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Module 5: Classification 
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The Optimal Prediction 

n  Assume we know the data-generating mechanism 
n  If our task is prediction, which summary of the 

distribution Y | x  should we report? 

n  Taking a decision-theoretic framework, consider the 
expected loss 
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Continuous Responses 

n  Expected loss 

n  Example:  L2 

 
    Solution: 

n  Example: L1 

    Solution: 

n  More generally: Lp 
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EX

�
EY |X [L(Y, f(x)) | X = x]

 

n  Expected loss 

n  Response:  

n  Same setup, but need new loss function 
n  Can always represent loss function with K x K matrix 

 
n  L is zeros on the diagonal and non-negative elsewhere 
n  Typical loss function: 

EX

�
EY |X [L(Y, g(x)) | X = x]

 

Categorical Responses 
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n  Expected loss 

n  Again, can minimize pointwise 

¨  Example: K=2 

Optimal Prediction 
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EX

�
EY |X [L(Y, g(x)) | X = x]

 
=

ĝ(x) =

n  With 0-1 loss, we straightforwardly get the Bayes classifier 

Optimal Prediction 
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ĝ(x) =

ĝ(x) = argmin
g

KX

k=1

L(Gk, g)Pr(Gk | X = x)
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n  How to approximate the optimal prediction? 
¨  Don’t actually have 

n  Nearest neighbor approach 
¨  Look at k-nearest neighbors with majority vote to estimate 

Optimal Prediction 
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ĝ(x) = Gk if Pr(Gk | X = x) = max

g
Pr(g | X = x)

p(Y | X = x)

n  How to approximate the optimal prediction? 
¨  Don’t actually have 

n  Model-based approach 
¨  Introduce indicators for each class: 
¨  Consider squared-error loss: 

¨  Bayes classifier is equivalent to standard regression and L2 loss, 
followed by classification to largest fitted value 

 
 
¨  Works in theory, but not in practice…Will look at many other 

approaches (e.g., logistic regression) 

Optimal Prediction 

©Emily Fox 2013 8 

ĝ(x) = Gk if Pr(Gk | X = x) = max

g
Pr(g | X = x)

p(Y | X = x)

f̂(X) = E[Y | X]
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n  For a given classifier, how do we assess how well it performs? 
n  For 0-1 loss, the generalization error is 

 
 
with empirical estimate 

n  Consider binary response and some useful summaries 

Measuring Accuracy of Classifier 
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n  Sensitivity: 

n  Specificity: 

n  False positive rate: 

n  True positive rate: 

n  Connections: 

Measuring Accuracy of Classifier 
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n  Resulting tree of size 17  

n  Note that there are 13 distinct covariates 
split on by the tree 
¨  11 of these overlap with the 16 significant 

predictors from the additive model 
previously explored 

n  Overall error rate (9.3%) is  
higher than for additive model 

From Hastie, 
Tibshirani, 

Friedman book 
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FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.
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TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross–
validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam

email 57.3% 4.0%
spam 5.3% 33.4%

can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose, for example, that Y = c1I(X1 < t1)+c2I(X2 <
t2) + ε where ε is zero-mean noise. Then a binary tree might make its first
split on X1 near t1. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and mis-
classification rate to prune it. Figure 9.4 shows the 10-fold cross-validation
error rate as a function of the size of the pruned tree, along with ±2 stan-
dard errors of the mean, from the ten replications. The test error curve is
shown in orange. Note that the cross-validation error rates are indexed by
a sequence of values of α and not tree size; for trees grown in different folds,
a value of α might imply different sizes. The sizes shown at the base of the
plot refer to |Tα|, the sizes of the pruned original tree.
The error flattens out at around 17 terminal nodes, giving the pruned tree

in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

Classification Tree Spam Example 

n  Think of spam and email as presence and absence of disease 

n  Using equal losses 
¨  Sensitivity =  

¨  Specificity =  

n  By varying L01 and L10, can increase/decrease sensitivity and 
decrease/increase specificity of rule 

n  Which do we want here? 

n  How? 

n  Change in rule at leaf: 

From Hastie, Tibshirani, 
Friedman book 
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TABLE 9.3. Spam data: confusion rates for the 17-node tree (chosen by cross–
validation) on the test data. Overall error rate is 9.3%.

Predicted
True email spam

email 57.3% 4.0%
spam 5.3% 33.4%

can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose, for example, that Y = c1I(X1 < t1)+c2I(X2 <
t2) + ε where ε is zero-mean noise. Then a binary tree might make its first
split on X1 near t1. At the next level down it would have to split both nodes
on X2 at t2 in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2.5 Spam Example (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and mis-
classification rate to prune it. Figure 9.4 shows the 10-fold cross-validation
error rate as a function of the size of the pruned tree, along with ±2 stan-
dard errors of the mean, from the ten replications. The test error curve is
shown in orange. Note that the cross-validation error rates are indexed by
a sequence of values of α and not tree size; for trees grown in different folds,
a value of α might imply different sizes. The sizes shown at the base of the
plot refer to |Tα|, the sizes of the pruned original tree.

