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Module 2: Splines and Kernel Methods 

Motivating Kernel Methods 

©Emily Fox 2013 2 

n  Recall original goal from Lecture 1: 
¨  We don’t actually know the data-generating mechanism 
¨  Need an estimator            based on a random sample  

Y1,…, Yn , also known as training data 

n  Proposed a simple model as estimator of E [ Y | X ]  

f̂n(·)



2 

Choice #1: k Nearest Neighbors 

©Emily Fox 2013 3 

n  Define nbhd of each data point xi by the k nearest neighbors 
¨  Search for k closest observations and average these 

n  Discontinuity is unappealing 

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

OO

OO
O

O

O
O

O

O
O

O

O

O

O

O

O

O

OOO

O

O

O

O

O

O

O
O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O O

O

OO

OO

O

OO
O
O

OO

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O

OO

O

OO

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O•

x0

f̂(x0)

Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, Tibshirani, Friedman book 

Choice #2: Local Averages 
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n  A simpler choice examines a fixed distance h around each xi 
¨  Define set:  
¨  # of xi in set:  

n  Results in a linear smoother 

n  For example, with xi=     and h=  

B

x

= {i : |x
i

� x|  h}
n
x

L =
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More General Forms 

©Emily Fox 2013 5 

n  Instead of weighting all points equally, slowly add some in and 
let others gradually die off 

n  Nadaraya-Watson kernel weighted average 

n  But what is a kernel ??? 

Kernels 

©Emily Fox 2013 6 

n  Could spend an entire quarter (or more!) just on kernels 
n  Will see them again in the Bayesian nonparametrics portion 

n  For now, the following definition suffices 
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Example Kernels 

©Emily Fox 2013 7 

n  Gaussian 
 
n  Epanechnikov 
 
n  Tricube 

n  Boxcar 

K(x) =
1

2⇡
e

� x

2

K(x) =
3

4
(1� x)2I(x)

K(x) =
70

81
(1� |x|3)3I(x)

K(x) =
1

2
I(x)

2012 Jon Wakefield, Stat/Biostat 527

The Epanechnikov kernel has the form

K(x) =
3

4
(1 − x)2I(x), (67)

while the Tricube kernel is

K(x) =
70

81

(
1 − |x|3

)3
I(x). (68)

Finally, the Boxcar kernel is

K(x) =
1

2
I(x). (69)

All four kernels are displayed in Figure 31.

The simplest use of kernel methods in nonparametric regression is

based on direct kernel density estimation.

226

2012 Jon Wakefield, Stat/Biostat 527

Figure 31: Pictorial representation of four commonly-used kernels.

227

Nadaraya-Watson Estimator 

©Emily Fox 2013 8 

n  Return to Nadaraya-Watson kernel weighted average 

n  Linear smoother: 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)



5 

Nadaraya-Watson Estimator 

©Emily Fox 2013 9 

n  Example: 
¨  Boxcar kernel à  
¨  Epanechnikov 
¨  Gaussian 

n  Often, choice of kernel matters much less than choice of λ 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, 
Tibshirani, 
Friedman 

book 

Local Linear Regression 

©Emily Fox 2013 10 

n  Locally weighted averages can be badly biased at the 
boundaries because of asymmetries in the kernel 

n  Reinterpretation: 

n  Equivalent to the Nadaraya-Watson estimator 
n  Locally constant estimator obtained from weighted least squares 

6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

From Hastie, Tibshirani, Friedman book 
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Local Linear Regression 
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n  Consider locally weighted linear regression instead 
n  Local linear model around fixed target x0 :  

n  Minimize: 

n  Return: 
 

n  Fit a new local polynomial for every target x0  

Local Linear Regression 

©Emily Fox 2013 12 

n  Equivalently, minimize 
 

n  Solution: 

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� �0x0 � �1x0(xi

� x0))
2



7 

Local Linear Regression 

©Emily Fox 2013 13 

n  Bias calculation: 

n  Bias            only depends 
on quadratic and higher order terms 

n  Local linear regression corrects bias 
exactly to 1st order  

6.1 One-Dimensional Kernel Smoothers 195
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

From Hastie, Tibshirani, Friedman book 

E[f̂(x0)] =
X

i

`i(x0)f(xi)

