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Course Staff 

n  Instructor: Emily Fox 

n  TA: Shirley You Ren 
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Content:  What is the course about? 

©Emily Fox 2013 3 

Course Structure 

n  3 Primary Tasks: 
¨  Regression 
¨  Classification 
¨  Density Estimation 

 
n  5 Modules: 

¨  Nonparametric Preliminaries 
¨  Splines and Kernels 
¨  Bayesian Nonparametrics 
¨  Nonparametrics for Multivariate Covariates 
¨  Classification 
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Task 1: Regression 

n  Assume a sample  
n  Model: 
 
 

n  Task involves estimating the function f 

n  Goals of nonparametric approach: 
¨  Make few assumptions about f 
¨  Use a large number of parameters, but constrained in some way 

to avoid overfitting the data 
¨  Complexity can grow with the sample size 
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Task 2: Classification 

n  Assume a sample  
 
 
 

n  Task involves estimating a predictive model of Y given x 

n  Goals of nonparametric are as before, but now for link 
between x and Y with Y discrete-valued 
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(x1, Y1), . . . , (xn, Yn)
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Task 3: Density Estimation 

n  Assume a sample  

 

n  Task involves estimating the density p 

n  Goals of nonparametric approach are as before, but 
applied to the estimation of p 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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fMRI 
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Functional MRI 

fMRI 
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functional Magnetic Resonance Imaging (fMRI) 

~1 mm resolution 

~1 image per sec. 

20,000 voxels/image 

safe, non-invasive 

measures Blood 

Oxygen Level 

Dependent (BOLD) 

response 

Typical fMRI 

response to 

impulse of 

neural activity 

10 sec 



6 

Typical Stimuli 
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Typical stimuli 

Each stimulus 

repeated several 

times 

fMRI Activation 
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fMRI activation for “bottle”: 

Mean activation averaged over 60 different stimuli: 

“bottle” minus mean activation: 

fMRI 

activation  

high 

below 

average 

average 

bottle 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 
n  Challenges:  

¨  p >> n (covariate dimension >> sample size) 
¨  Cost of fMRI recordings is high 
¨  Only have a few training examples for each word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Zero-Shot Classification 

©Emily Fox 2013 15 

n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

n  We don’t have many brain images, but we have a lot of info 
about the words and how they relate (co-occurrence, etc.) 

n  How do we utilize this “cheap” information? 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Semantic Features 
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Semantic feature values: “celery” 

 0.8368, eat  

 0.3461, taste 

 0.3153, fill 

 0.2430, see  

 0.1145, clean 

 0.0600, open 

 0.0586, smell 

 0.0286, touch 

 … 

 … 

 0.0000, drive 

 0.0000, wear 

 0.0000, lift 

 0.0000, break 

 0.0000, ride 

Semantic feature values: “airplane” 

 0.8673, ride 

 0.2891, see 

 0.2851, say 

 0.1689, near   

 0.1228, open 

 0.0883, hear 

 0.0771, run 

 0.0749, lift 

 … 

 … 

 0.0049, smell 

 0.0010, wear 

 0.0000, taste 

 0.0000, rub 

 0.0000, manipulate 
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Zero-Shot Classification 
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n  From training data, learn two mappings: 
¨  S: input image à semantic features 
¨  L: semantic features à word 

n  Can use “cheap” co-occurrence data to help learn L 

Features 
of word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Assumed Background 

n  [Stat 502 and Stat 504] or [Biostat 514 and Biostat 515] 

n  Comfortable with: 
¨  Linear algebra 
¨  Probability 
¨  R (or Matlab, Python, etc.) 

n  Computational and mathematical maturity 
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Logistics:  How is the course going to run? 
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Website and Discussion Board 

n  Course website:   
    http://stat.washington.edu/courses/stat527/s13 
 
n  Catalyst: 

¨ Used for all discussions 
¨ Post all questions there (unless personal) 
¨ See website for sign-up details 
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Reading 
n  No required textbook 
n  Three suggested textbooks (on website): 

¨  Wakefield, “Bayesian and Frequentist Regression 
Methods", Springer 2012 

 
 
¨  Wasserman, “All of Nonparametric Statistics”, 

Springer 2005 

¨  Hastie, Tibshirani, Friedman “The Elements of 
Statistical Learning”, Springer 2009 
  
     

n  Papers linked on course website 
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Homework 

n  7 HWs total 
n  Assigned and due weekly on *Thursdays* 
n  Collaboration allowed, but write-ups and coding 

must be done individually 
n  Submitted at beginning of class 
n  Allowed 2 “late days” for entire quarter 
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Project 

n  Options: 
¨ Choose project from specified list 
¨ Re-implement existing paper from specified list 
¨ Propose own project idea 

n  Individual 
n  New work, but can be connected to research 
n  Schedule: 

¨ Proposal (1 page) – April 25 
¨ Progress report (3 pages) – May 16 
¨ Poster presentation – June 6 
¨ Final report (8 pages, NIPS format) – June 11 
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Grading 

n  HWs 1, 2, 4, 5, 6 (10% each) 
n  HWs 3, 7 (5%) – short, due dates coincide with 

project due dates 
n  Final project (40%) 
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Support/Resources 

n  Office Hours 
¨ TA:  W 2-4pm in Padelford A-316 
¨ Emily: Th 11am-12pm in Padelford B-305 

n  Recitations 
¨ Optional tutorial/example-based sections will be held 

*every other* week  
¨ Choose from:   

n  Monday, 2-3pm  
n  Monday, 5-6pm 
n  Tuesday, 4-5pm 

¨ Location TBD 
©Emily Fox 2013 25 
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Intro, 
What to Report? 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 2nd, 2013 
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Module 1: Nonparametric Preliminaries 
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The Optimal Prediction 

n  Assume we know the data-generating mechanism 
n  If our task is prediction, which summary of the 

distribution Y | x  should we report? 

