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Module 4: Coping with Multiple Predictors 
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Nonparam. Multiple Regression 

n  We now consider a d-dimensional covariate xi 

n  In its most general form, the regression equation then takes the 
form 

 
n  In principle, all of the methods we have discussed so far carry 

over to this case rather straightforwardly 

n  Unfortunately, the risk of the nonparametric estimator increases 
rapidly with covariate dimension d.   
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Curse of Dimensionality 

n  To maintain a fixed level of accuracy for a given nonparametric 
estimator, the sample size must increase exponentially in d 

n  Set MSE = δ 

n  Why?  Using data in local nbhd 
¨  In high dim, few points in any nbhd 

n  Consider example with n uniformly 
distributed points in [-1,1]d 
¨  d=1: 
¨  d=10 

Figure from Yoshua Bengio’s website 
©Emily Fox 2013 3 

Natural Thin Plate Splines 

n  One-dimensional smoothing splines (obtained via regularization) 
can be extended to the multivariate setting as the solution to 

n  Recall roughness penalty in 1d 

n  The natural 2d extension to penalize rapid variation in either dim is 

n  Is the penalty affected by rotation or translation in      ?  

min
f

nX

i=1

{yi � f(xi)}2 + �J(f)

J(f) =

Z
f

00
(x)2dx

J(f) =

R2
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Natural Thin Plate Splines 

n  Solution: Unique minimizer is the natural thin plate spline with 
knots at the xij 

n  Proof: See Green and Silverman (1994) and Duchon (1977) 

n  Similar properties and intuition as in 1d: 
¨  As λà0,  

¨  As λà∞, 

  

min
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Natural Thin Plate Splines 

n  Solution: natural thin plate spline with knots at the xij 

n  For general λ, solution is a linear basis expansion of the form 
 
 
with 

 
 
n  Interpretation: We take an elastic flat plate that interpolates points 

(xi,yi) and penalize its “bending energy” 

min
f

nX

i=1

{yi � f(xi)}2 + �J(f)
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f(x) =

hj(x) = ||x� xj ||2 log ||x� xj ||
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Natural Thin Plate Splines 

n  Coefficients are found via standard penalized LS 
 
 
 
 
s.t.  

 

 
 
 
n  Interpretation: We take an elastic flat plate that interpolates points 

(xi,yi) and penalize its “bending energy” 

f(x) = �0 + �

T
x+

nX

j=1

bjhj(x)

min
�,b

(y �X� � Eb)T (y �X� � Eb) + �bTEb

X

i

bi =
X

i

bixi1 =
X

i

bixi2 = 0
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Complexity of Thin Plate Splines 

n  Natural thin plate splines place knots at every location xij 

n  Computational complexity scales as O(n3) 
¨  Can get away with fewer knots 
¨  If we use K knots, then computational 

 complexity reduces to O(nK2 + K3)   

n  Can choose some lattice of knots 

166 5. Basis Expansions and Regularization

125

130

135
140

145

150

155

15

20

25

30

35

40

45

20 30 40 50 60

Age

O
be

sit
y

Systolic Blood Pressure

120

125

130

135

140

145

150

155

160

•

••

•

•

•

•

•
•

•

•

•
•

• •

• •

•

••

•

•
•

•

•

•

•

•

•
•

• •

•

• •

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•
•

•

•
•

• •
•

• •
•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•
• •

• •

•

•
•

•
•

•

•

•
•

• •

•

•

•

•

•
•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

•
•

•••

•
•

•

•

•

•

••

••

•
••

•

•
•

•
•

•

• •
•

•

•

•

•
•

•
••

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

• • •
•

•

•

•

• •

•

•

•

•• •

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
•

•

••

•
•

•
•

•

••

•
••

•

•

••

• •

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••
•

•

• •
• •

•

•

•
•

• •

•

•

• •

•

•• •
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

••

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•
•

•

•

•

•

••

• •

•

•

•

•
• •

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

••

•

•

•

• • • • • •

• • • • • • •

• • • • • • •

• • • • • •

• • • •

• •

• • • • • • • •

• •

•

•

• •

• • • •

• • • • • •

• • • • • • • •

FIGURE 5.12. A thin-plate spline fit to the heart disease data, displayed as a
contour plot. The response is systolic blood pressure, modeled as a function
of age and obesity. The data points are indicated, as well as the lattice of points
used as knots. Care should be taken to use knots from the lattice inside the convex
hull of the data (red), and ignore those outside (green).

