

### **CIs for Linear Smoothers**



■ For linear smoothers, and assuming constant variance  $\delta(x) = \delta$ 

$$\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) y_i$$

$$\int \frac{\hat{f}(x)}{\hat{f}(x)} = \sum_{i=1}^{n} \ell_i(x) \hat{f}(x_i)$$

$$\int \sqrt{\alpha r} \left(\hat{f}(x)\right) = \sigma^2 \| \ell(x) \|^2$$

Consider confidence band of the form

cit (x) = 
$$\hat{f}(x) \pm c \hat{g}(x)$$
 (51. of  $\delta$ 

■ Using this, let's solve for c

©Emily Fox 2013

**CIs for Linear Smoothers** 



- Based on approach of Sun and Loader (1994)
  - $\Box$  Case #2: Assume  $\sigma$  unknown  $\lor$  Se est.  $\sigma$  7
  - $\ \square$  Case #3: Assume  $\sigma(x)$  non-constant

$$\operatorname{var}(\hat{f}(x)) = \sum_{i} \sigma^{2}(x_{i}) \, \ell_{i}^{2}(x)$$

$$\operatorname{CI}(x) = \int_{1}^{1} (x_{i}) \, \ell_{i}^{2}(x_{i}) \, \ell_{i}^{2}(x)$$

 $\Box$  If  $\hat{\sigma}(x)$  varies slowly with x, then (Faraway and Sun 1995)

$$\sigma(x_i) \approx \overline{\sigma}(x)$$
 for those  $x \in \mathcal{A}(x)$  |  $||\mathcal{A}(x)||$   $\Rightarrow$   $CI(x) = \widehat{f}(x) = C \widehat{\sigma}(x) ||\mathcal{A}(x)||$ 

©Emily Fox 2013

### Variance Estimation



- In most cases  $\sigma$  is unknown and must be estimated
- For linear smoothers, consider the following estimator

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{f}(x_i))^2}{n - 2\nu + \tilde{\nu}}$$
 
$$\gamma = \text{tr}(L) \qquad \tilde{\gamma} = \text{tr}(L^{\mathsf{T}}L) = \sum_{i=1}^n \|f(x_i)\|^2$$
 If target function is sufficiently smooth,  $\nu = o(n)$ ,  $\tilde{\nu} = o(n)$ . Then  $\hat{\sigma}^2$  is a consistent estimator of  $\sigma^2$ 

©Emily Fox 2013

Variance Estimation



 $E[\hat{\sigma}^2] = \frac{\text{tr}(\int \int \hat{\sigma}^2) + f \int f}{\text{tr}(f)} = \int \hat{\sigma}^2 + \frac{f \int f}{\int \int f} \int \frac{f}{\int f} \int \frac{f}{\int$ 

### Alternative Estimator



Estimator:

$$\hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (y_{i+1} - y_i)^2$$

$$\hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (y_{i+1} - y_i)^2$$

$$\text{Motivation:} \qquad \text{for } f \text{ smooth}$$

$$y_{i+1} - y_i = \left[ f(y_{i+1}) - f(y_i) \right] + \left[ f_{i+1} - f_i \right]$$

$$E[(y_{i+1} - y_i)^2] \approx E[f_{i+1}] + E[f_i] = 2\sigma^2$$

- Estimator will be inflated ignores  $G(x_{i+1}) F(x_i)$
- Other estimators exist, too. See Wakefield or Wasserman.

