Module 4: Coping with Multiple Predictors

Multidimensional Splines
STAT/BIOSTAT 527, University of Washington
Emily Fox
May 9 ${ }^{\text {th }, 2013} 1$

Nonparam. Multiple Regression

- We now consider a d-dimensional covariate x_{i}

$$
x_{i}=\left(x_{i 1}, \ldots, x_{i d}\right)
$$

- In its most general form, the regression equation then takes the form

$$
\begin{gathered}
y=f\left(x_{1}, \ldots, x_{d}\right)+t \\
\text { or, for GLMs, } \\
g(\mu)=f\left(x_{1}, \ldots, x_{d}\right)
\end{gathered}
$$

- In principle, all of the methods we have discussed so far carry over to this case rather straightforwardly
- Unfortunately, the risk of the nonparametric estimator increases rapidly with covariate dimension d.

Curse of Dimensionality

- To maintain a fixed level of accuracy for a given nonparametric estimator, the sample size must increase exponentially in d
- Set MSE = δ

- Why? Using data in local nbhd \square In high dim, few points in any nbhd everything is far away in high
- Consider example with n uniformly distributed points in $[-1,1]^{\mathrm{d}}$
$\square \mathrm{d}=1$: \ln
$\square \mathrm{d}=10$

$$
\text { roughly } n\left(\frac{0.2}{2}\right)^{10}=\frac{n}{10,000,000,000}
$$

(s)
in $[-0.1,0.1]^{d}$,

\qquad

Natural Thin Plate Splines

- One-dimensional smoothing splines (obtained via regularization) can be extended to the multivariate setting as the solution to

$$
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f)
$$

- Recall roughness penalty in id

$$
J(f)=\int f^{\prime \prime}(x)^{2} d x
$$

- The natural $2 d$ extension to penalize rapid variation in either dim is

$$
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
$$

- Is the penalty affected by rotation or translation in \mathbb{R}^{2} ? No! - Can extend to $d \geq 2$

Natural Thin Plate Splines

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \quad \text { \& bending } \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- Solution: Unique minimizer is the natural thin plate spline with knots at the $x_{i j}$
- Proof: See Green and Silverman (1994) and Duchon (1977)
- Similar properties and intuition as in 1 d :
\square As $\lambda \rightarrow 0$, soln approaches interpolator
\square As $\lambda \rightarrow \infty, \rightarrow$ LS plane (no $2^{\text {nd }}$ der)

Natural Thin Plate Splines

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- Solution: natural thin plate spline with knots at the $x_{i j}$
- For general λ, solution is a linear basis expansion of the form
with

$$
\begin{aligned}
& f(x)=\beta_{0}+\beta^{\top} x+\sum_{j=1}^{n} b_{j} h_{j}(x) \\
& h_{j}(x)=\left\|x-x_{j}\right\|^{2} \log \left\|x-x_{j}\right\| \quad \text { REF }
\end{aligned}
$$

- Interpretation: We take an elastic flat plate that interpolates points $\left(x_{i} y_{i}\right)$ and penalize its "bending energy"

Natural Thin Plate Splines

$$
f(x)=\beta_{0}+\beta^{T} x+\sum_{j=1}^{n} b_{j} h_{j}(x) \quad \angle B E
$$

- Coefficients are found via standard penalized LS

- Interpretation: We take an elastic flat plate that interpolates points $\left(x_{i} y_{i}\right)$ and penalize its "bending energy"

Complexity of Thin Plate Splines

- Natural thin plate splines place knots at every location $x_{i j}$
\longrightarrow lots of knots

\square Can get away with fewer knots
\square If we use K knots, then computational complexity reduces to $\mathrm{O}\left(n K^{2}+K^{3}\right)$ $K \ll n$
- Can choose some lattice of knots
 -ignore all knots outside convex hull of data

Thin Plate Regression Splines

- Thin plate regression splines truncate the "wiggly" basis b_{i}
- Let $E=U D U^{T}$ eigendecomp
eiguec diag matrix of eiguals
- Grab out largest k eigenvalues and eigenvectors
D_{k}
$y u_{k}$
- Define $b=U_{k} b_{k}$
- Minimize $\stackrel{E}{=} \rightarrow U_{k} D_{k} U_{k}^{*} b$ $\min _{\beta, b_{k}}\left(y-X \beta-\overparen{U_{k} D_{k} b_{k}}\right)^{T}\left(y-X \beta-U_{k} D_{k} b_{k}\right)+\lambda b_{k}^{T} D_{k} b_{k}$ $\stackrel{\beta, b_{k}}{\Rightarrow} X^{T} U_{k} b_{k}=0 \quad$ (before $X^{\top} b=0$)
- Optimal approximation of thin plate splines using low rank basis
- Retain advantages of (i) no choice of knots, (ii) rotation invariance
- See Wood (2006) for more details

