} \operatorname{tr}\left(\left(\alpha \alpha^{T}-K_{y}^{-1}\right) \frac{\partial K_{y}}{\partial \theta_{j}}\right)
\end{aligned}
$$

\square Optimize to choose hyperparameters
\square Complexity is
\square Objective is non-convex, so local minima are a problem

Example of Estimating Hypers

Relating GPs to Kernel Methods

- GPs as linear smoothers
\square Recall that the predictive posterior mean of a GP is

$$
\bar{f}\left(x^{*}\right)=k_{*}^{T}\left(K+\sigma_{y}^{2} I_{n}\right)^{-1} y
$$

- In kernel regression, the weight function was derived from a smoothing kernel instead of a Mercer kernel
\square Clear that smoothing kernels have local support
\square Less clear for GPs since the weight function depends on the inverse of K
- For some GP kernels, can analytically derive equivalent kernel
\square As with smoothing kernels,
\square Computing a linear combination, but not a convex combination of y_{i} 's
\square Interestingly, the weight function is local even when the GP kernel is not
\square Furthermore, the effective bandwidth of the GP equivalent kernel automatically decreases with n, where as in kernel smoothing such tuning must be done by hand

Effective Degrees of Freedom

For the training set, the fit is given by

$$
\hat{f}=K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1} y
$$

- Since K is a positive definite Gram matrix, it has eigendecomp

$$
K=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

- Using this, one can show that $K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1}$ has eigenvals
- Therefore, the effective degrees of freedom is
- Remember that this specifies how "wiggly" the curve is

Relating GPs to Splines

Recall smoothing spline objective

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Consider the following model

$$
f(x)=\beta_{0}+\beta_{1} x+r(x)
$$

where

- One can show that the MAP estimate of $f(x)$ is a cubic smoothing spline when $p\left(\beta_{j}\right) \propto 1$
- Penalty parameter $\boldsymbol{\lambda}$ is now given by $\sigma_{y}^{2} / \sigma_{f}^{2}$

Relating GPs to Splines

- The spline kernel leads to a smooth posterior mode/mean, but posterior samples are not smooth.

Again, as in lasso, regularizers do not always make good priors

- See Rasmussen and Williams 2006 for more details

More on Covariance Functions

- Definitions
\square Stationary kernel - only depends on $x-x^{\prime}$
\square Isotropic kernel - furthermore only depends on $\left\|x-x^{\prime}\right\|$
- Examples
\square Squared exponential - $\kappa_{S E}(r)=e^{-\frac{r}{2 \ell^{2}}}$
- Kernel is infinitely differentiable \rightarrow GP has mean square derivatives of all orders \rightarrow resulting functions are very smooth
\square Matern $-\quad \kappa_{\text {Matern }}(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{v}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)$
- When $\nu \rightarrow \infty$: squared exponential
- When $\nu=\frac{1}{2} \quad: \begin{gathered}\text { exponential kernel } \kappa_{\text {exp }}(r)=e^{-\frac{r}{\ell}} \text { equal to Brownian motion in 1D ** }\end{gathered}$

Sample Paths using Matern Kernel

- Can produce very rough sample paths

Figure from Rasmussen and Williams 2006

Acknowledgements

Many figures courtesy Kevin Murphy's textbook
Machine Learning: A Probabilistic Perspective,
and Chris Bishop's textbook
Pattern Recognition and Machine Learning
Slides based on parts of the lecture notes of Erik Sudderth for
"Applied Bayesian Nonparametrics" at Brown University

