Module 2: Splines and Kernel Methods

Inference for Linear Smoothers

STAT/BIOSTAT 527, University of Washington Emily Fox
April $23^{\text {rd }}, 2013$

Confidence Bands

- So far we have focused on point estimation: $\hat{f}(x)$
- Often, we want to define a confidence interval for which $f(x)$ is in this interval with some pre-specified probability
- Looking over all x, we refer to these as confidence bands homoscedastic $\delta(x)=\gamma$

CIs for Linear Smoothers

- For linear smoothers, and assuming constant variance $\delta(x)=\sigma$

$$
\begin{aligned}
\hat{f}(x)=\sum_{i=1}^{n} \ell_{i}(x) y_{i} & \nearrow \bar{f}(x)=\sum_{i=1}^{n} \ell_{i}(x) f\left(x_{i}\right) \\
& \operatorname{var}(\hat{f}(x))=\sigma^{2}\|l(x)\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Consider confidence band of the form } \\
& \qquad C I(x)=\hat{f}(x) \pm c \hat{\sigma}\|\ell(x)\| a \leq x \leq b \\
& \underbrace{\hat{c}}_{c>0} \text { est. of } \sigma
\end{aligned}
$$

- Using this, let's solve for c

CIs for Linear Smoothers

- Based on approach of Sun and Loader (1994)
\square Case \#2: Assume σ unknown use est. σ
- Case \#3: Assume $\sigma(x)$ non-constant

$$
\begin{aligned}
& \operatorname{var}(\hat{f}(x))=\sum_{i} \sigma^{2}\left(x_{i}\right) \ell_{i}^{2}(x) \\
& \mathrm{CI}(x)=\hat{f}(x) \pm c \sqrt{\sum_{i} \sigma^{2}\left(x_{i}\right) l_{i}^{2}(x)}
\end{aligned}
$$

\square If $\hat{\sigma}(x)$ varies slowly with x, then (Faraway and Sun 1995)

$$
\begin{aligned}
& \sigma\left(x_{i}^{i}\right) \approx \delta(x) \text { for those } x \text { w/ } \ell_{i}(x) \text { large } \\
\Rightarrow & C I(x)=\hat{f}(x) \pm C \hat{\sigma}(x)\|\ell(x)\|
\end{aligned}
$$

Variance Estimation

- In most cases σ is unknown and must be estimated
- For linear smoothers, consider the following estimator

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}}{n-2 \nu+\tilde{\nu}}
$$

\square If target function is sufficiently smooth, $\nu=o(n), \tilde{\nu}=o(n)$
\square Then $\hat{\sigma}^{2}$ is a consistent estimator of σ^{2}

Variance Estimation

- Proof outline:
\square Recall that

$$
\begin{array}{ll}
& Y-\hat{f}= \\
\text { and } \\
& E\left[Y^{T} Q Y\right]=\operatorname{tr}(Q V)+\mu^{T} Q \mu
\end{array}
$$

\square Then,

$$
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}}{n-2 \nu+\tilde{\nu}}
$$

$E\left[\hat{\sigma}^{2}\right]=$
\square Therefore, bias $\rightarrow 0$ for large n if f is smooth.
\square Likewise for variance.

Alternative Estimator

- Estimator:

$$
\hat{\sigma}^{2}=\frac{1}{2(n-1)} \sum_{i-1}^{n-1}\left(y_{i+1}-y_{i}\right)^{2}
$$

- Motivation:

$$
\begin{aligned}
& y_{i+1}-y_{i}= \\
& E\left[\left(y_{i+1}-y_{i}\right)^{2}\right] \approx
\end{aligned}
$$

- Estimator will be inflated
- Other estimators exist, too. See Wakefield or Wasserman.

Heteroscedasticity

- The point estimate $\hat{f}(x)$ is relatively insensitive to heterosced., but confidence bands need to account for non-constant variance
- Re-examine model $y_{i}=f\left(x_{i}\right)+\sigma\left(x_{i}\right) \epsilon_{i}$
\square Define

$$
Z_{i}=\log \left(y_{i}-f\left(x_{i}\right)\right)^{2} \quad \delta_{i}=\log \epsilon_{i}^{2}
$$Then,

- Algorithm:

1. Estimate $f(x)$ using a nonparametric method $\mathrm{w} /$ constant var to get $\hat{f}(x)$
2. Define $Z_{i}=\log \left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}$
3. Regress Z_{i} 's on x_{i} 's to get estimate $\hat{g}(x)$ of $\log \sigma^{2}(x)$