©Emily Fox 2013

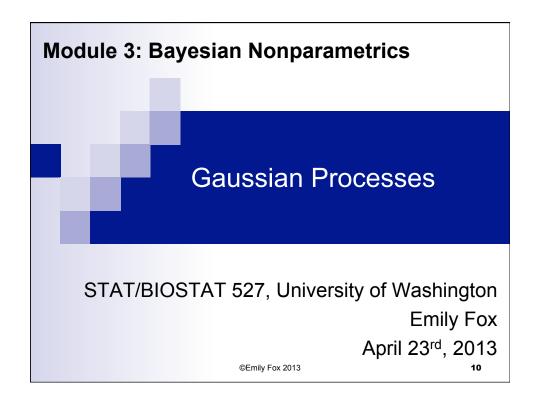
### Heteroscedasticity





- The point estimate  $\hat{f}(x)$  is relatively insensitive to heterosced., but confidence bands need to account for non-constant variance
- Re-examine model  $y_i = f(x_i) + \sigma(x_i)\epsilon_i$  for  $\sigma^2(\mathbf{x}_i)$  Define  $Z_i = \log(y_i f(x_i))^2$   $\delta_i = \log\epsilon_i^2$
- Z:= log(o²(x:)) + S: = est w/ log sq. residuals Algorithm:
  - 1. Estimate f(x) using a nonparametric method w/ constant var to get  $\tilde{f}(x)$
  - 2. Define  $Z_i = \log(y_i \hat{f}(x_i))^2$
  - 3. Regress  $Z_i$ 's on  $x_i$ 's to get estimate  $\hat{g}(x)$  of  $\log \sigma^2(x)$  new obs.  $\hat{\sigma}^2(x) = e^{\hat{\sigma}^2(x)}$   $Z_i = g(x_i) + \delta_i$   $\log \sigma^2(x_i) = e^{\hat{\sigma}^2(x_i)}$

# Permy Fox 2013 Heteroscedasticity Drawbacks: Taking log of a very small residual leads to a large outlier A more statistically rigorous approach is to jointly estimate f, g Permy Fox 2013



### Recap of regression so far



Recall our regression setting

$$f(x) = E[Y \mid x]$$

How to estimate from finite training set?

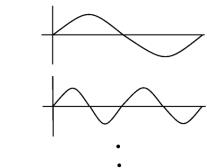
Restrict to model class

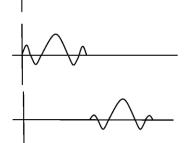
■ Example = linear basis expansion

- □ Standard linear  $y = B_0 + B_1 \times A_1 + A_2 \times A_2 \times A_3 \times A_4 + A_4 \times A_4 \times$
- □ Splines
- □ ...

©Emily Fox 2013







**Fourier Basis** 

**Wavelet Basis** 

not looking at these in this class

### Recap of regression so far

Recall our regression setting

$$f(x) = E[Y \mid x]$$

How to estimate from finite training set?

Restrict to model class

■ Example = linear basis expansion

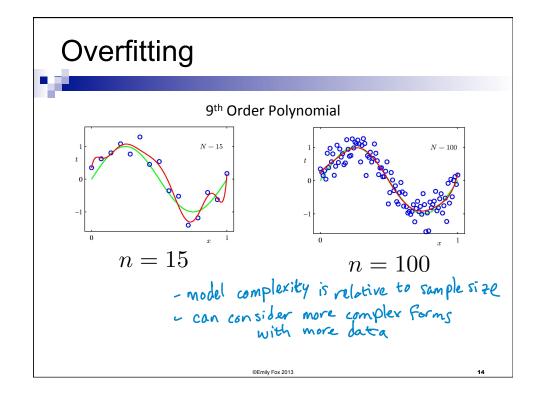
Overfitting as model ↓ complexity grows

■ Penalized linear basis expansions (regularized LS)

□ Ridge
□ Lasso
□ Smoothing splines
□ Smoothness constraints

□ Penalized regression splines

©Emily Fox 2013



### Recap of regression so far



Recall our regression setting

$$f(x) = E[Y \mid x]$$

How to estimate from finite training set?

Restrict to model class

Local nbhd methods

- Example = linear basis expansion Overfitting as model complexity grows
- Penalized linear basis expansions

Example = kernel regression

K-NN reasession

©Emily Fox 2013

### Again: Linear Basis Expansion



 Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"

In this lecture, we'll focus on these forms

 Linear basis expansions maintain linear form in terms of these transformations

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x)$$

What transformations should we use?

$$\Box h_m(x) = x_m \Rightarrow \text{linear model}$$

$$\begin{array}{l} \square \; h_m(x) = x_m \; \Rightarrow \; \text{linear model} \\ \square \; h_m(x) = x_j^2, \quad h_m(x) = x_j x_k \; \Rightarrow \; \text{polynomial reg} \; . \\ \square \; h_m(x) = I(L_m \leq x_k \leq U_m) \; \Rightarrow \; \text{piecewise constant} \\ \square \; \dots \end{array}$$