The error flattens out at around 17 terminal nodes, giving the pruned tree
in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate shown in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

Classification Tree Spam Example 
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316 9. Additive Models, Trees, and Related Methods
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FIGURE 9.6. ROC curves for the classification rules fit to the spam data. Curves
that are closer to the northeast corner represent better classifiers. In this case the
GAM classifier dominates the trees. The weighted tree achieves better sensitivity
for higher specificity than the unweighted tree. The numbers in the legend repre-
sent the area under the curve.

If we think of spam and email as the presence and absence of disease, re-
spectively, then from Table 9.3 we have

Sensitivity = 100× 33.4

33.4 + 5.3
= 86.3%,

Specificity = 100× 57.3

57.3 + 4.0
= 93.4%.

In this analysis we have used equal losses. As before let Lkk′ be the
loss associated with predicting a class k object as class k′. By varying the
relative sizes of the losses L01 and L10, we increase the sensitivity and
decrease the specificity of the rule, or vice versa. In this example, we want
to avoid marking good email as spam, and thus we want the specificity to
be very high. We can achieve this by setting L01 > 1 say, with L10 = 1.
The Bayes’ rule in each terminal node classifies to class 1 (spam) if the
proportion of spam is ≥ L01/(L10 + L01), and class zero otherwise. The

n  Receiver operating characteristic (ROC) curve summarizes 
tradeoff between sensitivity and specificity 
¨  Plot of sensitivity vs. specificity as a function of params of classification rule 

n  Example: vary L01 in [0.1,10] 
¨  Want specificity near 100%, but in this  

case sensitivity drops to about 50% 

n  Summary = area under the curve 
¨  Tree = 0.95 
¨  GAM = 0.98  

n  Instead of Bayes rule at leaf, better  
to account for unequal losses in  
constructing tree From Hastie, Tibshirani, Friedman book 
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ROC Curves 

What you need to know 

n  Again, goal framed as minimizing expected loss 

n  Loss here is summarized by K x K matrix L 
¨  Common choice = 0-1 loss 

n  Bayes classifier chooses most probable class 

n  Measures of predictive performance: 
¨  Sensitivity, specificity, true positive rate, false positive rate 
¨  ROC curve and area under the curve 
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Readings 

n  Wakefield – 10.3.2, 10.4.2, 12.8.4 
n  Hastie, Tibshirani, Friedman – 9.2.3, 9.2.5, 2.4 
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Link Functions 

n  Estimating p(Y|X): Why not use standard linear 
regression? 

 
 
n  Combing regression and probability? 

¨ Need a mapping from real values to [0,1] 
¨ A link function! 
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Logistic Regression 
Logistic 
function 
(or Sigmoid): 

n  Learn p(Y|X) directly 
¨  Assume a particular functional form for link 

function 
¨  Sigmoid applied to a linear function of the input 

features: 

Z 

Covariates can be discrete or continuous! 
18 ©Emily Fox 2013 

p(y = 0 | x,�) = 1

1 + exp(�0 +
P

j �jxj)
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Understanding the Sigmoid 

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β0=0, β1=-1 

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β0=-2, β1=-1 

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β0=0, β1=-0.5 

19 ©Emily Fox 2013 

g(�0 +

X

j

�jxj) =
1

1 + exp(�0 +
P

j �jxj)

Logistic Regression –  
a Linear classifier 
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g(�0 +

X

j

�jxj) =
1

1 + exp(�0 +
P

j �jxj)
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Very convenient! 

 
implies 
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implies 

linear 
classification 

rule! 

p(y = 0 | x,�) = 1

1 + exp(�0 +
P

j �jxj)

p(y = 1 | x,�) =
exp(�0 +

P
j �jxj)

1 + exp(�0 +
P

j �jxj)

log

p(y = 1 | x,�)
p(y = 0 | x,�) = �0 +

X

j

�jxj

p(y = 1 | x,�)
p(y = 0 | x,�) = exp(�0 +

X

j

�jxj)

Examine ratio: 

Loss Function: Conditional Likelihood 

n  Have a bunch of iid data of the form: 

 

n  Discriminative (logistic regression) loss function: 
 Conditional Data Likelihood 

22 ©Emily Fox 2013 

log p(DY | DX ,�) =

nX

i=1

log p(yi | xi,�)
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Expressing Conditional Log Likelihood 
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p(y = 0 | x,�) = 1

1 + exp(�0 +
P

j �jxj)

p(y = 1 | x,�) =
exp(�0 +

P
j �jxj)

1 + exp(�0 +
P

j �jxj)l(�) =

X

i

log p(yi | xi,�)

l(�) =

X

i

yi log p(y = 1 | xi,�) + (1� yi) log p(y = 0 | xi,�)

Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 
problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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p(y = 0 | x,�) = 1

1 + exp(�0 +
P

j �jxj)

p(y = 1 | x,�) =
exp(�0 +

P
j �jxj)

1 + exp(�0 +
P

j �jxj)l(�) =

X

i

log p(yi | xi,�)