E[f̂(x0)]� f(x0)

Local Polynomial Regression 

©Emily Fox 2013 14 

n  Local linear regression is biased in regions of curvature 
¨  “Trimming the hills” and “filling the valleys” 

n  Local quadratics tend to eliminate this bias, but at the cost of 
increased variance 6.1 One-Dimensional Kernel Smoothers 197

Local Linear in Interior
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Local Quadratic in Interior
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FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression,
∑N

i=1 li(x0) = 1 and∑N
i=1(xi − x0)li(x0) = 0. Hence the middle term equals f(x0), and since

the bias is Ef̂(x0) − f(x0), we see that it depends only on quadratic and
higher–order terms in the expansion of f .

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)



yi − α(x0)−
d∑

j=1

βj(x0)x
j
i




2

(6.11)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. In fact, an expansion such as

(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model yi = f(xi) + εi, with
εi independent and identically distributed with mean zero and variance
σ2, Var(f̂(x0)) = σ2||l(x0)||2, where l(x0) is the vector of equivalent kernel
weights at x0. It can be shown (Exercise 6.3) that ||l(x0)|| increases with d,
and so there is a bias–variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two

From Hastie, Tibshirani, Friedman book 
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Local Polynomial Regression 
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n  Consider local polynomial of degree d centered about x0 

 
n  Minimize: 
 
n  Equivalently: 

n  Return: 
n  Bias only has components of degree d+1 and higher 

P

x0(x;�x0) =

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2

Local Polynomial Regression 

©Emily Fox 2013 16 

n  Rules of thumb: 
¨  Local linear fit helps at boundaries with minimum increase in variance 
¨  Local quadratic fit doesn’t help at boundaries and increases variance 
¨  Local quadratic fit helps most for capturing curvature in the interior 
¨  Asymptotic analysis à 

local polynomials of odd degree dominate those of even degree 
(MSE dominated by boundary effects) 

¨  Recommended default choice: local linear regression 
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Kernel Density Estimation 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 

Kernel Density Estimation 

©Emily Fox 2013 18 

n  Popular choice = Gaussian kernel  à Gaussian KDE 
208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 
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KDE Properties 
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n  Let’s examine the bias of the KDE 

n  Smoothing leads to biased estimator with mean a smoother 
version of the true density 

n  For kernel estimate to concentrate about x and biasà0, want 

p̂

�(x) =
1

n�

nX

i=1

K

✓
x� xi

�

◆

E[p̂�(x)] =

KDE Properties 
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n  Assuming smoothness properties of the target distribution, 
it’s straightforward to show that 

 
 

¨  In peaks, negative bias and KDE underestimates p  
¨  In troughs, positive bias and KDE over estimates p 
¨  Again, “trimming the hills” and “filling the valleys” 

n  For varà0, require  
n  More details, including IMSE, in Wakefield book 
n  Fun fact: There does not exist an estimator that converges faster 

than KDE assuming only existence of  

p̂

�(x) =
1

n�

nX

i=1

K

✓
x� xi

�

◆

E[p̂�(x)] =

p00
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Connecting KDE and N-W Est. 
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n  Recall task: 

n  Estimate joint density p(x,y) with product kernel 

n  Estimate margin p(y) by 

f(x) = E[Y | x] =
Z

yp(y | x)dy

p̂

�
x

,�
y (x, y) =

p̂

�
x(x) =

Connecting KDE and N-W Est. 

©Emily Fox 2013 22 

n  Then, 

n  Equivalent to Naradaya-Watson weighted average estimator 

f̂(x) =
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Inference for  
Linear Smoothers 
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Module 2: Splines and Kernel Methods 

Confidence Bands 
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n  So far we have focused on point estimation: 
n  Often, we want to define a confidence interval for which 

         is in this interval with some pre-specified probability 
n  Looking over all x, we refer to these as confidence bands 

f̂(x)

f(x)

6.5 Local Likelihood and Other Models 205
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FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorta, separately for males and females. The yellow bands indicate one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local if the fitting method ac-
commodates observation weights. Here are some examples:

• Associated with each observation yi is a parameter θi = θ(xi) = xT
i β

linear in the covariate(s) xi, and inference for β is based on the log-

likelihood l(β) =
∑N

i=1 l(yi, x
T
i β). We can model θ(X) more flexibly

by using the likelihood local to x0 for inference of θ(x0) = xT
0 β(x0):

l(β(x0)) =
N∑

i=1

Kλ(x0, xi)l(yi, x
T
i β(x0)).

