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Motivating Kernel Methods
" JEE
m Recall original goal from Lecture 1:

We don’t actually know the data-generating mechanism

Need an estimator fn() based on a random sample
Y;.... Y,, also known as training data

m Proposed a simple model as estimator of E[ Y| X ]
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Choice #1: k Nearest Neighbors
"
m Define nbhd of each data point x; by the k nearest neighbors
[ Search for k closest observations and average these b\n’
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From Hastie, Tibshirani, Friedman book
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Choice #2: Local Averages
" JEE——
m A simpler choice examines a fixed distance h around each x;
0 Defineset: B, = {i: |x; —z| < h}
O #of x;in set: My AV”} obs. wiklhiA
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More General Forms
" JEEE—

m Instead of weighting all points equally, slowly add some in and
let others gradually die off

[ Nadaraya-Waf\son kernel weighted average

fy e Z G0 %)Y:
Az k,\(
"2 Ky (%0, X2)

m But what is a kernel ??7?
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Kernels
" JEEE

m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices

K(_) 'S a Kernel e
kix)z O ¥
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Example Kernels

m Gaussian K(z) = %6—5 w'll an -l
7'('
3 v
m Epanechnikov K(z) = _(1 — :c)QI(a:)
m Tricube K(z) = ;(1)( | |3)3I(a:)
m Boxcar K(z) = %I(x) _

Tricube

Nadaraya-\Watson Estimator
" JEE—
m Return to Nadaraya-Watson kernel weighted average

f-(xo) Zz 1K>\(':C071Uz)yz
S Ka(zo, ;)

m Linear smoother
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Nadaraya-Watson Estimator

" 2 K (@0, 7y,

m Example: ,_J_I_ 2?21 KA($Oa$i)
Boxcar kernel > |OCA( N/Q)S

Epanechnikov

Gaussian Lypi cal

e
st i
ol A we

m Often, choice of kernel matters much less than chbice of A

Nearest-Neighbor Kernel Epanechnikov Kernel L\

flz0)20
From Hastie,
Tibshirani,
Friedman
book
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Local Linear Regression
" J
m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

m Reinterpretation:
n 2
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’(0(,0'\5)“ From Hastie, Tibshirani, Friedman book
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m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares
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Local Linear Regression
* JEE—

m Consider locally weighted linear regression instead
= Local linear model around fixed target x, :

ﬂoxo + ﬁlxo(x- X’)

m Minimize:

2
Mmin Z K, (¥, %) (\/;- Bosy - 15.,(,(&40\5

7 0

m Return: £

?( ) ﬁol Z— C"t A X%,

(
Noky - nov equ valent Yo ikt Ny a local onstant .
m Fit a new local polynomial for every target x,
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Local Linear Regression
* JEEE—
minz K (20, 23) (i — Bowo — Piae (i — 20))*

Bag 42
n Equwalenily minimize /_\ "»1’%)1‘.)
(\/ Yxo 16)(,\ le ( y )( bl{o\ ) K\f"o
m Solution: /\ [l Xy )(o\
; ¥i—’v

p)‘o: (Xv,“\}xo 3(,,3" X: WXoy
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. . x€
Local Linear Regression .= /%

-
ﬂ, (o) Yn
= Bias calculation: ¢l ” ALz Sww\

E[fxo]—Ze o) f \w}oQ" 40
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m Bias E[f(z0)] — f(xo) only depends
on quadratic and higher order terms

m Local linear regression corrects bias

R
GXW From Hastie, Tibshirani, Friedman book
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Local Polynomial Regression
" J

m Local linear regression is biased in regions of curvature
“Trimming the hills” and “filling the valleys”

m Local quadratics tend to eliminate this bias, but at the cost of
increased variance

Local Linear in Interior Local Quadratic in Interior

f(z0)

From Hastie, Tibshirani, Friedman book
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Local Polynomial Regression
" SN

m Consider local polynomial of degree d centered about x,

Pao(@820) = Breys By, (X937 Byte (x-xY + -+
2. A
. * By (v,
Minimize: %1361;12:21 Ky (20, 2:)(yi — Poy (25 Bey))?
T
o B Wy, (Y- X*o’?
,\k[l X,o¥, - Q{;:z’ﬁf)

|‘ Xn"XV T (Xn‘yi)‘

Equivalently: "o {\/’)(
Y

n A
Return: (:(Xﬂ: Bax, ]
Bias only has components of degree d+7 and higher
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Local Polynomial Regression
“

m Rules of thumb:
Local linear fit helps at boundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and i es variance
Local quadratic fit helps most for capturing curvature in the interior
Asymptotic analysis > -
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression
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Kernel Density Estimation
" JEE

m Kernel methods are often used for density estimation
(actually, classical origin)

)
m Assume random sample X1, ) X ~ P A

?
m Choice #1: empirical estimate? {)\v/\v-\ Z ;x‘; ] [ 118 | |

m Choice #2: as before, maybe we should use an estimator A

e PRENHOTT L
nxée——

m Choice #3: again, consider kernel weightings instead

2(%) = | KX, X:)  Parzen
? ﬁ Z /\( 0) ) e%’G'
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Kernel Density Estimation
" S

m Popular choice = Gaussian kernel > Gaussian KDE

n
A 2
p: /L' Z ¢;(X“ )(«.)