In practice, it is usually sufficient to work with a lattice of knots covering
the domain. The penalty is computed for the reduced expansion just as
before. Using K knots reduces the computations to O(NK2 + K3). Fig-
ure 5.12 shows the result of fitting a thin-plate spline to some heart disease
risk factors, representing the surface as a contour plot. Indicated are the
location of the input features, as well as the knots used in the fit. Note that
λ was specified via dfλ = trace(Sλ) = 15.

More generally one can represent f ∈ IRd as an expansion in any arbi-
trarily large collection of basis functions, and control the complexity by ap-
plying a regularizer such as (5.38). For example, we could construct a basis
by forming the tensor products of all pairs of univariate smoothing-spline
basis functions as in (5.35), using, for example, the univariate B-splines
recommended in Section 5.9.2 as ingredients. This leads to an exponential

From 
Hastie, 

Tibshirani, 
Friedman 

book 
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Thin Plate Regression Splines 

n  Thin plate regression splines truncate the “wiggly” basis bi 
n  Let  
 
n  Grab out largest k eigenvalues and eigenvectors 

n  Define 
n  Minimize 

n  Optimal approximation of thin plate splines using low rank basis 
n  Retain advantages of (i) no choice of knots, (ii) rotation invariance 
n  See Wood (2006) for more details 

E = UDUT

b = Ukbk

min
�,bk

(y �X� � UkDkbk)
T (y �X� � UkDkbk) + �bTkDkbk

XTUkbk = 0
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Tensor Product Splines 

n  Again, assume x in  
n  Instead of thin plate splines, consider modeling f(x) as follows 
n  Suppose for each dimension 

we have a basis of functions 

n  Then the M1 x M2 dimensional 
tensor product basis is 

5.7 Multidimensional Splines 163

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T |x)] = h(x)T θ is fit to the binary re-
sponse, and the estimated decision boundary is the contour h(x)T θ̂ = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.

From Hastie, Tibshirani, Friedman book 

R2
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Tensor Product Splines 

n  We use this tensor product basis  
 
 
to model f(x) 

n  This formulation extends (in  
theory) to any dimension d 

n  Note that as the dimension of  
the basis grows exponentially  
with the input dimension d 

5.7 Multidimensional Splines 163

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T |x)] = h(x)T θ is fit to the binary re-
sponse, and the estimated decision boundary is the contour h(x)T θ̂ = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.

From Hastie, Tibshirani, Friedman book 

gjk(x) = h1j(x1)h2k(x2)
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Tensor Product Splines Example 

n  Linear spline basis with L1 truncated lines for x1 and L2 for x2 

 
n  Then, the tensor product expansion is 

n  Number of parameters: 

n  Note: Captures interaction terms between x1 and x2 

1, x2, (x2 � ⇠21)+, . . . , (x1 � ⇠2L2)+

1, x1, (x1 � ⇠11)+, . . . , (x1 � ⇠1L1)+

f(x1, x2) =

©Emily Fox 2013 12 
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Tensor Product Splines Example 

n  For prostate cancer dataset, fits of log PSA as a function of log 
cancer volume and log weight for various models 12.3 Spline Methods in Several Variables 607
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Fig. 12.2 Perspective plots of the fitted surfaces for the variables log cancer volume and log
weight: (a) linear model, (b) thin plate regression spline model, (c) tensor product spline model.
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Fig. 12.2 Perspective plots of the fitted surfaces for the variables log cancer volume and log
weight: (a) linear model, (b) thin plate regression spline model, (c) tensor product spline model.
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weight: (a) linear model, (b) thin plate regression spline model, (c) tensor product spline model.

Linear fit Thin plate 
regression spline 

Tensor product 
spline 

From Wakefield textbook 
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Generalized Additive Models 

n  Both for computational reasons and added interpretability, 
models that assume an additive structure are very popular 

n  Assuming a GLM framework: 

n  Is this model identifiable?   

n  Can model fj(xj) using any smoother  

g(µ(x)) =

©Emily Fox 2013 14 



8 

GAM Example 

n  Consider using a penalized regression spline of order pj with Lj 
knots for each covariate xj 

 
n  Penalization is applied to the spline coefficients bj 

Comments: 
n  The GAM is very interpretable 

¨  fi(xi) is not influenced by the other fj(xj) 
¨  Can plot fj to straightforwardly see the relationship between xi and y 

n  Will see that this also leads to computational efficiencies 

g(µ) =

�j

LjX

`=1

b2j`

©Emily Fox 2013 15 

Backfitting 

n  To begin, assume a standard (non-GLM) regression setting 

n  For concreteness, consider  

n  Result is an additive cubic spline model with knots at the 
unique values of xij  
¨  For X full column rank, can show that solution is unique.  Otherwise, linear 

part of fj(xj) is not uniquely determined 

n  Here, clearly 

n  How do we think about fitting the other parameters?? 