### Making Predictions

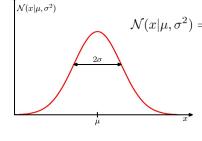
- So far, our focus has been on  $L_2$  loss:  $\min_{\beta} \ \mathrm{RSS}(\beta) + \lambda ||\beta||$   $\sum_{\lambda} (y f(x))^{\lambda} \ f(x) = \beta^{\mathsf{T}} h(x)$  Here, we assumed  $y = f(x) + \epsilon$  .....
- lacktriangledown Here, we assumed  $y=f(x)+\epsilon$  with Fig. 0 var( $\epsilon$ )= $\delta^2$
- Now, let's assume a distributional form and log-likelihood loss

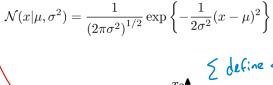
$$e \sim N(0, \sigma^2) \Rightarrow p(y|f(x), \sigma^2) = N(f(x), \sigma^2)$$

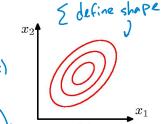
First, recall some facts about Gaussians ...

### **Quick Review of Gaussians**

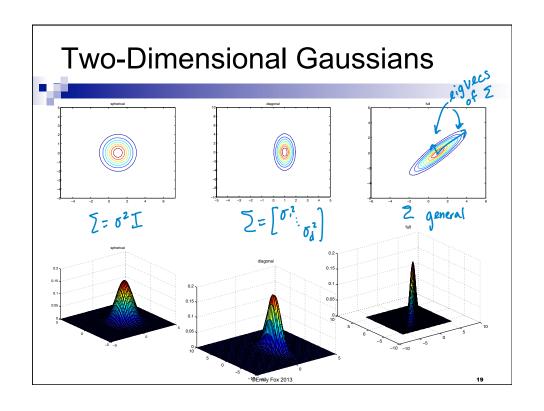
- - Univariate and multivariate Gaussians

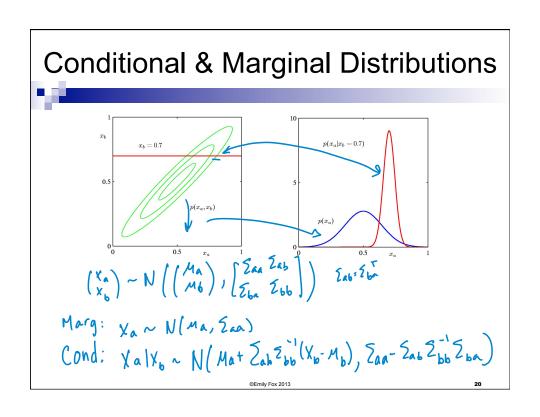






$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$





### **Maximum Likelihood Estimation**



Model:

$$y=f(x)+\epsilon$$
 where  $\epsilon \sim N(0,\sigma^2)$  
$$f(x)=\sum_{m=1}^M \beta_m h_m(x)$$

Equivalently,

$$p(y \mid x, \beta, \sigma^2) = N(y \mid f(x), \sigma^2)$$

■ For our training data (independent obs)  $(x_1, y_1), \dots (x_n, y_n)$ 

$$p(y \mid X, \beta, \sigma^2) = \prod_{i=1}^{n} N(y_i \mid f(x_i), \sigma^2)$$

©Emily Fox 2013

21

### **Maximum Likelihood Estimation**



$$p(y \mid X, \beta, \sigma^2) = \prod_{i} N(y_i \mid \beta^T h(x_i), \sigma^2)$$

Taking the log

$$rac{1}{i}$$
  $\mathcal{N}(\mathbf{x}|oldsymbol{\mu},oldsymbol{\Sigma}) = rac{1}{(2\pi)^{D/2}}rac{1}{|oldsymbol{\Sigma}|^{1/2}}\exp\left\{-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})
ight\}$ 

$$\log P(y|X,\beta,\sigma^2) = \frac{7}{2} - \frac{1}{2}(y_i - \beta^T h(x_i))^2 - \frac{n}{2}\log 2\pi - \frac{n}{2}\log \sigma^2$$

