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Again: Linear Basis Expansion

" JEE
m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”
\n Khis lecture , W'l Socus on klhese Corme
m Linear basis expansions maintain linear form in terms of
these transformations roans.
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Bayesian Linear Regression
" JEEE
m More generally, consider a conjugate prior on the basis
expansion coefficients:

p(B) = N(B | po,>0)

m Combining this with the Gaussian likelihood function, and 9
using standard Gaussian identities, gives posterior \aj L
rof & XP
p(Bly) = N8| tn,En) o
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Predictive Distribution
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Example: Gaussian Basis Expansion
" S

m Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points
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Bayesian Ockham’s Razor

" S— (:
o0 an " M_Q\l 1 |

p(D) Col . . ) i
My Plurality must never be posited |

w ithout necessity.”
T‘ ?(:/(; h\r’; withou ity.
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f,o” B > % e ‘MEL de<*  William of Ockham

m Parametric Bayes: Consider a finite list of possible models,
average according to posterior probability
(or in practice, just select the most probable)

m Nonparametric Bayes: Consider a single infinite model,
integrate over parameters when making predictions or infer which
finite subset is exhibited in your dataset




. .. Change of notation:
Going Infinite... h(z) — é(z)
* JEE
m Nonparametric Gaussian regression:
Would like to let the number of “features” M - «

m Prior: p(B|0,a 'Iy)

m Predictions: [ = ®f

m Gaussian process models replace explicit basis function
representation with a direct specification in terms of a
positive definite kernel function
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Mercer Kernel Functions
" JE
m Predictions are of the form
p(f) = N(f10,a" " 00")

where the Gram matrix K is defined as
Kij =

m Kis a Mercer kernel if the Gram matrix is positive definite for
any nand any x4, ..., X,
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Mercer's Theorem
= JEE

m If Kis positive definite, we can compute the eigendecomp:

m Then Kij =
1
m Define ¢(x) = A2U; so that

Kl'j =

m If a kernel is Mercer, there exists a function ¢ : X — RY s.t.
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Example Mercer Kernels
* JEE——
m Example #1: (non-stationary) polynomial kernel
wa,a') = (e + )M
m ForM=2,y=r=1,
(14 272")? = (1 + 12 + zoxh)?

= This can be written as ¢(x)” ¢(2') , with
¢(z) =

Equivalent to working in a 6-dimensional feature space
For general M, basis contains all terms up to degree M

m Example #2: Gaussian kernel
k(x,2") = exp <—;(x — 2Ty - x'))

Feature map lives in an infinite-dimensional space
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Gaussian Processes
* JE
m Dispense of parametric view (prior on 5) and consider prior on

functions themselves (prior on 1)

m Seems hard, but we have shown that it is feasible when we
look at a finite set of values x,, ..., x,

p(f) =N(f10,K)

m Defined by a Mercer kernel

m More generally, a Gaussian process provides a distribution
over functions
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Gaussian Processes
" JEE—
m Distribution on functions
f~ GP(m,k)
= m: mean function
m K: covariance function

¢

p(f(x1), . . ., f(xn)) ~ Nn(H, K)
= 4= [Mm(x1),...,m(Xn)]
= Kj =K (Xi,X))

m |dea: If x; x; are similar according to the kernel, then f(x))
is similar to f(x;)




K: covariance function
M

k(z,x") = oF exp (—%(x — 33’)2)

High lengthscale

Low Iew

m: mean function




m: mean function
= JEEE

Induced Multivariate Gaussian
" JEE
m Evaluating the GP-distributed function at any
set of locations, we have

T
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Induced Multivariate Gaussian
= JEE

m Comparing length-scales:

OO0 0O 00O O O COO © 00O O 000
T1xToX3 - - In
X
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T1T2T3 - -- In
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2D Gaussian Processes
" N (1, ) = o} exp 1 (v, — )T M(z, — )
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GPs for Regression
* JEEE

m Start with noise-free scenario: directly observe the function

Training data D = {(x;, fi),i =1,...,n}
Test data locations X* - predict f*

Jointly, we have

()= () (& )

Therefore,
p(f* 1 X5 X, f) =
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1D Noise-Free Example

s 5

Samples from Prior ~ Posterior Given 5
K(z,2') = 0} exp(—2—22(;p —¢/)?2)  Noise-Free Observations

m Interpolator, where uncertainty increases with distance

m Useful as a computationally cheap proxy for a complex simulator

Examine effect of simulator params on GP predictions instead of doing
expensive runs of the simulator
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GPs for Regression
“ JE
m Noisy scenario: observe a noisy version of underlying function
y=f(x)+e e~N(0,0y)

Not required to interpolate, just come “close” to observed data

cov(y|X) =

Training dataD = {(x;,v;),i =1,...,n}
Test data locations X* - predict f*

Jointly, we have [ y K, K,
()~ (o (s

Therefore, p(f* | X*, X,y) =
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GPs for Regression
" JEE
p(f* ‘ X*’va) = N(KZKy_lyaK** - KZKy_lK*)
m For a single point x*
PO 1 X5 X y) = Nk Ky ko — kUK k)
o)

