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Module 5: Classification 
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Very convenient! 

 
implies 
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implies 

linear 
classification 

rule! 
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Examine ratio: 
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Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 
problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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Optimizing Concave Function – 
Gradient Ascent  

n  Conditional likelihood for logistic regression is concave  
n  Find optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	


    

 

  

 For j=1,…,d,  

 

 

repeat    
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Linear Separability 
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Large Parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 

¨  In general, leads to overfitting: 
n  Penalizing high weights can prevent overfitting… 
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Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 

©Emily Fox 2013 9 

�

(t+1)
j  �

(t)
j + ⌘

(
���(t)

j +
X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘)

Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 
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l(�) = E

x

[l(�, x)] =

Z
p(x)l(�, x)dx
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SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 
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rl(�) = E

x

[rl(�, x)]

Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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Discriminative vs. Generative 

n  So far, we have considered modeling/fitting 

n  There are also a large set of generative methods 
n  Model: 

¨  Class-conditional densities 
¨  Class prior probabilities 

n  Via Bayes’ rule: 

©Emily Fox 2013 

p(Y | X)

fk(X) =
⇡k

Generative Classifiers 

n  Examples include: 
¨  Linear and quadratic discriminative analysis (LDA and QDA) 

¨  Mixture of Gaussians (saw in BNP module) 

¨  Nonparametric density estimation for 

¨  Naïve Bayes  

©Emily Fox 2013 

p(Y = k | X = x) =
⇡kfk(x)P
` ⇡`f`(x)

fk(x)
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Linear Discriminative Analysis 
n  Assume Gaussian class-conditional densities 

n  Furthermore, consider equal covariances 

n  Log odds 
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fk(X) =

log

p(Y = k | X = x)

p(Y = ` | X = x)

=

Linear Discriminative Analysis 

n  Equivalently,  
 
where 

n  Decision rule: 

n  Linear decision boundaries 
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FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

the figure the contours corresponding to 95% highest probability density,
as well as the class centroids. Notice that the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance Σ were spherical σ2I, and the class
priors were equal. From (4.9) we see that the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (4.10)

are an equivalent description of the decision rule, withG(x) = argmaxkδk(x).
In practice we do not know the parameters of the Gaussian distributions,

and will need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk;

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T /(N −K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear regression, as in (4.5). The
LDA rule classifies to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) >
1

2
(µ̂2 + µ̂1)

T Σ̂
−1

(µ̂2 − µ̂1)− log(N2/N1), (4.11)

log

p(Y = k | X = x)

p(Y = ` | X = x)

= �k(x)� �`(x)

�k(x) =

From Hastie, Tibshirani, Friedman book 
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LDA Parameter Estimation 

n  Based on the training class labels,  
estimate parameters: 
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FIGURE 4.5. The left panel shows three Gaussian distributions, with the same
covariance and different means. Included are the contours of constant density
enclosing 95% of the probability in each case. The Bayes decision boundaries
between each pair of classes are shown (broken straight lines), and the Bayes
decision boundaries separating all three classes are the thicker solid lines (a subset
of the former). On the right we see a sample of 30 drawn from each Gaussian
distribution, and the fitted LDA decision boundaries.

the figure the contours corresponding to 95% highest probability density,
as well as the class centroids. Notice that the decision boundaries are not
the perpendicular bisectors of the line segments joining the centroids. This
would be the case if the covariance Σ were spherical σ2I, and the class
priors were equal. From (4.9) we see that the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (4.10)

are an equivalent description of the decision rule, withG(x) = argmaxkδk(x).
In practice we do not know the parameters of the Gaussian distributions,

and will need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

gi=k xi/Nk;

• Σ̂ =
∑K

k=1

∑
gi=k(xi − µ̂k)(xi − µ̂k)T /(N −K).

Figure 4.5 (right panel) shows the estimated decision boundaries based on
a sample of size 30 each from three Gaussian distributions. Figure 4.1 on
page 103 is another example, but here the classes are not Gaussian.