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

5.2 Piecewise Polynomials and Splines 147
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FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).

From Hastie, Tibshirani, Friedman book 
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Bias Problem 
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n  Typically, these are of the form 

n  This is really not a confidence band for         , but for  

n  In parametric inference, these are normally equivalent 
n  More generally,  

f̂(x)± c se(x)

f(x)

f̄(x) = E[f̂(x)]

f̂(x)� f(x)

s(x)
=

Bias Problem 
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n  Typically, Zn(x) à standard normal 

n  In parametric inference, 2nd term normally à 0 as n increases 
n  In nonparametric settings,  

¨  optimal smoothing = balance between bias and variance 
¨  2nd term does not vanish, even with large n 

n  So, what should we do? 
¨  Option #1: Estimate the bias 
¨  Option #2: Live with it and just be clear that the CI’s are for           not  

f̂(x)� f(x)

s(x)
= Zn(x) +

bias(f̂(x))q
var(f̂(x))

f̄(x) f(x)
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CIs for Linear Smoothers 
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n  For linear smoothers, and assuming constant variance 

n  Consider confidence band of the form 

n  Using this, let’s solve for c 

f̂(x) =
nX

i=1

`i(x)yi

CIs for Linear Smoothers 
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n  Based on approach of Sun and Loader (1994) 
¨  Case #1: Assume     known  

n  Good news: max of GP is well studied! 

n  Assuming confidence level    , set equal to     and solve for c   

�

P (

¯

f(x) 62 CI(x) for some x 2 [a, b]) =

W (x) =
X

i

ZiTi(x) Zi =
✏i

�

⇠ N(0, 1) Ti(x) =
`i(x)

||`(x)||

P (max

x

|
X

i

Z

i

T

i

(x)| > c) ⇡ 2(1� �(c)) +

0

⇡

e

�c2

2

↵ ↵
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CIs for Linear Smoothers 
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n  Based on approach of Sun and Loader (1994) 
¨  Case #2: Assume     unknown 

¨  Case #3: Assume            non-constant 

 
 
¨  If           varies slowly with x, then  (Faraway and Sun 1995) 

�

�(x)

var(f̂(x)) =

CI(x) =

�̂(x)

CIs for Linear Smoothers 
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n  Example from Wakefield textbook 
¨  Fit penalized cubic regression spline (penalty on trunc. power basis coef.) 
¨  For           , we calculate  
¨  Estimate both constant and non-constant variance 

 

n  Notes: Ignored uncertainty introduced by choice of λ 
¨  Restrict search to finite set and do Bonferroni correction 
¨  Sophisticated bootstrap techniques 
¨  Bayesian approach treats λ as a parameter with a prior and averages over 

uncertainty in λ for subsequent inferences 

↵ = 0.05 c ⇡ 3.11

2012 Jon Wakefield, Stat/Biostat 527

Example: Light Detection and Ranging

We fit a cubic penalized regression spline, with penalization λ
PK

k=1 b2
k,

and λ estimated using generalized cross-validation.

Figure 26(a) gives pointwise confidence intervals and simultaneous

confidence bands under the assumption of constant variance.

Figure 26(b) presents the more appropriate intervals with allowance for

non-constant variance (for details on how σ(x) is estimated, see later).

The coverage probability is 0.95, and the critical value for c is 1.96 for

the pointwise intervals, and 3.11 for the simultaneous intervals, as

calculated from (59), with κ0 estimated as 30.

Under a non-constant assumption the intervals are very tight for low

ranges and increase in width as the range increases.

196

2012 Jon Wakefield, Stat/Biostat 527

(a) (b)

Figure 26: Pointwise confidence intervals and simultaneous confidence

bands for the LIDAR data, under the assumption of: (a) homoscedas-

tic errors, (b) heteroscedastic errors.
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