=

X

i

yi(�0 +

X

j

�jxij)� log(1 + exp(�0 +

X

j

�jxij)
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Optimizing Concave Function – 
Gradient Ascent  

n  Conditional likelihood for logistic regression is concave  
n  Find optimum with gradient ascent 

n  Gradient ascent is simplest of optimization approaches 
¨  e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, η>0 

Update rule: 
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r�l(�) =


@l(�)

@�0
, . . . ,

@l(�)

@�d

�0

�� = ⌘r�l(�)

�(t+1)
j  �(t)

j + ⌘
@l(�)

@�j

Maximize Conditional Log Likelihood: 
Gradient ascent 
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l(�) =

X

i

yi(�0 +

X

j

�jxij)� log(1 + exp(�0 +

X

j

�jxij)
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change < ε	


    

 

  

 For j=1,…,d,  

 

 

repeat    
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�

(t+1)
0  �

(t)
0 + ⌘

X

i

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘

�

(t+1)
j  �

(t)
j + ⌘

X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘

Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 

28 ©Carlos Guestrin 2005-2009 

�̂ = argmin
�

nX

i=1

(yi � (�0 + �

T
xi))

2 + �||�||
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Linear Separability 
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Large Parameters → Overfitting 

n  If data is linearly separable, weights go to infinity 

¨  In general, leads to overfitting: 
n  Penalizing high weights can prevent overfitting… 

©Emily Fox 2013 
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Regularized Conditional Log Likelihood 

n  Add regularization penalty, e.g., L2: 

n  Practical note about β0: 

n  Gradient of regularized likelihood: 
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l(�) = log

nY

i=1

p(yi | xi,�)�
�

2

||�||22

Standard v. Regularized Updates 

n  Maximum conditional likelihood estimate 

n  Regularized maximum conditional likelihood estimate 
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ˆ

� = argmax

�
log

nY

i=1

p(yi | xi,�)

ˆ

� = argmax

�
log

nY

i=1

p(yi | xi,�)�
�

2

dX

j=1

�

2
j

�

(t+1)
j  �

(t)
j + ⌘

X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘

�

(t+1)
j  �

(t)
j + ⌘

(
���(t)

j +
X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘)
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Stopping Criterion 

n  When do we stop doing gradient ascent?  

n  Because l(w) is strongly concave: 
¨  i.e., because of some technical condition 

n  Thus, stop when: 
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l(�) = log

nY

i=1

p(yi | xi,�)�
�

2

||�||22

l(�⇤)� l(�)  1

2�
||rl(�)||22

Digression:  
Logistic Regression for K > 2 
n  Logistic regression in more general case (K 

classes), where Y in {1,…,K} 
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n  Logistic regression in more general case, where  
Y in {1,…,K} 

 for k<K 
 
 
 

 for k=K (normalization, so no weights for this class) 
 
 

 

Estimation procedure is basically the same  
as what we derived! 
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Digression:  
Logistic Regression for K > 2 

p(y = k|x,�) =
exp(�k0 +

Pd
j=1 �kjxj)

1 +

PK�1
k0=1 exp(�k00 +

Pd
j=1 �k0jxj)

p(y = K|x,�) = 1

1 +

PK�1
k0=1 exp(�k00 +

Pd
j=1 �k0jxj)

The Cost, The Cost!!! Think about 
the cost… 

n  What’s the cost of a gradient update step for LR??? 
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�

(t+1)
j  �

(t)
j + ⌘

(
���(t)

j +
X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘)
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Gradient ascent in Terms of Expectations 

n  “True” objective function: 

 
n  Taking the gradient: 

n  “True” gradient ascent rule: 

 
n  How do we estimate expected gradient? 

©Emily Fox 2013 37 

l(�) = E

x

[l(�, x)] =

Z
p(x)l(�, x)dx

SGD: Stochastic Gradient Ascent (or Descent) 

n  “True” gradient: 
 
n  Sample based approximation: 

n  What if we estimate gradient with just one sample??? 
¨  Unbiased estimate of gradient 
¨  Very noisy! 
¨  Called stochastic gradient ascent (or descent) 

n  Among many other names 
¨  VERY useful in practice!!! 

©Emily Fox 2013 38 

rl(�) = E

x

[rl(�, x)]
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Stochastic Gradient Ascent for 
Logistic Regression 

n  Logistic loss as a stochastic function: 

n  Batch gradient ascent updates: 

n  Stochastic gradient ascent updates: 
¨  Online setting: 
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E

x

[l(�, x)] = E

x


log p(y | x,�)� �

2

||�||22
�

�

(t+1)
j  �

(t)
j + ⌘

(
���(t)

j +
1

n

nX

i=1

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘)

�

(t+1)
j  �

(t)
j + ⌘

n

���(t)
j + xi(t),j

⇣

yi(t) � p̂(y = 1 | xi(t),�
(t))

⌘o

What you should know… 

n  Classification: predict discrete classes rather than 
real values 

n  Logistic regression model: Linear model 
¨ Logistic function maps real values to [0,1] 

n  Optimize conditional likelihood 
n  Gradient computation 
n  Overfitting 
n  Regularization 
n  Regularized optimization 
n  Cost of gradient step is high, use stochastic 

gradient descent 
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