With two classes there is a simple correspondence between linear dis-
criminant analysis and classification by linear regression, as in (4.5). The
LDA rule classifies to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) >
1

2
(µ̂2 + µ̂1)

T Σ̂
−1

(µ̂2 − µ̂1)− log(N2/N1), (4.11)

Quadratic Discriminative Analysis 
n  Same setup as LDA, but allow class-specific covariances 
 
n  Quadratic discriminant functions: 

n  Quadratic decision boundaries 
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�k(x) =

From Hastie, Tibshirani, Friedman book 
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FIGURE 4.6. Two methods for fitting quadratic boundaries. The left plot shows
the quadratic decision boundaries for the data in Figure 4.1 (obtained using LDA
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 ). The right plot shows the

quadratic decision boundaries found by QDA. The differences are small, as is
usually the case.

between the discriminant functions where K is some pre-chosen class (here
we have chosen the last), and each difference requires p + 1 parameters3.
Likewise for QDA there will be (K − 1) × {p(p + 3)/2 + 1} parameters.
Both LDA and QDA perform well on an amazingly large and diverse set
of classification tasks. For example, in the STATLOG project (Michie et
al., 1994) LDA was among the top three classifiers for 7 of the 22 datasets,
QDA among the top three for four datasets, and one of the pair were in the
top three for 10 datasets. Both techniques are widely used, and entire books
are devoted to LDA. It seems that whatever exotic tools are the rage of the
day, we should always have available these two simple tools. The question
arises why LDA and QDA have such a good track record. The reason is not
likely to be that the data are approximately Gaussian, and in addition for
LDA that the covariances are approximately equal. More likely a reason is
that the data can only support simple decision boundaries such as linear or
quadratic, and the estimates provided via the Gaussian models are stable.
This is a bias variance tradeoff—we can put up with the bias of a linear
decision boundary because it can be estimated with much lower variance
than more exotic alternatives. This argument is less believable for QDA,
since it can have many parameters itself, although perhaps fewer than the
non-parametric alternatives.

3Although we fit the covariance matrix Σ̂ to compute the LDA discriminant functions,
a much reduced function of it is all that is required to estimate the O(p) parameters
needed to compute the decision boundaries.
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QDA Parameter Estimation 
n  Based on the training class labels, estimate parameters: 

 

n  Number of parameters: 

n  Can also consider shrinkage estimators 

©Emily Fox 2013 

⌃̂k(↵) = ↵⌃̂k + (1� ↵)⌃̂ ⌃̂(�) = �⌃̂+ (1� �)�2I

Notes on QDA and LDA 

n  LDA + QDA tend to perform very well in practice 

n  It is not true that data are Gaussian or, furthermore, that 
covariances are equal (LDA) 

n  Performance is likely attributed to the fact that the data can 
only support simple decision boundaries 
¨  Also, estimates for Gaussian models are stable 

©Emily Fox 2013 
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LDA vs. Logistic Regression 

n  Both have linear log odds: 

n  Difference is in how the coefficients are estimated 

©Emily Fox 2013 

log

p(Y = k | X = x)

p(Y = K | X = x)

= ↵k0 + ↵

T
k x

log

p(Y = k | X = x)

p(Y = K | X = x)

= �k0 + �

T
k x

p(X,Y = k) =

LDA vs. Logistic Regression 

n  Marginal likelihood term 

¨  Logistic regression: 

¨  LDA: 

 

©Emily Fox 2013 

p(X,Y = k) = p(X)p(Y = k | X)
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LDA vs. Logistic Regression 
n  In LDA, the data inform the parameters more 

¨  If data are indeed Gaussian, then asymptotically maximizing just 
conditional likelihood requires 30% more data to perform as well 

n  Data far from boundary affect      in LDA, but are ignored by 
logistic regression 

n  Observations without class labels can be used in mixture model 
case, but not in logistic regression 

n  Marginal likelihood p(X) acts as a regularizer 

n  Logistic regression tends to be more robust than LDA and can 
handle qualitative X variables, but performance is often similar. 

 ©Emily Fox 2013 
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KDE for Classification 

n  Use KDE to estimate class-conditional densities 
n  Recall commonly used 

Gaussian KDE in 1D 

©Emily Fox 2013 

p(Y = k | X = x) =
⇡kfk(x)P
` ⇡`f`(x)
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Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 

Example: Heart Disease Data 
n  Binary response = CHD (coronary heart disease) 
n  Predictor = systolic blood pressure 

©Emily Fox 2013 
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FIGURE 6.12. Each plot shows the binary response CHD (coronary heart dis-
ease) as a function of a risk factor for the South African heart disease data.
For each plot we have computed the fitted prevalence of CHD using a local linear
logistic regression model. The unexpected increase in the prevalence of CHD at
the lower ends of the ranges is because these are retrospective data, and some of
the subjects had already undergone treatment to reduce their blood pressure and
weight. The shaded region in the plot indicates an estimated pointwise standard
error band.