Heteroscedasticity

- Drawbacks:
\square Taking log of a very small residual leads to a large outlier
\square A more statistically rigorous approach is to jointly estimate f, g
- Alternative = Generalized linear models

Module 3: Bayesian Nonparametrics

Gaussian Processes

STAT/BIOSTAT 527, University of Washington Emily Fox
April $23^{\text {rd }}, 2013$

Recap of regression so far

- Recall our regression setting

$$
f(x)=E[Y \mid x]
$$

- How to estimate from finite training set?
- Example $=$ linear basis expansion
\square Standard linear
\square Polynomial
\square Splines

Other Important Basis Expansions

-
-
-
Fourier Basis

Wavelet Basis

Recap of regression so far

- Recall our regression setting

$$
f(x)=E[Y \mid x]
$$

- How to estimate from finite training set?

Restrict to
model class

- Example = linear basis expansion

> Overfitting as model complexity grows

- Penalized linear basis expansions

Ridge
\square Lasso
\square Smoothing splines
\square Penalized regression splines

Recap of regression so far

- Recall our regression setting

$$
f(x)=E[Y \mid x]
$$

- How to estimate from finite training set?

Overfitting as model complexity grows
- Penalized linear basis expansions

Again: Linear Basis Expansion

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
- Linear basis expansions maintain linear form in terms of these transformations

$$
f(x)=\sum_{m=1}^{M} \beta_{n} h_{m}(x) \text { trans. }
$$

- What transformations should we use?
$h_{m}(x)=x_{m} \rightarrow$ linear model
$h_{m}(x)=x_{j}^{2}, \quad h_{m}(x)=x_{j} x_{k} \rightarrow$ polynomial reg.
$h_{m}(x)=I\left(L_{m} \leq x_{k} \leq U_{m}\right) \rightarrow$ piecewise constant

Making Predictions

- So far, our focus has been on L_{2} loss:

$$
\min _{\beta} \operatorname{RSS}(\beta)+\lambda\|\beta\|
$$

- Here, we assumed $y=f(x)+\epsilon$ with
- Now, let's assume a distributional form and log-likelihood loss

Quick Review of Gaussians

- Univariate and multivariate Gaussians

$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

Conditional \& Marginal Distributions

Maximum Likelihood Estimation

- Model:

$$
\begin{gathered}
y=f(x)+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \\
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x)
\end{gathered}
$$

- Equivalently,

$$
p\left(y \mid x, \beta, \sigma^{2}\right)=N\left(y \mid f(x), \sigma^{2}\right)
$$

- For our training data (independent obs)
$p\left(y \mid X, \beta, \sigma^{2}\right)=$

Maximum Likelihood Estimation

$$
p\left(y \mid X, \beta, \sigma^{2}\right)=\prod_{i} N\left(y_{i} \mid \beta^{T} h\left(x_{i}\right), \sigma^{2}\right)
$$

- Taking the log

$$
\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}
$$

- Equivalent objective to RSS (Gaussian log-like loss $=L_{2}$ loss)
- Taking the gradient and setting to zero, we have already shown

$$
\hat{\beta}^{M L}=\left(H^{T} H\right)^{-1} H^{T} y
$$

A Bayesian Formulation of Ridge

- Consider a model with likelihood

$$
y_{i} \mid \beta \sim N\left(\beta_{0}+x_{i}^{T} \beta, \sigma^{2}\right)
$$

and prior

$$
\beta \sim N\left(0, \frac{\sigma^{2}}{\lambda} I_{p}\right) \quad \beta_{j} \sim N\left(0, \frac{\sigma^{2}}{\lambda}\right)
$$

- For large λ

prior is peaked around $\beta=0$
- The posterior is \Leftrightarrow penalizing of for from 0

$$
\beta \mid y \sim N\left(\underline{\hat{\beta}^{\text {ridge }}}, \sigma^{2}\left(X^{T} X+\lambda I\right)^{-1} X^{T} X \sigma^{2}\left(X^{T} X+\lambda I\right)^{-1}\right)
$$

$\operatorname{Var}\left(\hat{\beta}^{\text {ridge }}\right)$

Bayesian Linear Regression

- More generally, consider a conjugate prior on the basis expansion coefficients:

$$
p(\beta)=N\left(\beta \mid \mu_{0}, \Sigma_{0}\right)
$$

- Combining this with the Gaussian likelihood function, and using standard Gaussian identities, gives posterior

$$
p(\beta \mid y)=N\left(\beta \mid \mu_{n}, \Sigma_{n}\right)
$$

where

Example: Standard Linear Basis

0 data points observed

Example: Standard Linear Basis

1 data point observed

Example: Standard Linear Basis

2 data points observed

Example: Standard Linear Basis

20 data points observed

Predictive Distribution

- Predict y^{*} at new locations x^{*} by integrating over parameters β

$$
p\left(y^{*} \mid y\right)=\int_{p\left(y \mid x, \beta, \sigma^{2}\right)=N\left(y \mid f(x), \sigma^{2}\right)}^{p\left(y^{*} \mid \beta\right) p(\beta \mid y) d \beta} \begin{gathered}
p(\beta \mid y)=N\left(\beta \mid \mu_{n}, \Sigma_{n}\right)
\end{gathered}
$$