- Equivalent objective to RSS (Gaussian log-like loss = L₂ loss)
- Taking the gradient and setting to zero, we have already shown

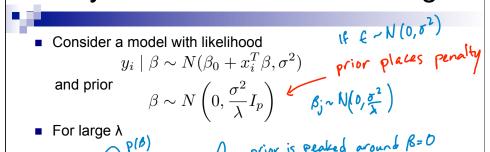
$$\hat{\beta}^{ML} = (H^T H)^{-1} H^T y$$

$$\text{Tr} \left( \begin{array}{c} h_1(\mathbf{y}_1) \dots h_m(\mathbf{y}_1) \\ \vdots \\ h_1(\mathbf{y}_m) \dots h_m(\mathbf{y}_m) \end{array} \right)$$

Emily Fox 2013

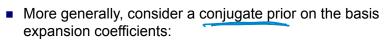
22

# A Bayesian Formulation of Ridge



$$\beta \mid y \sim N \left( \hat{\beta}^{ridge}, \sigma^2 (X^T X + \lambda I)^{-1} X^T X \sigma^2 (X^T X + \lambda I)^{-1} \right)$$
 works against var  $\left( \hat{\beta}^{ridge} \right)$  overfitting of ME Var  $\left( \hat{\beta}^{ridge} \right)$ 

## Bayesian Linear Regression



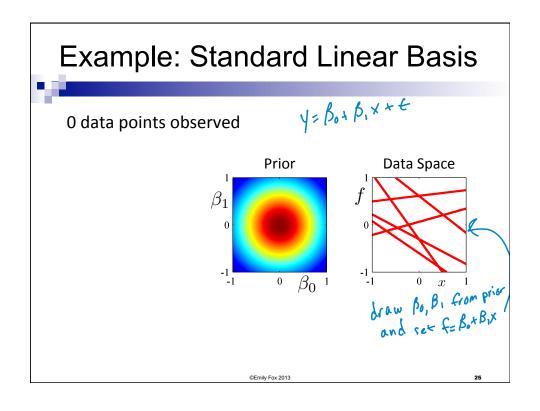
$$p(\beta) = N(\beta \mid \mu_0, \Sigma_0)$$

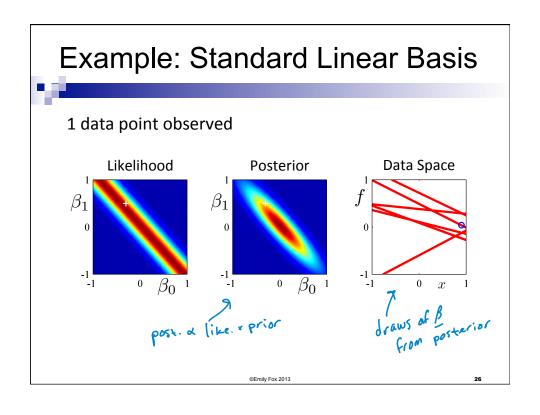
 Combining this with the Gaussian likelihood function, and using standard Gaussian identities, gives posterior

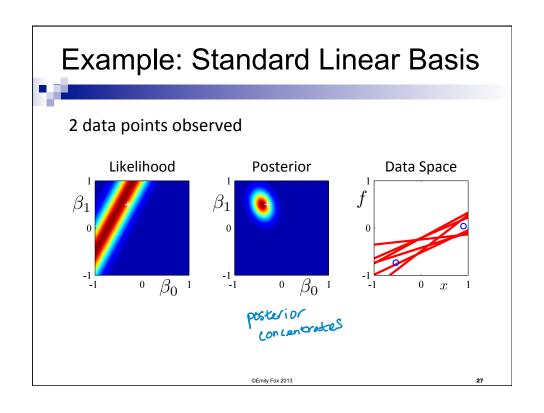
ard Gaussian identities, gives posterior 
$$p(\beta \mid y) = N(\beta \mid \mu_n, \Sigma_n)$$