This model can be used for flexible multiclass classification in moderately
low dimensions, although successes have been reported with the high-
dimensional ZIP-code classification problem. Generalized additive models
(Chapter 9) using kernel smoothing methods are closely related, and avoid
dimensionality problems by assuming an additive structure for the regres-
sion function.

As a simple illustration we fit a two-class local linear logistic model to
the heart disease data of Chapter 4. Figure 6.12 shows the univariate local
logistic models fit to two of the risk factors (separately). This is a useful
screening device for detecting nonlinearities, when the data themselves have
little visual information to offer. In this case an unexpected anomaly is
uncovered in the data, which may have gone unnoticed with traditional
methods.

Since CHD is a binary indicator, we could estimate the conditional preva-
lence Pr(G = j|x0) by simply smoothing this binary response directly with-
out resorting to a likelihood formulation. This amounts to fitting a locally
constant logistic regression model (Exercise 6.5). In order to enjoy the bias-
correction of local-linear smoothing, it is more natural to operate on the
unrestricted logit scale.

Typically with logistic regression, we compute parameter estimates as
well as their standard errors. This can be done locally as well, and so
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FIGURE 6.14. The left panel shows the two separate density estimates for
systolic blood pressure in the CHD versus no-CHD groups, using a Gaussian
kernel density estimate in each. The right panel shows the estimated posterior
probabilities for CHD, using (6.25).

because it counts observations close to x0 with weights that decrease with
distance from x0. In this case a popular choice forKλ is the Gaussian kernel
Kλ(x0, x) = φ(|x− x0|/λ). Figure 6.13 shows a Gaussian kernel density fit
to the sample values for systolic blood pressure for the CHD group. Letting
φλ denote the Gaussian density with mean zero and standard-deviation λ,
then (6.22) has the form

f̂X(x) =
1

N

N∑

i=1

φλ(x− xi)

= (F̂ # φλ)(x), (6.23)

the convolution of the sample empirical distribution F̂ with φλ. The dis-
tribution F̂ (x) puts mass 1/N at each of the observed xi, and is jumpy; in
f̂X(x) we have smoothed F̂ by adding independent Gaussian noise to each
observation xi.
The Parzen density estimate is the equivalent of the local average, and

improvements have been proposed along the lines of local regression [on the
log scale for densities; see Loader (1999)]. We will not pursue these here.
In IRp the natural generalization of the Gaussian density estimate amounts
to using the Gaussian product kernel in (6.23),

f̂X(x0) =
1

N(2λ2π)
p
2

N∑

i=1

e−
1
2 (||xi−x0||/λ)

2

. (6.24)
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Example: Heart Disease Data 

n  KDE estimates are poor in regions with little data 
n  Local linear model uses variable bandwidth based on k-NN  

à smooths out over these regions 
n  For classification tasks, do not need to estimate each class-

conditional density well.  Just need good estimates of the 
posterior near the decision boundary 

©Emily Fox 2013 
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FIGURE 6.12. Each plot shows the binary response CHD (coronary heart dis-
ease) as a function of a risk factor for the South African heart disease data.
For each plot we have computed the fitted prevalence of CHD using a local linear
logistic regression model. The unexpected increase in the prevalence of CHD at
the lower ends of the ranges is because these are retrospective data, and some of
the subjects had already undergone treatment to reduce their blood pressure and
weight. The shaded region in the plot indicates an estimated pointwise standard
error band.

This model can be used for flexible multiclass classification in moderately
low dimensions, although successes have been reported with the high-
dimensional ZIP-code classification problem. Generalized additive models
(Chapter 9) using kernel smoothing methods are closely related, and avoid
dimensionality problems by assuming an additive structure for the regres-
sion function.

As a simple illustration we fit a two-class local linear logistic model to
the heart disease data of Chapter 4. Figure 6.12 shows the univariate local
logistic models fit to two of the risk factors (separately). This is a useful
screening device for detecting nonlinearities, when the data themselves have
little visual information to offer. In this case an unexpected anomaly is
uncovered in the data, which may have gone unnoticed with traditional
methods.