: (ﬁ ¥ ¢Q (x)

i

Density Estimate
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From Hastie, Tibshirani, Friedman book
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KDE Properties ﬁ“m):%iff(gg}mi)
E[p* (z)] = ‘:Tx' ;E [K(&:—‘ﬂ -’7:7 %jK(&Aﬁ)?M Jt

: [X'K)#P)(x) ,
Lt 3405

m Smoothing leads to bi i r with mean a smoother
version of the true density

m For kernel estimate to concentrate about x and bias=>0, want
Y20 a3 n—do0

Vv }\n n
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KDE Properties ﬁk(“f):%;K(a)}%)
" JEE

m Assuming smoothness properties of the target distribution, 7"()()
it's straightforward to show that obs.

Bl @)= pb)s S e'(x)a + o) 't
W

sy uabias, 4 o5 0 i€ ka0, Then 2> ()
. ‘ASe

In peaks, negative bias and KDE underestimates p (?”l)t)é 0)
In troughs, positive bias and KDE over estimates p | ‘;" (#) 70 )
Again, “trimming the hills” and “filling the valleys” _.'/s

m Forvar>0, require N\ hn ’%—\/ 0(n )

m More details, including IMSE, in Wakefield book

m Fun fact: There does not exist an estimator that converges faster

than KDE assuming only existence of p”’ [ﬁw‘ogtl'mess o o
raryes Jon
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Connecting KDE and N-W Est.
" S
m Recall task:

flz) = E[Y | 2] = /yp(yl = ;[,) (‘/f> “J‘IB‘J}/
m Estimate joint density p(x,y) with product kernel
AAa s Ay — l - X=X Y")I;>
¥y (l'ay)—ﬁ)y;l(x(—srj ky(-—)\—):'

m Estimate margin p(X) by

o= L Tk, ("’Y“>
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Connecting KDE and N-W Est.

JEE——
T s 2 [yl gy
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iy el

%quwalent to Nara aya- \g\/aéor)welghted average estimator
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Confidence Bands
= JEE

= So far we have focused on point estimation: f(z)
m Often, we want to define a confidence interval for which
f(x) is in this interval with some pre-specified probability
m Looking over all x, we refer to these as confidence bands
hompscedaskic uln:r

Male Female

hekes osedostic T 6‘)

14 16 18 20

Age Interc

= L

Age Slope
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sbp tobacco
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Distance Down Aorta Distance Down Aorta

From Hastie, Tibshirani, Friedman book
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Bias Problem

* JEE— A
= Typically, these are of the form L. o Sk,)av. o€ f(x)

f@) £eseley

= This is really not a confidence band for f(x), but for
flz) = El[f(x)] #

m In parametric inference, these are normally equivalent
m More generally,

f@) = 1@ _ G-F00 | Lod-EO
s(x) g\({) ’\S'(x)
kias (£(x))

/
skbb’?t = Zn(x)* 1
e Juw (F16))
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Bias Problem s(2) Jvar(F(z))
" JEE
m Typically, Z,(x) = standard normal g,ms:"fo
J
= |n parametric inference, 2" term normally - 0 as n increases
m In nonparametric settings,

optimal smoothing = balance between bias and variance 8¢k - s
2" term does not vanish, even with large n S Lare?”

- il
m So, what should we do? {A‘ LQN& m S e
Option #1: Estimate the bias \h

jé? Option #2: Live with it and just be clear that the Cl's are for( f () not f ()
v S —
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Cls for Linear Smoothers
= JEEE

m Forlinear sm rs, and assuming constant variance & (x)=3"

ZE g;m 2 L () $(x2)
=1 \D\W(cm) o Lol

m Consider confidence band of the form

c1 (e Sw 2 e ol

» N
\ Res%.oﬁ’o’

(70

-

m Using this, let’s solve for ¢
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Cls for Linear Smoothers '

" [ g
m Based on approach of Sun and Loader (1994 J

©1 Case #1: Assume 0 known 1;;(,() Qb()
P57 )
s ()|

P(f(z) € Cl(z) for some x € [a,b]) =
(o e may
o) S 2 ) 2 P lwils o)

/?(m»x 2¢. .0

/? —  [l(=@)]|
Good news: max of GP is well studied! be
0Mmss ~ kg =2 W \V‘
(’?wuﬁ max | Z ZTi(x)] > c) = 2(1 — ¢(c)) —e QDN‘"'AA
wb’t‘/ S It (vc)ﬂ)(
&

= Assuming confidence level @, set equal to &vand solve forc
28
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Cls for Linear Smoothers
= JEE

m Based on approach of Sun and Loader (1994;\)
Case #2: Assume O unknown  |xSe gg4. 7

Case #3: Assume U(x) non-constant

var(f(z)) = 2. (%) {5 (x)

/‘
Cll) = £ 0)s ¢\ 20K

If &(:L") varies slowly with x, then (Faraway and Sun 1995)

606) = 500 £ thase x w/ L (x) |arqe
2 cT(0 = £002 ¢80 L]
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Cls for Linear Smoothers
= JEE

m Example from Wakefield textbook
Fit penalized cubic regression spline (penalty on trunc. power basis coef.)
For « = 0.05, we calculate ¢ ~ 3.11 (K= 30)
Estimate both constant and non-constant variance

\\\\\\\\\ Pointvise
-~ Simultaneaus -~ Simutaneous

w @ W w w @ 7w w @ o om @ Hof
Rangem)  Range (m) )‘

m Notes: Ignored uncertainty introduced by choice of A o J
Restrict search to finite set and do Bonferroni correction /= -
Sophisticated bootstrap techniques

Bayesian approach treats A as a parameter with a prior and averages over
uncertainty in A for subsequent inferences
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