Tensor Product Splines

- Again, assume x in \mathbb{R}^{2} (but generalizes $d \geqslant 2$)
- Instead of thin plate splines, consider modeling $f(x)$ as follows
- Suppose for each dimension we have a basis of functions

$$
\begin{aligned}
& h_{1 k}\left(x_{1}\right) \quad k=1, \ldots, M_{1} \\
& h_{2 k}\left(x_{2}\right) \quad k=1, \ldots, M_{2}
\end{aligned}
$$

- Then the $M_{1} \times M_{2}$ dimensional ${ }^{\text {mi }}$

Then the $M_{1} \times M_{2}$ dimens
tensor product basis is

Tensor Product Splines

- We use this tensor product basis

$$
g_{j k}(x)=h_{1 j}\left(x_{1}\right) h_{2 k}\left(x_{2}\right)
$$

to model $f(x)$

$$
f(x)=\sum_{j=1}^{M} \sum_{k=1}^{M_{2}} \theta_{j k} g_{j k}(x)
$$

- This formulation extends (in theory) to any dimension d
- Note that as the dimension of the basis grows exponentially with the input dimension d

Tensor Product Splines Example

- Linear spline basis with L_{1} truncated lines for x_{1} and L_{2} for x_{2}

$$
\begin{aligned}
& 1, x_{1},\left(x_{1}-\xi_{11}\right)_{+}, \ldots,\left(x_{1}-\xi_{1 L_{1}}\right)_{+} \\
& 1, x_{2},\left(x_{2}-\xi_{21}\right)_{+}, \ldots,\left(x_{2}-\xi_{2 L_{2}}\right)_{+}
\end{aligned}
$$

- Then, the tensor product expansion is

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{2} x_{1} x_{2} \\
& +\sum_{l_{1}=1}^{L_{1}} b_{l_{1}}\left(x_{1}-f_{1} l_{1}\right)++\sum_{l_{2}=1}^{L_{2}} b_{l_{2}}\left(x_{2}-f_{2 l_{2}}\right)+ \\
& +\sum_{1} c_{l_{1}} x_{2}\left(x_{1}-\xi_{l_{l}}\right)_{+}+\sum_{l_{2}} c_{l_{2}} x_{1}\left(x_{2}-\xi_{2 l_{2}}\right)_{+} \\
& +\sum \sum d_{l_{1} l_{2}}\left(x_{1}^{l_{2}}-q_{1 l_{1}}\right)_{+}\left(x_{2}-q_{2 l}\right)_{+}
\end{aligned}
$$

- Number of parameters:

$$
4+L_{1}+l_{2}+L_{1}+L_{2}+L_{1} L_{2}=\left(L_{1}+2\right)\left(L_{2}+2\right)
$$

- Note: Captures interaction terms between x_{1} and x_{2} \qquad

Tensor Product Splines Example

- For prostate cancer dataset, fits of log PSA as a function of log cancer volume and log weight for various models

Linear fit

Thin plate regression spline

From Wakefield textbook

Tensor product spline

Generalized Additive Models

- Both for computational reasons and added interpretability, models that assume an additive structure are very popular
- Assuming a GLM framework:

$$
g(\mu(x))=\alpha+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

- Is this model identifiable? No , can change α and shift fie to compensate \rightarrow exactly same $g(\mu)$.
Fix: Constrain $\sum_{i=1}^{n} f_{j}\left(x_{i j}\right)=0$
- Can model $f_{j}\left(x_{j}\right)$ using any smoother

$$
\begin{gathered}
\text { many, many choices here } \\
\text { (see all of module 2) } \\
\text { or } 6 \text { dem. }
\end{gathered}
$$

GAM Example

- Consider using a penalized regression spline of order p_{j} with L_{j} knots for each covariate x_{j}

$$
\begin{aligned}
& \text { knots for each covariate } x_{j} \\
& g(\mu)=\beta_{0}+\sum_{j=1}^{d}\left[\sum_{k=1}^{P_{j}} \beta_{j k} x_{j}^{k}+\sum_{l=1}^{L_{j}} b_{j l}\left(x_{j}-\xi_{j l}\right)_{+}^{P_{j}}\right] \\
& \text { Penalization is applied to the spline coefficients } b_{i}
\end{aligned}
$$

- Penalization is applied to the spline coefficients b_{j}

$$
\sum_{j=1}^{\dagger} \lambda_{j} \sum_{\ell=1}^{L_{j}} b_{j \ell}^{2}
$$

Comments:

- The GAM is very interpretable
$\square f_{i}\left(x_{i}\right)$ is not influenced by the other $f_{j}\left(x_{j}\right)$
\square Can plot f_{j} to straightforwardly see the relationship between x_{i} and y
- Will see that this also leads to computational efficiencies

Backfitting

- To begin, assume a standard (non-GLM) regression setting

$$
y=f(x)+\epsilon
$$

- For concreteness, consider d

- Result is an additive cubic spline model with knots at the unique values of $x_{i j}$
\square For X full column rank, can show that solution is unique. Otherwise, linear part of $f_{j}\left(x_{j}\right)$ is not uniquely determined
- Here, clearly $\hat{\alpha}=\operatorname{aVg}\left(\psi_{i}\right)$

$$
\left(\sum_{i} f_{j}\left(x_{i j}\right)=0\right)
$$

- How do we think about fitting the other parameters??

Backfitting
 $y=\alpha+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)+\epsilon$

- Backfitting is an iterative fitting procedure
- Since $f(x)$ is additive, if we condition on the fit of all other components $f_{j}\left(x_{j}\right), j \neq i$, then we know how to fit $f_{i}\left(x_{i}\right)$
$\underbrace{y-\alpha-\sum_{j \neq i} f_{j}\left(x_{j}\right)}=f_{i}\left(x_{i}\right)+\epsilon$
- Iterate the estimation procedure until convergence ${ }_{f_{j}\left(x_{j}\right)}$ fixed

Tusk like lasso, cord. ascent/ descent alg.

Backfitting Algorithm

GAM and Logistic Regression

- A generalized additive logistic regression model has the form

$$
g(m): \frac{\log }{\frac{\operatorname{pr}(Y=1 \mid x)}{\operatorname{pr}(y=0 \mid x)}}=\alpha+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

- The functions f_{1}, \ldots, f_{d} can be estimated using a backfitting algorithm, too
- First, recall IRLS algorithm for *parametric* logistic regression

GAM Logistic Example

- Example: predicting spam
- Data from UCI repository
- Response variable: email or spam
- <57 predictors:
$\square 48$ quantitative - percentage of words in email that match a give word such as "business", "address", "internet",...
$\square 6$ quantitative - percentage of characters in the email that match a given character (; , [! \$ \#)
\square The average length of uninterrupted capital letters: CAPAVE
\square The length of the longest uninterrupted sequence of capital letters: CAPMAX
\square The sum of the length of uninterrupted sequences of capital letters: CAPTOT

GAM Logistic Example

- Test set of 1536 emails
- Training set: $\mathrm{n}=3065$

- Use a GAM with a cubic smoothing spline
\square Each with 4 dof $\operatorname{tr}\left(L_{j}\left(\lambda_{j}\right)\right)=4$
- Estimated functions for significant predictors
\square Note large discontinuity

 near 0 for many
- Test error of 6.6\%

From Hastie, Tibshirani, Friedman book

Other GAM formulations

- Semiparametric models: model nonparam.

$$
g(\mu)=X^{\top} \beta+\alpha+f(z)
$$

$\uparrow_{\text {model linearly }}$

- ANOVA decompositions:
$f(x)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)+\sum_{j<k} f_{j k}\left(x_{j}, x_{k}\right) \perp \ldots$
Choice of:
\square Maximum order of interaction
\square Which terms to include - maybe not all main effects tinteractio \square What representation

$$
\begin{aligned}
& \text { resentation } \\
& \text {-reg. splines + tensor product for interaction } \\
& \text { or thin plate... }
\end{aligned}
$$

- Tradeoff between full model and decomposed model

Connection with Thin Plate Splines

- Recall formulation that lead to natural thin plate splines:

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- There exists a $J(f)$ such that the solution has the form
- However, it is more natural to just assume this form and apply

$$
J(f)=J\left(f_{1}+f_{2}+\cdots+f_{d}\right)=\sum_{j=1}^{d} \int f_{j}^{\prime \prime}\left(t_{j}\right)^{2} d t_{j}
$$

What you need to know

- Nothing is conceptually hard about multivariate x
- In practice, nonparametric methods struggle from curse of dimensionality
- Options considered:
\square Thin plate splines
\square Tensor product splines
\square Generalized additive models
\square Combinations (to model some interaction terms)

Readings

- Wakefield - 12.1-12.3
- Hastie, Tibshirani, Friedman - 5.7, 9.1
- Wasserman - 4.5, 5.12

Survey Feedback

- Lectures:
\square Useful to post reading assignments \rightarrow will do!
\square Lots of material, so make clear what is expected to know \rightarrow will do!
- Homeworks
\square More frequent and more in-depth
\square Less frequent/intense
$\square \rightarrow$???
- Recitations
\square Make same week as HW due...Was original plan and will reset to this.

