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Module 2: Splines and Kernel Methods 

Confidence Bands 
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n  So far we have focused on point estimation: 
n  Often, we want to define a confidence interval for which 

         is in this interval with some pre-specified probability 
n  Looking over all x, we refer to these as confidence bands 

f̂(x)

f(x)

6.5 Local Likelihood and Other Models 205
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FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorta, separately for males and females. The yellow bands indicate one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local if the fitting method ac-
commodates observation weights. Here are some examples:

• Associated with each observation yi is a parameter θi = θ(xi) = xT
i β

linear in the covariate(s) xi, and inference for β is based on the log-

likelihood l(β) =
∑N

i=1 l(yi, x
T
i β). We can model θ(X) more flexibly

by using the likelihood local to x0 for inference of θ(x0) = xT
0 β(x0):

l(β(x0)) =
N∑

i=1

Kλ(x0, xi)l(yi, x
T
i β(x0)).

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

5.2 Piecewise Polynomials and Splines 147
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FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).

From Hastie, Tibshirani, Friedman book 
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CIs for Linear Smoothers 
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n  For linear smoothers, and assuming constant variance 

n  Consider confidence band of the form 

n  Using this, let’s solve for c 

f̂(x) =
nX

i=1

`i(x)yi

CIs for Linear Smoothers 
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n  Based on approach of Sun and Loader (1994) 
¨  Case #2: Assume     unknown 

¨  Case #3: Assume            non-constant 

 
 
¨  If           varies slowly with x, then  (Faraway and Sun 1995) 

�

�(x)

var(f̂(x)) =

CI(x) =

�̂(x)
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Variance Estimation 
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n  In most cases     is unknown and must be estimated 
n  For linear smoothers, consider the following estimator  

¨  If target function is sufficiently smooth, 
¨  Then       is a consistent estimator of     

�

�̂

2 =

Pn
i=1(yi � f̂(xi))2

n� 2⌫ + ⌫̃

⌫ = o(n), ⌫̃ = o(n)
�̂2 �2

Variance Estimation 
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n  Proof outline: 
¨  Recall that 

 
and 

¨  Then, 

 
 
 
¨  Therefore, biasà0 for large n if f is smooth. 
¨  Likewise for variance. 

�̂

2 =

Pn
i=1(yi � f̂(xi))2

n� 2⌫ + ⌫̃

Y � f̂ =

E[Y TQY ] = tr(QV ) + µTQµ

E[�̂2] =
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Alternative Estimator 
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n  Estimator: 

n  Motivation: 

n  Estimator will be inflated 
n  Other estimators exist, too.  See Wakefield or Wasserman. 

�̂2 =
1

2(n� 1)

n�1X

i�1

(yi+1 � yi)
2

yi+1 � yi =

E[(yi+1 � yi)
2] ⇡

Heteroscedasticity 
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n  The point estimate          is relatively insensitive to heterosced., 
but confidence bands need to account for non-constant variance 

n  Re-examine model 
¨  Define 

¨  Then, 

n  Algorithm: 
1.  Estimate           using a nonparametric method w/ constant var to get 
2.  Define 
3.  Regress Zi’s on xi’s to get estimate           of     

f̂(x)

yi = f(xi) + �(xi)✏i

Zi = log(yi � f(xi))
2

�i = log ✏

2
i

f̂(x)f(x)
Zi = log(yi � ˆ

f(xi))
2

ĝ(x) log �

2
(x)
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Heteroscedasticity 
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n  Drawbacks:  
¨  Taking log of a very small residual leads to a large outlier 
¨  A more statistically rigorous approach is to jointly estimate f, g 

n  Alternative = Generalized linear models 

10 

Gaussian Processes 
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Module 3: Bayesian Nonparametrics 
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Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

¨  Standard linear  
¨  Polynomial  
¨  Splines 
¨  … 

f(x) = E[Y | x]

Restrict to 
model class 

Other Important Basis Expansions 
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Fourier Basis Wavelet Basis 
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Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

n  Penalized linear basis expansions 
¨  Ridge 
¨  Lasso 
¨  Smoothing splines 
¨  Penalized regression splines 

f(x) = E[Y | x]

Restrict to 
model class 

Overfitting as model 
complexity grows 

Overfitting 
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9th	  Order	  Polynomial	  

n = 15 n = 100
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Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

n  Penalized linear basis expansions 

f(x) = E[Y | x]