Example: Gaussian Basis Expansion

- Gaussian basis functions:

$$
h_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

- These are local; a small change in x only affects nearby basis functions.
Parameters control location and scale (width)

Example: Gaussian Basis Expansion

- Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point

Example: Gaussian Basis Expansion

- Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Example: Gaussian Basis Expansion

- Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Example: Gaussian Basis Expansion

- Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

Bayesian Model Selection

- Assume some M possible models
\square Model $M_{m} m=1, \ldots, M$ has parameters θ_{m} and prior $p\left(\theta_{m} \mid M_{m}\right)$
\square Prior over models $p\left(M_{m}\right)$
- Model posterior training data

$$
\begin{aligned}
p\left(M_{m} \mid Z\right) & \propto p\left(M_{m}\right) p\left(Z \mid M_{m}\right) \\
& \propto p\left(M_{m}\right) \int p\left(Z \mid \theta_{m}, M_{m}\right) p\left(\theta_{m} \mid M_{m}\right) d \theta_{m}
\end{aligned}
$$

- Compare models:

BMS Example ($\mathrm{n}=5$)

(d)

BMS Example (n=30)

(c) OEmily Fox 2013
(d)

Bayesian Ockham's Razor

-

- Parametric Bayes: Consider a finite list of possible models, average according to posterior probability (or in practice, just select the most probable)
- Nonparametric Bayes: Consider a single infinite model, integrate over parameters when making predictions or infer which finite subset is exhibited in your dataset

Going Infinite...

Change of notation:
$h(x) \rightarrow \phi(x)$

- Nonparametric Gaussian regression:

Would like to let the number of "features" $M \rightarrow \infty$

- Prior: $\quad p\left(\beta \mid 0, \alpha^{-1} I_{M}\right)$
- Predictions: $f=\Phi \beta$
- Gaussian process models replace explicit basis function representation with a direct specification in terms of a positive definite kernel function

Mercer Kernel Functions

- Predictions are of the form

$$
p(f)=N\left(f \mid 0, \alpha^{-1} \Phi \Phi^{T}\right)
$$

where the Gram matrix K is defined as
$K_{i j}=$

- K is a Mercer kernel if the Gram matrix is positive definite for any n and any x_{1}, \ldots, x_{n}

Mercer's Theorem

- If K is positive definite, we can compute the eigendecomp:
- Then $K_{i j}=$
- Define $\phi(x)=\Lambda^{\frac{1}{2}} U_{. i}$ so that

$$
K_{i j}=
$$

- If a kernel is Mercer, there exists a function $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$ s.t.

Example Mercer Kernels

- Example \#1: (non-stationary) polynomial kernel

$$
\kappa\left(x, x^{\prime}\right)=\left(\gamma x^{T} x^{\prime}+r\right)^{M}
$$

- For $M=2, \gamma=r=1$,

$$
\left(1+x^{T} x^{\prime}\right)^{2}=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}
$$

- This can be written as $\phi(x)^{T} \phi\left(x^{\prime}\right)$, with

$$
\phi(x)=
$$

\square Equivalent to working in a 6-dimensional feature space
\square For general M, basis contains all terms up to degree M

- Example \#2: Gaussian kernel

$$
\kappa\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2}\left(x-x^{\prime}\right)^{T} \Sigma^{-1}\left(x-x^{\prime}\right)\right)
$$

\square Feature map lives in an infinite-dimensional space

Gaussian Processes

- Dispense of parametric view (prior on β) and consider prior on functions themselves (prior on f)
- Seems hard, but we have shown that it is feasible when we look at a finite set of values x_{1}, \ldots, x_{n}

$$
p(f)=N(f \mid 0, K)
$$

- Defined by a Mercer kernel
- More generally, a Gaussian process provides a distribution over functions

Gaussian Processes

- Distribution on functions
$\square f \sim \mathrm{GP}(\mathrm{m}, \mathrm{k})$
- m: mean function
- к: covariance function