Since CHD is a binary indicator, we could estimate the conditional preva-
lence Pr(G = j|x0) by simply smoothing this binary response directly with-
out resorting to a likelihood formulation. This amounts to fitting a locally
constant logistic regression model (Exercise 6.5). In order to enjoy the bias-
correction of local-linear smoothing, it is more natural to operate on the
unrestricted logit scale.

Typically with logistic regression, we compute parameter estimates as
well as their standard errors. This can be done locally as well, and so

6.6 Kernel Density Estimation and Classification 209

Systolic Blood Pressure

D
en

si
ty

 E
st

im
at

es
100 140 180 220

0.
0

0.
01

0
0.

02
0

CHD
no CHD

Systolic Blood Pressure

Po
st

er
io

r E
st

im
at

e

100 140 180 220

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 6.14. The left panel shows the two separate density estimates for
systolic blood pressure in the CHD versus no-CHD groups, using a Gaussian
kernel density estimate in each. The right panel shows the estimated posterior
probabilities for CHD, using (6.25).

because it counts observations close to x0 with weights that decrease with
distance from x0. In this case a popular choice forKλ is the Gaussian kernel
Kλ(x0, x) = φ(|x− x0|/λ). Figure 6.13 shows a Gaussian kernel density fit
to the sample values for systolic blood pressure for the CHD group. Letting
φλ denote the Gaussian density with mean zero and standard-deviation λ,
then (6.22) has the form

f̂X(x) =
1

N

N∑

i=1

φλ(x− xi)

= (F̂ # φλ)(x), (6.23)

the convolution of the sample empirical distribution F̂ with φλ. The dis-
tribution F̂ (x) puts mass 1/N at each of the observed xi, and is jumpy; in
f̂X(x) we have smoothed F̂ by adding independent Gaussian noise to each
observation xi.
The Parzen density estimate is the equivalent of the local average, and

improvements have been proposed along the lines of local regression [on the
log scale for densities; see Loader (1999)]. We will not pursue these here.
In IRp the natural generalization of the Gaussian density estimate amounts
to using the Gaussian product kernel in (6.23),

f̂X(x0) =
1

N(2λ2π)
p
2

N∑

i=1

e−
1
2 (||xi−x0||/λ)

2

. (6.24)

Class-Conditionals vs. Posterior 

n  Example: 
¨  Both densities are multimodal 
¨  Might opt for rougher, high-variance estimator to capture features 
¨  However, posterior is quite smooth 
¨  Fine-scale features are irrelevant for classification here 

©Emily Fox 2013 
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FIGURE 6.15. The population class densities may have interesting structure
(left) that disappears when the posterior probabilities are formed (right).

6.6.2 Kernel Density Classification

One can use nonparametric density estimates for classification in a straight-
forward fashion using Bayes’ theorem. Suppose for a J class problem we fit
nonparametric density estimates f̂j(X), j = 1, . . . , J separately in each of
the classes, and we also have estimates of the class priors π̂j (usually the
sample proportions). Then

P̂r(G = j|X = x0) =
π̂j f̂j(x0)∑J

k=1 π̂kf̂k(x0)
. (6.25)

Figure 6.14 uses this method to estimate the prevalence of CHD for the
heart risk factor study, and should be compared with the left panel of Fig-
ure 6.12. The main difference occurs in the region of high SBP in the right
panel of Figure 6.14. In this region the data are sparse for both classes, and
since the Gaussian kernel density estimates use metric kernels, the density
estimates are low and of poor quality (high variance) in these regions. The
local logistic regression method (6.20) uses the tri-cube kernel with k-NN
bandwidth; this effectively widens the kernel in this region, and makes use
of the local linear assumption to smooth out the estimate (on the logit
scale).

If classification is the ultimate goal, then learning the separate class den-
sities well may be unnecessary, and can in fact be misleading. Figure 6.15
shows an example where the densities are both multimodal, but the pos-
terior ratio is quite smooth. In learning the separate densities from data,
one might decide to settle for a rougher, high-variance fit to capture these
features, which are irrelevant for the purposes of estimating the posterior
probabilities. In fact, if classification is the ultimate goal, then we need only
to estimate the posterior well near the decision boundary (for two classes,
this is the set {x|Pr(G = 1|X = x) = 1

2}).