Restrict to 
model class 

Overfitting as model 
complexity grows 

Local nbhd 
methods 

n  Example =  
kernel regression 

Again: Linear Basis Expansion 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)
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Making Predictions 
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n  So far, our focus has been on L2 loss: 

n  Here, we assumed     with  

n  Now, let’s assume a distributional form and log-likelihood loss 

min
�

RSS(�) + �||�||

y = f(x) + ✏

Quick Review of Gaussians 
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n  Univariate and multivariate Gaussians 
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Two-Dimensional Gaussians 
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Maximum Likelihood Estimation 
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n  Model: 
                                              where  

n  Equivalently, 
 
 
n  For our training data (independent obs) 

y = f(x) + ✏ ✏ ⇠ N(0,�2)

f(x) =
MX

m=1

�mhm(x)

p(y | x,�,�2) = N(y | f(x),�2)

p(y | X,�,�2) =

Maximum Likelihood Estimation 

©Emily Fox 2013 22 

n  Taking the log 

n  Equivalent objective to RSS (Gaussian log-like loss = L2 loss) 

n  Taking the gradient and setting to zero, we have already shown 

p(y | X,�,�

2) =
Y

i

N(yi | �T
h(xi),�

2)

�̂ML = (HTH)�1HT y
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A Bayesian Formulation of Ridge 
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n  Consider a model with likelihood 
 
     and prior  
 
n  For large λ 

 
n  The posterior is 

yi | � ⇠ N(�0 + x

T
i �,�

2)

� ⇠ N

✓
0,

�2

�
Ip

◆

� | y ⇠ N
⇣
�̂ridge,�2(XTX + �I)�1XTX�2(XTX + �I)�1

⌘

Bayesian Linear Regression 
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n  More generally, consider a conjugate prior on the basis 
expansion coefficients: 

n  Combining this with the Gaussian likelihood function, and 
using standard Gaussian identities, gives posterior  

 
    where 

p(�) = N(� | µ0,⌃0)

p(� | y) = N(� | µn,⌃n)
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Example: Standard Linear Basis 
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0	  data	  points	  observed	  

Prior	   Data	  Space	  

�0

�1 f

1	  data	  point	  observed	  

Likelihood	   Posterior	   Data	  Space	  

Example: Standard Linear Basis 
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�0

�1 f

�0

�1
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2	  data	  points	  observed	  

Likelihood	   Posterior	   Data	  Space	  

Example: Standard Linear Basis 
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�0

�1 f

�0

�1

20	  data	  points	  observed	  

Likelihood	   Posterior	   Data	  Space	  

Example: Standard Linear Basis 
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�0

�1 f

�0

�1
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Predictive Distribution 
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n  Predict y* at new locations x* by integrating over parameters �

p(y⇤ | y) =
Z

p(y⇤ | �)p(� | y)d�
p(� | y) = N(� | µn,⌃n)

p(y | x,�,�2) = N(y | f(x),�2)

Example: Gaussian Basis Expansion 

©Emily Fox 2013 30 

n  Gaussian basis functions: 

n  These are local;  
a small change in x  
only affects nearby  
basis functions.   
Parameters control  
location and scale (width) 

hj(x) = exp

⇢
� (x� µj)

2

2s

2

�
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Example: Gaussian Basis Expansion 
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n  Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  funcDons,	  	  
1	  data	  point	  

yy

Example: Gaussian Basis Expansion 

©Emily Fox 2013 32 

n  Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  funcDons,	  	  
2	  data	  points	  

yy
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Example: Gaussian Basis Expansion 
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n  Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  funcDons,	  	  
4	  data	  points	  

yy

Example: Gaussian Basis Expansion 

©Emily Fox 2013 34 

n  Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  funcDons,	  	  
25	  data	  points	  

yy
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Estimation vs. Predictive Distributions 
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Bayesian Model Selection 
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n  Assume some M possible models 
¨  Model Mm  m=1,…,M  has parameters          and prior   
¨  Prior over models  

n  Model posterior 

n  Compare models: 

✓m p(✓m | Mm)

p(Mm | Z) / p(Mm)p(Z | Mm)

/ p(Mm)

Z
p(Z | ✓m,Mm)p(✓m | Mm)d✓m

p(Mm)

p(Mm | Z)

p(M` | Z)
=

p(Mm)p(Z | Mm)

p(M`)p(Z | M`)

>
< 1
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BMS Example (n=5) 
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BMS Example (n=30) 

©Emily Fox 2013 38 
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William of Ockham 

“Plurality must never be posited 
without necessity.” 

n  Parametric Bayes:  Consider a finite list of possible models, 
average according to posterior probability  
(or in practice, just select the most probable) 

n  Nonparametric Bayes:  Consider a single infinite model, 
integrate over parameters when making predictions or infer which 
finite subset is exhibited in your dataset 

Bayesian Ockham’s Razor 

Going Infinite… 

©Emily Fox 2013 40 

n  Nonparametric Gaussian regression: 
Would like to let the number of “features” M à ∞ 

n  Prior: 

n  Predictions:  

n  Gaussian process models replace explicit basis function 
representation with a direct specification in terms of a  
positive definite kernel function  

h(x) ! �(x)

Change of notation: 

p(� | 0,↵�1IM )

f = ��
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Mercer Kernel Functions 
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n  Predictions are of the form 
 
 
 
where the Gram matrix K is defined as 
 

 
n  K is a Mercer kernel if the Gram matrix is positive definite for 

any n and any x1, …, xn 

Kij =

p(f) = N(f | 0,↵�1��T )

Mercer’s Theorem 

©Emily Fox 2013 42 

n  If K is positive definite, we can compute the eigendecomp: 
 
 
n  Then 
n  Define         so that 

n  If a kernel is Mercer, there exists a function     s.t. 