JP=k Ky =
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CO2 Concentration Over Time
= JEE

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95% predicted confidence
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Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006

Mixing Kernels for CO2 GP Analysis

Smooth global trend
/ 2 (-T - -TI)Q
Ki(z,2") = 07 exp (— 202 )
Seasonal periodicity

Ko(z,2') = 603 exp (_ (x—2')? _ 2sin?(m(z — 1,/)))

262 02
Medium term irregularities

’ —fs
) (z—2')?
Kka(z,z') = 02 (1 + 20502

Correlated Observation Noise

T, — T,)2
Ka(2p, 2q) = 05 exp (—%) + 60316
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CO2 Concentration Over Time
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Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006

Estimating Hyperparameters
* JEE—
m How should we choose the kernel parameters?
Example: squared exponential kernel parameterization

-1
k(z,2') = a]% exp <2(:z:p — xq)TM(x;, — x;)> + Uidpq

Hyperparameters
As we saw before, can choose

M =021 M =diag((;?,...,0;%) M=AN +diag(¢;?,...,0,%)...

m As in other nonparametric methods, choice can have large effect

ot
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Estimating Hyperparameters
" JEE
m Options:
#1: Define a grid of possible values and use cross validation

#2: Full Bayesian analysis: Place prior on hyperparameters and integrate
over these as well in making predictions

#3: Maximize the marginal likelihood

Py | X.0) = / Dy | £, X)p(f | X, 0)df

logp(y | X,0) =
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Estimating Hyperparameters
* JEE——

1 _
logp(y | X,0) = -5y K,

For short length-scale, the fit is good, but K is nearly diagonal

1
Ly — 510g|Ky| — glog%r

For large length-scale, the fit is bad, but K is almost all 1’s

m Can show:

0 1 0K 1 0K
1 X _ TK_1 yK—l - K—l Yy

1 T o1y 0Ky
= 2tr ((aa K, )80j

Optimize to choose hyperparameters
Complexity is
Objective is non-convex, so local minima are a problem
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Example of Estimating Hypers

2 2
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Relating GPs to Kernel Methods
" JEE—

m GPs as linear smoothers
Recall that the predictive posterior mean of a GP is

fla*) = kI (K +oyl) "y

m In kernel regression, the weight function was derived from a
smoothing kernel instead of a Mercer kernel
Clear that smoothing kernels have local support
Less clear for GPs since the weight function depends on the inverse of K

m For some GP kernels, can analytically derive equivalent kernel
As with smoothing kernels,
Computing a linear combination, but not a convex combination of y;'s
Interestingly, the weight function is local even when the GP kernel is not

Furthermore, the effective bandwidth of the GP equivalent kernel
automatically decreases with n, where as in kernel smoothing such tuning
must be done by hand
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Effective Degrees of Freedom
" JEE

m For the training set, the fit is given by

f=K(K+ aifn)_ly

Since Kis a positive definite Gram matrix, it has eigendecomp

K= Z)\uu

Using this, one can show that K (K + 021 n) I has eigenvals

Therefore, the effective degrees of freedom is

Remember that this specifies how “wiggly” the curve is
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Relating GPs to Splines
" JEE——

m Recall smoothing spline objective

mmz f(x;)) +)\/f"

m Consider the foIIowmg model

f(x) = Bo+ frx +r(x)

where

m One can show that the MAP estimate of f(x) is a cubic
smoothing spline when p(3;) o 1

m Penalty parameter A is now given by 05/0?
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Relating GPs to Splines
* JEE—

m The spline kernel leads to a smooth posterior mode/mean, but
posterior samples are not smooth.
Again, as in lasso, regularizers do not always make good priors

2
1[5 A .
¥ Figure from

> 0} Y Rasmussen
3__1 and Williams
3, / 2006

-3

4 -4

-5 0 5 -5 0 5
input, x input, x
(a), spline covariance (b), squared exponential cov.

m See Rasmussen and Williams 2006 for more details
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More on Covariance Functions
= JEEE

m Definitions
Stationary kernel — only depends on T — x’
Isotropic kemel — furthermore only depends on ||z — .%‘/| |

m Examples i
Squared exponential - ksg(r) =e 222
= Kernel is infinitely differentiable > GP has mean square derivatives of all orders
- resulting functions are very smooth

ol-v 2ur Y 2ur
I'(v) 14 Y 14

s When IV — 0O : squared exponential

Matern—  Kpratern(r) =

= When I = — :exponential kernel lieg;p(r) =e ¢
2 - equal to Brownian motion in 1D **
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Sample Paths using Matern Kernel
" JE
m Can produce very rough sample paths

covariance, k(r)
output, f(x)

1 2 -5 -0 5
input distance, r input, x

(a) (b)

Figure from Rasmussen and Williams 2006
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