6.6.3 The Naive Bayes Classifier

This is a technique that has remained popular over the years, despite its
name (also known as “Idiot’s Bayes”!) It is especially appropriate when
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Multivariate KDE 

©Emily Fox 2013 31 

n  In 1d  

n  In Rd, assuming a product kernel, 

n  Typical choice = Gaussian RBF 

p̂(x0) =
1

n�

nX

i=1

K�(x0, xi)

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;

Naïve Bayes Classifier 

n  Useful in high-dimensional settings (d large)  
n  Assumes factored form for class-conditional densities 

n  Benefits: 
¨  Estimate                   separately for each j using only 1D KDE  
¨  If Xj of X is discrete, then can combine using a histogram estimate 

©Emily Fox 2013 

p(Y = k | X = x) =
⇡kfk(x)P
` ⇡`f`(x)

fk(X) =

fkj(Xj)
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Naïve Bayes Classifier 

n  Log odds 

n  Has form of GAM, but fit very differently 
¨  Analogous to difference between LDA and logistic regression 

©Emily Fox 2013 

p(Y = k | X = x) =
⇡k

Q
j fkj(xj)P

` ⇡`
Q

j f`j(xj)

log

p(Y = k | X = x)

p(Y = ` | X = x)

=

Mixture Models for 
Classification 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)

©Emily Fox 2013 

Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)

0 0.5 1
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1

Complete data labeled 
by true cluster assignments 

(a)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)

0 0.5 1
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1

n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 
p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)

©Emily Fox 2013 

Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)

0 0.5 1

0

0.5

1

rik = p(zi = k | xi,⇡, ✓) =
⇡kp(xi | ✓k)PK
`=1 ⇡`p(xi | ✓`)

©Emily Fox 2013 
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Mixture Models for Classification 

n  Can use mixture models as a generative classifier in the 
unsupervised setting 

n  EM algorithm = iteratively: 
¨  Estimate responsibilities given parameter estimates 

¨  Maximize parameters given responsibilities 

n  For classification, threshold the estimated responsibilities 
¨  E.g.,  
 

n  Note: allows non-linear boundaries as in QDA 

(c)

0 0.5 1

0

0.5

1
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r̂ik =
⇡̂kN(xi, µ̂k, ⌃̂k)P
` ⇡̂`N(xi, µ̂`, ⌃̂`)

ĝ(xi) = argmax

k
r̂ik

Example: Heart Disease Data 
n  Binary response = CHD (coronary heart disease) 
n  Predictor = systolic blood pressure 

©Emily Fox 2013 
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FIGURE 6.17. Application of mixtures to the heart disease risk-factor study.
(Top row:) Histograms of Age for the no CHD and CHD groups separately, and
combined. (Bottom row:) estimated component densities from a Gaussian mix-
ture model, (bottom left, bottom middle); (bottom right:) Estimated component
densities (blue and orange) along with the estimated mixture density (green). The
orange density has a very large standard deviation, and approximates a uniform
density.

The mixture model also provides an estimate of the probability that
observation i belongs to component m,

r̂im =
α̂mφ(xi; µ̂m, Σ̂m)

∑M
k=1 α̂kφ(xi; µ̂k, Σ̂k)

, (6.33)

where xi is Age in our example. Suppose we threshold each value r̂i2 and
hence define δ̂i = I(r̂i2 > 0.5). Then we can compare the classification of
each observation by CHD and the mixture model:

Mixture model
δ̂ = 0 δ̂ = 1

CHD No 232 70
Yes 76 84

Although the mixture model did not use the CHD labels, it has done a fair
job in discovering the two CHD subpopulations. Linear logistic regression,
using the CHD as a response, achieves the same error rate (32%) when fit to
these data using maximum-likelihood (Section 4.4).
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What you need to know 

n  Discriminative vs. Generative classifiers 

n  LDA and QDA assume Gaussian class-conditional densities 
¨  Results in linear and quadratic decision boundaries, respectively 

n  KDE for classification 
¨  Challenging in areas with little data or in high dimensions 
¨  Estimating class-conditionals is not optimizing classification objective 

n  Naïve Bayes assumes factored form 
¨  Results in log odds that have GAM form 

n  Mixture models allow for unsupervised generative approach 
©Emily Fox 2013 41 

Readings 

n  Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8 
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