↵̂ =

©Emily Fox 2013 16 
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Backfitting 

n  Backfitting is an iterative fitting procedure 

n  Since f(x) is additive, if we condition on the fit of all other 
components fj(xj), j ≠ i, then we know how to fit fi(xi) 

n  Iterate the estimation procedure until convergence 

©Emily Fox 2013 17 

Backfitting Algorithm 
298 9. Additive Models, Trees, and Related Methods

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0, ∀i, j.

2. Cycle: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . . ,

f̂j ← Sj

[
{yi − α̂−

∑

k !=j

f̂k(xik)}N1

]
,

f̂j ← f̂j −
1

N

N∑

i=1

f̂j(xij).

until the functions f̂j change less than a prespecified threshold.

cubic spline in the component Xj , with knots at each of the unique values
of xij , i = 1, . . . , N . However, without further restrictions on the model,
the solution is not unique. The constant α is not identifiable, since we
can add or subtract any constants to each of the functions fj , and adjust

α accordingly. The standard convention is to assume that
∑N

1 fj(xij) =
0 ∀j—the functions average zero over the data. It is easily seen that α̂ =
ave(yi) in this case. If in addition to this restriction, the matrix of input
values (having ijth entry xij) has full column rank, then (9.7) is a strictly
convex criterion and the minimizer is unique. If the matrix is singular, then
the linear part of the components fj cannot be uniquely determined (while
the nonlinear parts can!)(Buja et al., 1989).
Furthermore, a simple iterative procedure exists for finding the solution.

We set α̂ = ave(yi), and it never changes. We apply a cubic smoothing
spline Sj to the targets {yi − α̂ −

∑
k !=j f̂k(xik)}N1 , as a function of xij ,

to obtain a new estimate f̂j . This is done for each predictor in turn, using

the current estimates of the other functions f̂k when computing yi − α̂ −∑
k !=j f̂k(xik). The process is continued until the estimates f̂j stabilize. This

procedure, given in detail in Algorithm 9.1, is known as “backfitting” and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean zero (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can accommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators Sj :

• other univariate regression smoothers such as local polynomial re-
gression and kernel methods;

From Hastie, Tibshirani, Friedman book 

©Emily Fox 2013 18 
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GAMs and Logistic Regression 

n  A generalized additive logistic regression model has the form 

 
n  The functions f1,…, fd can be estimated using a backfitting 

algorithm, too 
n  First, recall IRLS algorithm for *parametric* logistic regression 

z = X�old +W�1
(y � p)

�new  argmin
�

(z �X�)TW (z �X�)

©Emily Fox 2013 19 

GAMs and Logistic Regression 
300 9. Additive Models, Trees, and Related Methods

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.

1. Compute starting values: α̂ = log[ȳ/(1 − ȳ)], where ȳ = ave(yi), the
sample proportion of ones, and set f̂j ≡ 0 ∀j.

2. Define η̂i = α̂+
∑

j f̂j(xij) and p̂i = 1/[1 + exp(−η̂i)].
Iterate:

(a) Construct the working target variable

zi = η̂i +
(yi − p̂i)

p̂i(1− p̂i)
.

(b) Construct weights wi = p̂i(1− p̂i)

(c) Fit an additive model to the targets zi with weights wi, us-
ing a weighted backfitting algorithm. This gives new estimates
α̂, f̂j , ∀j

3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

The additive model fitting in step (2) of Algorithm 9.2 requires a weighted
scatterplot smoother. Most smoothing procedures can accept observation
weights (Exercise 5.12); see Chapter 3 of Hastie and Tibshirani (1990) for
further details.
The additive logistic regression model can be generalized further to han-

dle more than two classes, using the multilogit formulation as outlined in
Section 4.4. While the formulation is a straightforward extension of (9.8),
the algorithms for fitting such models are more complex. See Yee and Wild
(1996) for details, and the VGAM software currently available from:

http://www.stat.auckland.ac.nz/∼yee.