Kij =
�(x) = ⇤

1
2
U·i

Kij =

� : X ! Rd
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Example Mercer Kernels 
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n  Example #1: (non-stationary) polynomial kernel 

n  For M=2, γ = r = 1,  

n  This can be written as     , with 

¨  Equivalent to working in a 6-dimensional feature space 
¨  For general M, basis contains all terms up to degree M 

n  Example #2: Gaussian kernel 

¨  Feature map lives in an infinite-dimensional space 

(x, x0) = (�xT
x

0 + r)M

(1 + x

T
x

0)2 = (1 + x1x
0
1 + x2x

0
2)

2

�(x)T�(x0)

�(x) =

(x, x

0
) = exp

✓
�1

2

(x� x

0
)

T
⌃

�1
(x� x

0
)

◆

Gaussian Processes 
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n  Dispense of parametric view (prior on    ) and consider prior on 
functions themselves (prior on f) 

n  Seems hard, but we have shown that it is feasible when we 
look at a finite set of values x1, …, xn 

n  Defined by a Mercer kernel 

n  More generally, a Gaussian process provides a distribution 
over functions  

�

p(f) = N(f | 0,K)
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Gaussian Processes 

n  Distribution on functions 
¨  f ~ GP(m,κ) 

n  m: mean function 
n  κ: covariance function 

¨ p(f(x1), . . . , f(xn)) ∼ Nn(µ, K) 
n  µ = [m(x1),...,m(xn)] 
n  Kij = κ (xi,xj) 

n  Idea: If xi, xj are similar according to the kernel, then f(xi) 
is similar to f(xj) 

,

κ: covariance function 

High	  lengthscale	  

Low	  lengthscale	  

(x, x

0
) = �

2
f exp

✓
� 1

2`

2
(x� x

0
)

2

◆
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m: mean function 

m: mean function 
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2D Gaussian Processes 
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T
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GPs for Regression 
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n  Start with noise-free scenario: directly observe the function 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 

n  Therefore,  

D = {(xi, fi), i = 1, . . . , n}
X⇤

✓
f
f⇤

◆
⇠ N

✓✓
µ
µ⇤

◆
,

✓
K K⇤
KT

⇤ K⇤⇤

◆◆

p(f⇤ | X⇤, X, f) =
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1D Noise-Free Example 

n  Interpolator, where uncertainty increases with distance 
n  Useful as a computationally cheap proxy for a complex simulator 

¨  Examine effect of simulator params on GP predictions instead of doing 
expensive runs of the simulator 

GPs for Regression 
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n  Noisy scenario: observe a noisy version of underlying function 

¨  Not required to interpolate, just come “close” to observed data 

 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 
 

n  Therefore,  

X⇤
D = {(xi, yi), i = 1, . . . , n}

✓
y
f⇤

◆
⇠ N

✓
0,

✓
Ky K⇤
KT

⇤ K⇤⇤

◆◆

y = f(x) + ✏ ✏ ⇠ N(0,�2
y)

cov(y|X) =

p(f⇤ | X⇤, X, y) =
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GPs for Regression 
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n  For a single point x* 
 
 
so 

p(f⇤ | X⇤, X, y) = N(KT
⇤ K

�1
y y,K⇤⇤ �KT

⇤ K
�1
y K⇤)

p(f⇤ | X⇤, X, y) = N(kT⇤ K
�1
y y, k⇤⇤ � kT⇤ K

�1
y k⇤)

f̄⇤ = kT⇤ K
�1
y y =

CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 
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Mixing Kernels for CO2 GP Analysis 

Smooth global trend 

Seasonal periodicity 

Medium term irregularities 

Correlated Observation Noise 

CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 
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Announcements  
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n  Upcoming changes… 

n  Lectures: 
¨  Instead of lecture next Tuesday, Shirley will provide an examples section 
¨  Instead of recitation on Tuesday May 9, I will do a lecture on 

nonparametrics for  generalized linear models (GLM) 

n  Homeworks: 
¨  Starting this Thursday, homeworks will be 2 weeks long 
¨  Provides extra flexibility on timing to accommodate project 
¨  Each homework (HW4 and HW5) will count the same as two 

1-wk assignments 
¨  Should be slightly shorter than two 1-wk assignments 