n  Taking a decision-theoretic framework, consider the 
expected loss 
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Continuous Responses 

n  Expected loss 

n  Example:  L2 

 
    Solution: 

n  Example: L1 

    Solution: 

n  More generally: Lp 
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EX

�
EY |X [L(Y, f(x)) | X = x]
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General Responses 

n  Expected loss 

n  Example: log-likelihood 

    When Gaussian: 
 
 
 
 
    When Laplacian: 
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EX

�
EY |X [L(Y, f(x)) | X = x]

 

Incorporating Models into Prediction 

n  We don’t actually know the data-generating mechanism 
n  Need an estimator            based on a random sample  

Y1,…, Yn , also known as training data 

n  Statistical models can be used to encode knowledge 
about aspects of the data-generating mechanism 

n  Models can provide simplifying assumptions 
¨  Can help cope with estimation issues due to limited data 

©Emily Fox 2013 30 

f̂n(·)
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Incorporating Models into Prediction 

n  Assume some form for how the data are generated 
¨  E.g.,  

¨  For non-constant variance, can consider GLMs 
n  Then, typically assume some form for f(x) 

n  Model + loss function à some estimator 
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Y = f(x) + ✏ E[✏] = 0 var(✏) = �2

n  Parametric inference assumes parametric form for 

n  Advantages: 
¨  Efficient estimation 
¨  Concise summarization 

n  What is the right parametric form for          ?  
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f(x)

f(x)

Parametric Regression 
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n  Goals of nonparametric inference: 
¨  Assume little prior knowledge of data-generating mechanism 
¨  More flexibly model f  (i.e., relationship between x and Y) 
¨  Maintain “reasonable” efficiency of estimation 

n  Often actually assume parametric forms with large 
numbers of parameters  
¨  Constrained to avoid overfitting the data 

n  Particularly useful when task is prediction 
¨  Focus on accuracy of prediction rather than parameter values 

n  Let’s discuss this idea of “complexity” more… 
©Emily Fox 2013 33 

Goals of Nonparam Regression 

Model Complexity 

n  How complex of a function should we choose?  

¨  To increase flexibility, using many parameters is attractive 

¨  However, wide prediction intervals… 

¨  Leads to wild predictions 

©Emily Fox 2013 34 
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Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 

©Emily Fox 2013 35 

Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 
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Measuring Predictive Performance 

n  Assume estimate           based on training data y1,…, yn  

n  The generalization error provides a measure of 
predictive performance 

©Emily Fox 2013 37 

f̂n(·)

GE(f̂n) = EY,X

h
L(Y, f̂n(X))

i

Measuring Predictive Performance 

n  Assume L2 loss 
n  Averaging over repeat training sets Yn = Y1,…, Yn we get 

the predictive risk at x* 

 
 

n  Recall  
©Emily Fox 2013 38 

EY ⇤,Yn

h
(Y ⇤ � f̂n(x

⇤))2
i
=

MSE[f̂n(x)] = bias(f̂n(x))
2 + var(f̂n(x))
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Measuring Predictive Performance 

n  Finally, let’s average over covariates x 

¨  Integrated MSE 

 
¨  Average MSE 

n  Note:    avg. pred. risk =        + avg. MSE 

©Emily Fox 2013 39 

�2

Bias-Variance Tradeoff 

n  Minimizing risk = balancing bias and variance 

n  Note: f(x) is unknown, so cannot actually compute MSE 

©Emily Fox 2013 40 
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n  Often framed as learning functions with a complexity penalty 
¨  Regular behavior in small neighborhoods of the input 
¨  E.g., locally linear or low-order polynomial…estimator results from 

averaging over these local fits 

n  Choice of neighborhood = strength of constraint 
¨  Large neighborhood can lead to linear fit (very restrictive) whereas small 

neighborhoods can lead to interpolation (no restriction) 
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More on Nonparam Regression 

n  Different restrictions lead to different nonparametric approaches 
¨  Roughness penalty à splines 
¨  Weighting data locally à kernel methods 
¨  Etc. 

n  Each method has associated smoothing or complexity param 
¨  Magnitude of penalty 
¨  Width of kernel (defining “local”) 
¨  Number of basis functions 
¨  … 

n  Bias-variance tradeoff 

n  Will explore methods for choosing smoothing parameters 
©Emily Fox 2013 42 

More on Nonparam Regression 
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Review of Regression, 
Linear Smoothers 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 2nd, 2013 
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Module 1: Nonparametric Preliminaries 

fMRI Prediction Subtask 

©Emily Fox 2013 44 

n  Goal: Predict semantic features from fMRI image 

Features 
of word 
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Linear Regression – review  
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n  Model: 

n  Design matrix: 

 

n  Rewrite in matrix form: 

Linear Regression – review  
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n  Least squares estimation: 
¨  Minimize residual sum of squares 

¨  Take gradient and set = 0 

n  In Gaussian case, LS est. = maximum likelihood est. 
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Linear Regression – review  
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n  Fitted values 

 

n  Number of parameters 

 
n  For any x, we can write 

Linear Smoothers 
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n  Definition: 
          of      is a linear smoother if, for each x, there exists 
 
 
    such that 
 
n  Matrix form 

¨  Fitted values 

¨  Smoothing or “hat” matrix 

n  Effective degrees of freedom:   

f̂n f
`(x) = (`1(x), . . . , `n(x))

T
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Linear Smoothers 
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n  Note 1:  
 
A linear smoother does not imply that           is linear in x 

n  Note 2: 
 
If               for all i, then                    for all x    

f(x)

Yi = c f̂n(x) = c