$\square \mathrm{p}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, K)$
- $\mu=\left[m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right]$
- $\mathrm{K}_{\mathrm{ij}}=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- Idea: If x_{i}, x_{j} are similar according to the kernel, then $f\left(x_{i}\right)$ is similar to $f\left(x_{j}\right)$

к: covariance function

$\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2 \ell^{2}}\left(x-x^{\prime}\right)^{2}\right)$

High lengthscale

m: mean function

m: mean function

2D Gaussian Processes

GPs for Regression

- Start with noise-free scenario: directly observe the function
- Training data $\mathcal{D}=\left\{\left(x_{i}, f_{i}\right), i=1, \ldots, n\right\}$
- Test data locations $X^{*} \rightarrow$ predict f^{*}
- Jointly, we have

$$
\binom{f}{f^{*}} \sim N\left(\binom{\mu}{\mu_{*}},\left(\begin{array}{cc}
K & K_{*} \\
K_{*}^{T} & K_{* *}
\end{array}\right)\right)
$$

- Therefore,

$$
p\left(f^{*} \mid X^{*}, X, f\right)=
$$

1D Noise-Free Example

Samples from Prior
$\kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(-\frac{1}{2 \ell^{2}}\left(x-x^{\prime}\right)^{2}\right)$

Posterior Given 5
Noise-Free Observations

- Interpolator, where uncertainty increases with distance
- Useful as a computationally cheap proxy for a complex simulator
\square Examine effect of simulator params on GP predictions instead of doing expensive runs of the simulator

GPs for Regression

- Noisy scenario: observe a noisy version of underlying function

$$
y=f(x)+\epsilon \quad \epsilon \sim N\left(0, \sigma_{y}^{2}\right)
$$

\square Not required to interpolate, just come "close" to observed data

$$
\operatorname{cov}(y \mid X)=
$$

- Training data $\mathcal{D}=\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$
- Test data locations $X^{*} \rightarrow$ predict f^{*}
- Jointly, we have $\binom{y}{f^{*}} \sim N\left(0,\left(\begin{array}{cc}K_{y} & K_{*} \\ K_{*}^{T} & K_{* *}\end{array}\right)\right)$
- Therefore, $p\left(f^{*} \mid X^{*}, X, y\right)=$

GPs for Regression

$$
p\left(f^{*} \mid X^{*}, X, y\right)=N\left(K_{*}^{T} K_{y}^{-1} y, K_{* *}-K_{*}^{T} K_{y}^{-1} K_{*}\right)
$$

- For a single point x^{*}
$p\left(f^{*} \mid X^{*}, X, y\right)=N\left(k_{*}^{T} K_{y}^{-1} y, k_{* *}-k_{*}^{T} K_{y}^{-1} k_{*}\right)$
so
$\bar{f}^{*}=k_{*}^{T} K_{y}^{-1} y=$

CO2 Concentration Over Time

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95\% predicted confidence

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen \& Williams 2006

Mixing Kernels for CO2 GP Analysis

Smooth global trend

$$
\kappa_{1}\left(x, x^{\prime}\right)=\theta_{1}^{2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{2}^{2}}\right)
$$

Seasonal periodicity

$$
\kappa_{2}\left(x, x^{\prime}\right)=\theta_{3}^{2} \exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{4}^{2}}-\frac{2 \sin ^{2}\left(\pi\left(x-x^{\prime}\right)\right)}{\theta_{5}^{2}}\right)
$$

Medium term irregularities

$$
\kappa_{3}\left(x, x^{\prime}\right)=\theta_{6}^{2}\left(1+\frac{\left(x-x^{\prime}\right)^{2}}{2 \theta_{8} \theta_{7}^{2}}\right)^{-\theta_{8}}
$$

Correlated Observation Noise

$$
\kappa_{4}\left(x_{p}, x_{q}\right)=\theta_{9}^{2} \exp \left(-\frac{\left(x_{p}-x_{q}\right)^{2}}{2 \theta_{10}^{2}}\right)+\theta_{11}^{2} \delta_{p q}
$$

Acknowledgements

Many figures courtesy Kevin Murphy's textbook
Machine Learning: A Probabilistic Perspective, and Chris Bishop's textbook
Pattern Recognition and Machine Learning
Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

Announcements

- Upcoming changes...
- Lectures:
\square Instead of lecture next Tuesday, Shirley will provide an examples section
\square Instead of recitation on Tuesday May 9, I will do a lecture on nonparametrics for generalized linear models (GLM)
- Homeworks:
\square Starting this Thursday, homeworks will be 2 weeks long
\square Provides extra flexibility on timing to accommodate project
\square Each homework (HW4 and HW5) will count the same as two 1-wk assignments
\square Should be slightly shorter than two 1-wk assignments

