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The Optimal Prediction
" JEE
m Assume we know the data-generating mechanism
m If our task is prediction, which summary of the
distribution Y| x should we report? .
for ¥, whot Con () chowld we Chaxe © peedick ¥
& we can Chosse any £

m Taking a decision-theoretic framework, consider the
expected loss peehicxions ave penalix Wy LC, )

EX,Y [L(Y/ chs)l T €XiE‘f\Y[ L(Y,%‘)HX;XX}
Z 803 Should min %

Lon min: F,,,;nicwise,
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Continuous Responses
" JE—
m Expected loss Ex {EY|X LY, f(z)) | X = x]}

a Example: L, L[1,f(x))= (Y-£6<))?

Solution: 3()(): E[Yly]
m Example: L, L(Y,CW)): [Y*P(-X)]

N

Solution: £, - median (Y1) o
= More generally: L, L(Y,F(XD ’%JVIY’(:(")I j
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Categorical Responses
" JEE—
m Expected loss Ex {Ey|x [L(Y,g(z)) | X = z]}

m Response:

Same setup, but need new loss function
Can always represent loss function with K x K matrix

L is zeros on the diagonal and non-negative elsewhere
Typical loss function:

ooooooooooooo




Optimal Prediction
" JE

m Expected loss
Ex {Ey|x [L(Y,g(2)) | X = 2]} =

m Again, can minimize pointwise

A

g(x) =

Example: K=2
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Optimal Prediction
" JEE—

K
g(x) = arg m;nZL(gk,g)Pr(gk | X =)
k=1

m With 0-1 loss, we straightforwardly get the Bayes classifier

A

g(x) =
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Optimal Prediction

"
g(x)=Gr if Pr(Gy| X =z)=maxPr(g| X =x)
9

m How to approximate the optimal prediction?
Don't actually have p(Y | X = z)

m Nearest neighbor approach
Look at k-nearest neighbors with majority vote to estimate
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Optimal Prediction

" JEE—
g(x) =Gy if Pr(Gy| X =2) =maxPr(g| X =x)
9

m How to approximate the optimal prediction?
Don't actually have p(Y | X = z)

m Model-based approach
Introduce indicators for each class:
Consider squared-error loss: f(X) = E[Y | X]

Bayes classifier is equivalent to standard regression and L, loss,
followed by classification to largest fitted value

Works in theory, but not in practice...Will look at many other
approaches (e.g., logistic regression)
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Measuring Accuracy of Classifier
* JEE—
m For a given classifier, how do we assess how well it performs?

m For 0-1 loss, the generalization error is

with empirical estimate

m Consider binary response and some useful summaries
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Measuring Accuracy of Classifier
* JEE——

m Sensitivity:

Specificity:

False positive rate:

True positive rate:

Connections:
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Classification Tree Spam Example
* JEEE

m Resulting tree of size 17 ; /%;2\
=
m Note that there are 13 distinct covariates -
split on by the tree /g/;\ M ﬁ
11 of these overlap with the 16 significant ” - B A A
predictors from the additive model é * ﬁ;l *
previously explored camstecos ol
D
m Overall error rate (9.3%) is ) @; *
=

higher than for additive model

CAPMAX<10.5
CAPMAX>

Predicted From Hastie,
True email spam ; s Tibshirani,
email | 57.3%  4.0% \;ﬁ * @g Friedman book
spam 5.3% 33.4%
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Classification Tree Spam Example
* JEE—

m Think of spam and email as presence and absence of disease

Predicted
m Using equal losses True | email  spam
Sensitivity = email | 57.3%  4.0%
spam 5.3% 33.4%

Specificity = From Hastie, Tibshirani,
Friedman book

m By varying Ly, and L,,, can increase/decrease sensitivity and
decreasel/increase specificity of rule

m Which do we want here?
How?