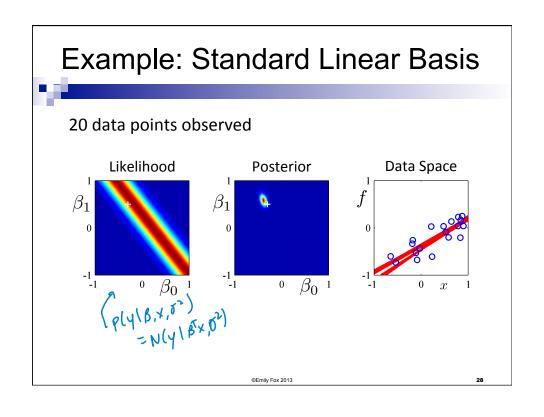
where  $M_n = Z_n (Z_0^{-1}M_0 + \sigma^{-2}H^Ty)$  $Z_n^{-1} = Z_0^{-1} + \sigma^{-2}H^TH$ 

©Emily Fox 2013









### **Predictive Distribution**

• Predict 
$$y^*$$
 at new locations  $x^*$  by integrating over parameters  $\beta$ 

Predict 
$$y^*$$
 at new locations  $x^*$  by integrating over parameters  $\beta$ 

$$p(y^* \mid y) = \int p(y^* \mid \beta) p(\beta \mid y) d\beta$$

$$p(\beta \mid y) = N(\beta \mid \mu_n, \Sigma_n)$$

$$p(\beta \mid y) = N(\beta \mid \mu$$

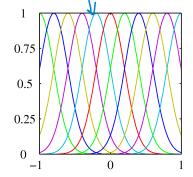
# **Example: Gaussian Basis Expansion**

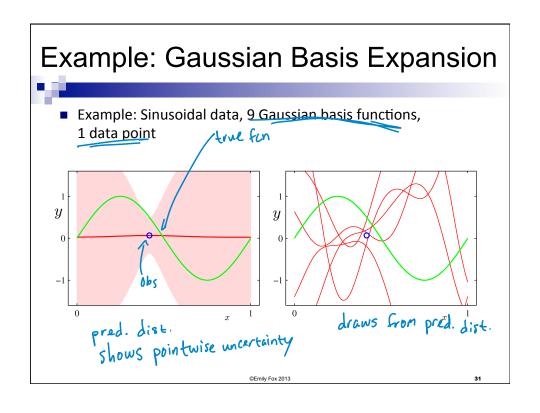
Gaussian basis functions:

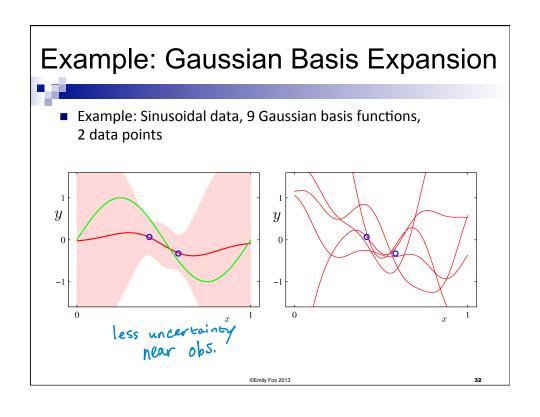
$$h_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

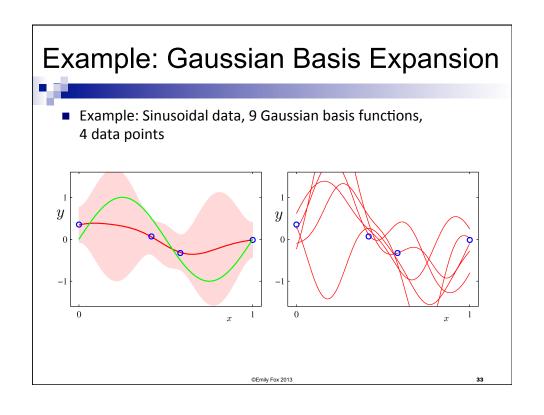
These are local; a small change in x only affects nearby basis functions. Parameters control