Example: Predicting Email Spam

We apply a generalized additive model to the spam data introduced in
Chapter 1. The data consists of information from 4601 email messages, in
a study to screen email for “spam” (i.e., junk email). The data is publicly
available at ftp.ics.uci.edu, and was donated by George Forman from
Hewlett-Packard laboratories, Palo Alto, California.
The response variable is binary, with values email or spam, and there are

57 predictors as described below:

• 48 quantitative predictors—the percentage of words in the email that
match a given word. Examples include business, address, internet,

From Hastie, Tibshirani, Friedman book 
©Emily Fox 2013 20 
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GAM Logistic Example 

n  Example: predicting spam 

n  Data from UCI repository  

n  Response variable: email  or  spam 
n  57 predictors: 

¨  48 quantitative – percentage of words in email that match a give word such 
as “business”, “address”, “internet”,… 

¨  6 quantitative – percentage of characters in the email that match a given 
character ( ; , [ ! $ # ) 

¨  The average length of uninterrupted capital letters: CAPAVE 
¨  The length of the longest uninterrupted sequence of capital letters: CAPMAX 
¨  The sum of the length of uninterrupted sequences of capital letters: CAPTOT 

©Emily Fox 2013 21 

GAM Logistic Example 

n  Test set of 1536 emails 
n  Training set: n=3065 

n  Use a GAM with a cubic 
smoothing spline  
¨  Each with 4 dof 

n  Estimated functions 
for significant predictors 
¨  Note large discontinuity 

near 0 for many 

n  Test error of 6.6% 

9.1 Generalized Additive Models 303

0 2 4 6 8

-5
0

5

0 1 2 3

-5
0

5

0 2 4 6

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6 8 10

-5
0

5
10

0 2 4 6

-5
0

5
10

0 5 10 15 20

-1
0

-5
0

0 5 10

-1
0

-5
0

0 10 20 30

-1
0

-5
0

5

0 2 4 6

-5
0

5

0 5 10 15 20

-1
0

-5
0

5

0 5 10 15

-1
0

-5
0

0 10 20 30

-5
0

5
10

0 1 2 3 4 5 6

-5
0

5
10

0 2000 6000 10000

-5
0

5

0 5000 10000 15000

-5
0

5

our over remove internet

free business hp hpl

george 1999 re edu

ch! ch$ CAPMAX CAPTOT

f̂
(o
u
r
)

f̂
(o
v
e
r
)

f̂
(r
e
m
o
v
e
)

f̂
(i
n
t
e
r
n
e
t
)

f̂
(f
r
e
e
)

f̂
(b
u
s
i
n
e
s
s
)

f̂
(h
p
)

f̂
(h
p
l
)

f̂
(g
e
o
r
g
e
)

f̂
(1
9
9
9
)

f̂
(r
e
)

f̂
(e
d
u
)

f̂
(c
h
!)

f̂
(c
h
$
)

f̂
(C
A
P
M
A
X
)

f̂
(C
A
P
T
O
T
)

FIGURE 9.1. Spam analysis: estimated functions for significant predictors. The
rug plot along the bottom of each frame indicates the observed values of the cor-
responding predictor. For many of the predictors the nonlinearity picks up the
discontinuity at zero.

From Hastie, Tibshirani, Friedman book 
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Other GAM formulations 

n  Semiparametric models: 

 
n  ANOVA decompositions: 

 
 
 
Choice of: 
¨  Maximum order of interaction 
¨  Which terms to include 
¨  What representation 

n  Tradeoff between full model and decomposed model 

f(x) =

g(µ) =

©Emily Fox 2013 23 

Connection with Thin Plate Splines 

n  Recall formulation that lead to natural thin plate splines:  

n  There exists a J(f) such that the solution has the form 

n  However, it is more natural to just assume this form and apply 

min
f

nX

i=1

{yi � f(xi)}2 + �J(f)

J(f) =

Z Z

R2

"✓
@

2
f(x)

@x

2
1

◆2

+ 2

✓
@

2
f(x)

@x1x2

◆2

+

✓
@

2
f(x)

@x

2
2

◆2
#
dx1dx2

J(f) = J(f1 + f2 + · · ·+ fd) =
dX

j=1

Z
f

00

j (tj)
2dtj
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What you need to know 

n  Nothing is conceptually hard about multivariate x 

n  In practice, nonparametric methods struggle from curse of 
dimensionality 

n  Options considered: 
¨  Thin plate splines 
¨  Tensor product splines 
¨  Generalized additive models 
¨  Combinations (to model some interaction terms) 
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Readings 

n  Wakefield – 12.1-12.3 
n  Hastie, Tibshirani, Friedman – 5.7, 9.1 
n  Wasserman – 4.5, 5.12 
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Survey Feedback 

n  Lectures: 
¨  Useful to post reading assignments à will do! 
¨  Lots of material, so make clear what is expected to know à will do! 

n  Homeworks 
¨  More frequent and more in-depth 
¨  Less frequent/intense 
¨  à ??? 

n  Recitations 
¨  Make same week as HW due…Was original plan and will reset to this. 

©Emily Fox 2013 27 