m Change in rule at leaf:
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ROC Curves
= JEE

m Receiver operating characteristic (ROC) curve summarizes
tradeoff between sensitivity and specificity
Plot of sensitivity vs. specificity as a function of params of classification rule

1.0

m Example: vary Ly, in [0.1,10]
Want specificity near 100%, but in this = |
case sensitivity drops to about 50%

06
I

——  Tree (0.95) s
GAM (0.98) |
Weighted Tree (0.90) |

Sensitivity

m Summary = area under the curve
Tree = 0.95
GAM = 0.98 -

0.4

0.0

m Instead of Bayes rule at leaf, better o 02 o1 o5 a5 1o

to account for unequal losses in L Sy
. From Hastie, Tibshirani, Friedman book
constructing tree
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What you need to know
" JEE—

m Again, goal framed as minimizing expected loss

m Loss here is summarized by K x K matrix L
Common choice = 0-1 loss

m Bayes classifier chooses most probable class

m Measures of predictive performance:
Sensitivity, specificity, true positive rate, false positive rate
ROC curve and area under the curve
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Readings
" JEE
m Wakefield — 10.3.2, 10.4.2, 12.8.4
m Hastie, Tibshirani, Friedman —9.2.3, 9.2.5, 2.4
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Link Functions
* JEE
m Estimating p(Y]|X): Why not use standard linear
regression?

m Combing regression and probability?
Need a mapping from real values to [0,1]
A link function!
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Logistic 1
- . . function -
Logistic Regression  orsigmoia;: 1+ ()
m Learn p(Y]X) directly : /
Assume a particular functional form for link oo
function o
Sigmoid applied to a linear function of the input “
features: N
1
ply=0]z,B)= "L
V=010 = e+ 5, By o

Covariates can be discn;ete or continuous!
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Understanding the Sigmoid
" JEE

1
~ 1+exp(Bo+ Y, Bi;)

9(Bo + Zﬁjxj)

Bo=-2, B4=-1 Bo=0, B4=-1 Bo=0, B4=-0.5

Logistic Regression—
a Linear classifier T+ ean(—2)
" :

44444

1
9(Bo + ;ﬂm) T 1t exp(Bo + 3, Bray)

10



Very convenient!
" JEE

1
. P(i{ R exp(Bo + -, Bjz;)
implies iz
ply=1]2,8) = P+ 2y Piti)

1 +exp(Bo + 3, Bjw;)

Examine ratio:

ply=1|=p) _ -
Py =0|zp PPt ijﬂm) :
Inear
classification
implies ply=1|z,8) rule!
ply=01s,5) =020

Loss Function: Conditional Likelihood
" S

m Have a bunch of iid data of the form:

m  Discriminative (logistic regression) loss function:
Conditional Data Likelihood

logp(Dy | Dx, B) = Zlogp(yi | 2, )
i=1
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Expressing Conditional Log Likelihood

" =014 = T )
B ~exp(Bo + 32, Bix;)
= Zlogp(yi | z:, ) P =) = o+ 5, )
i

= wyilogp(y =1z, 8)+ (1 —y;)logp(y = 0| z;, 3)
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Maximizing Conditional Log Likelihood

1

. - =012 = T B+ 5, Bra)

exp(Bo + 3=, Bjzj)

=Zlogp (Yi | zi, B) e e R D)

= Zyz Bo + Zﬁ]xlj lOg + exp 60 + Zﬁszg

J

Good news: I(B) is concave function of B, no local optima
problems

Bad news: no closed-form solution to maximize /()

Good news: concave functions easy to optimize
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Optimizing Concave Function —

gragignt Aiﬁﬁ”t

m Conditional likelihood for logistic regression is concave
m Find optimum with gradient ascent

Gradient: Vﬁl(ﬁ) = l

9Bo

Update rule: A = nVl(5)

(t+1) (t)
By =B+
J J .
m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better
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oug)
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" 0B

25

Maximize Conditional Log Likelihood:

Gradient ascent

Z Yi /BO + Z /Bja:Zj log + eXp(ﬂo + Z BJQ:W
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Gradient Ascent for LR
= JEE

Gradient ascent algorithm: iterate until change < ¢

(t+1) gt +77Z( Py =18 )))

For j=1,...,d,
B 5 )y (yi —ply =1z 5(t)))

repeat
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Regularization in Linear Regression
"

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

V\‘7P/

\; wven €07
/ W
Vo P \;ﬂ&b

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method

B =arg min > (i — (Bo+ B wi)” + Al
=1

©Carlos Guestrin 2005-2009 28
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Linear Separability

+ -
=k =
Iﬁ]}l =]
+ & ¥ _ -
+ 4L °F - _
lﬁj}l ] ]
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Large Parameters — Overfitting
[ | : m

1 1 1

14+e = 14 e 22 1 4 ¢—100z

m [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...

©Emily Fox 2013 30

15



Regularized Conditional Log Likelihood

* JEE—
= Add regularlzatlon penalty, e. g L,:

(B —long yi\fﬂz‘aﬂ)__HBHz

=1

m Practical note about 3,:

m Gradient of regularized likelihood:

©Emily Fox 2013 31

Standard v. Regularized Updates
" JE
m Maximum conditional IikeIihgod estimate

B = argmax log ] | p(y: | zi, 6)
1=1

5 B ) e (s —ply =11 2.8

m Regularized maximum conditional |Ike|lh00d estlmate

B—argmaxlogﬂpyzm,ﬁ 262

=1

gt = B+ {‘W) 3wy (v —ply =11 xuﬁ(“))}

©Emily Fox 2013 32

16



Stopping Criterion
“
n A )
1(B) = log [ [ p(y: | i, 8) = 118113
=1
m When do we stop doing gradient ascent?

m Because /(w) is strongly concave:
i.e., because of some technical condition

* 1 2
1(B7) = 1B) < S IVIB)IL

m Thus, stop when:

Digression:

_ Loaistic Reﬁression forK>2

m Logistic regression in more general case (K
classes), where Yin {1,...,K}
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Digression:

_ Loaistic Reﬂression for K> 2

m Logistic regression in more general case, where

Yin{1,...K}

for k<K

p(y = klx,8) = exp(Bro + 2?21 Br;ix;)

_ d
1+ Y02 exp(Bro + 51 Brrjy)

for k=K (normalization, so no weights for this class)

1
p(y = K|X7 B) - —
L+ o1 exp(Bro + X0 Burjzj)

Estimation procedure is basically the same
as what we derived!

ooooooooooooo

The Cost, The Cost!!! Think about
the cost...
" S

m What's the cost of a gradient update step for LR?7?7?

00 o 0 a4 S (-0 120) |

ooooooooooooo
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Gradient ascent in Terms of Expectations
" S

m “True” objective function:

1(3) = E:ll(8,) = [ pla)i(B.)da
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?
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SGD: Stochastic Gradient Ascent (or Descent)
"
m “True” gradient: Vl(ﬁ) =F, [Vl(ﬁ)x)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

_ Loaistic Reﬁression

m Logistic loss as a stochastic function:
A
BL{15.)] = . [logaty | 2.6) - 31813
m Batch gradient ascent updates:

1 .
B e 5 4 {—ABJ@ =3 iy (g = by =1 @i, 80)) }
=1

m Stochastic gradient ascent updates:
Online setting:

ﬁj(-tﬂ) — ﬁj(t) +1 {—Aﬁj(t) + Zi(t), <yi(t) —p(y =11z, ﬁ(t)))}

What you should know...
" JEE
m Classification: predict discrete classes rather than

real values
m Logistic regression model: Linear model
Logistic function maps real values to [0,1]
m Optimize conditional likelihood
m Gradient computation
m Overfitting
m Regularization
m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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