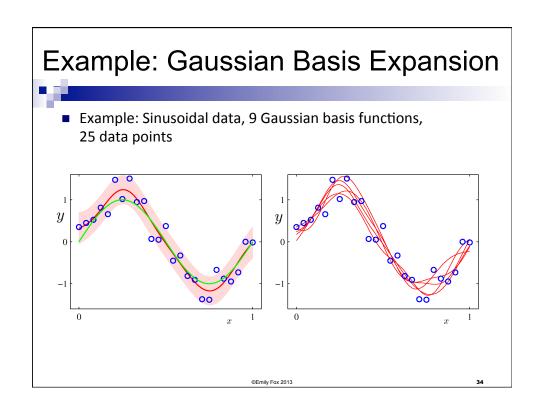
location and scale (width)

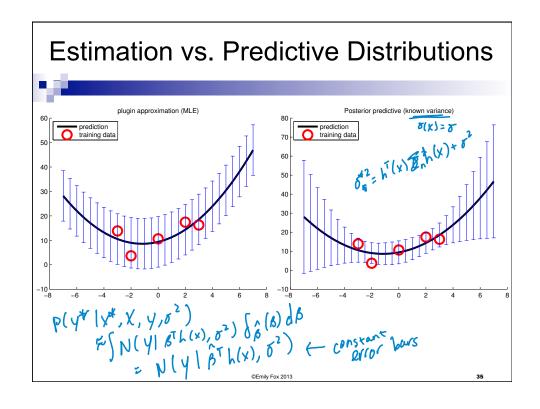


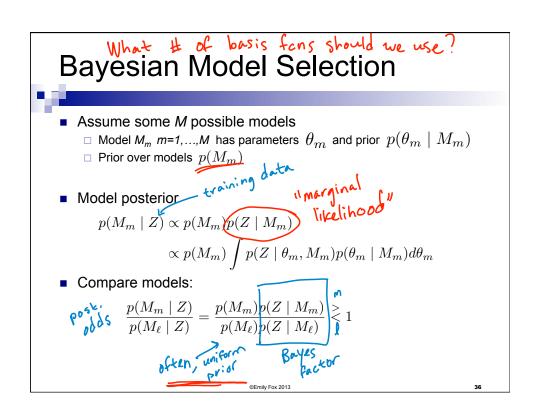


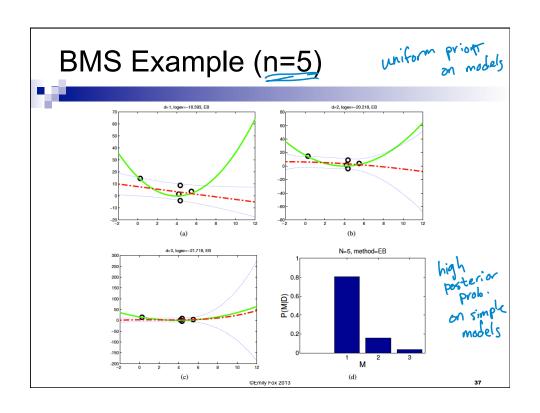






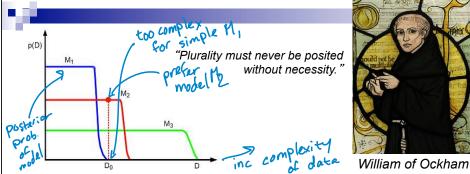








### Bayesian Ockham's Razor



- Parametric Bayes: Consider a finite list of possible models, average according to posterior probability (or in practice, just select the most probable)
- Nonparametric Bayes: Consider a single infinite model, integrate over parameters when making predictions or infer which finite subset is exhibited in your dataset

### Acknowledgements



Many figures courtesy Kevin Murphy's textbook Machine Learning: A Probabilistic Perspective, and Chris Bishop's textbook Pattern Recognition and Machine Learning

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

### **Announcements**



Upcoming changes...

### Lectures:

- □ Instead of lecture next Tuesday, Shirley will provide an examples section
- □ Instead of recitation on Tuesday May 9, I will do a lecture on nonparametrics for generalized linear models (GLM)

### Homeworks:

- □ Starting this Thursday, homeworks will be 2 weeks long
- □ Provides extra flexibility on timing to accommodate project
- □ Each homework (HW4 and HW5) will count the same as two 1-wk assignments
- ☐ Should be slightly shorter than two 1-wk assignments

©Emily Fox 2013 6