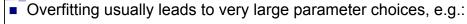
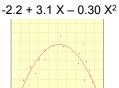


Regularization in Linear Regression





-1.1 + 4,700,910.7 X - 8,585,638.4 X² + ...

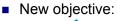
even for n7P, plarge

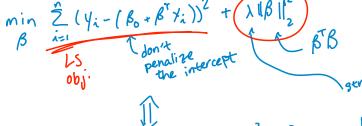
 Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights

©Carlos Guestrin 2005-2009

Ridge Regression







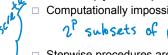
 $||_{2}^{2} \leq S$

min RSS(B) S.E. $\|B\|_2^2 \leq S$

Emily Fox 2013

Variable Selection

- Ridge regression: Penalizes large weights
- What if we want to perform "feature selection"?
 - □ E.g., Which regions of the brain are important for word prediction?



- E.g., Which regions of the state of Can't simply choose predictors with largest coefficients in riage solution.
 Computationally impossible to perform "all subsets" regression
 2^P subsets of predictors ... can't do this
 Stepwise procedures are sensitive to data perturbations and often include features with negligible improvement in fit agreedy, 3 backtracking alg.
- Try new penalty: Penalize non-zero weights
 - □ Penalty:

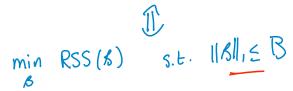
- Leads to sparse solutions
- $\ \square$ Just like ridge regression, solution is indexed by a continuous param λ

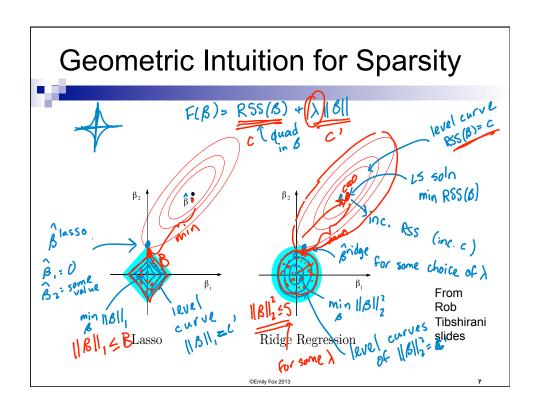
LASSO Regression

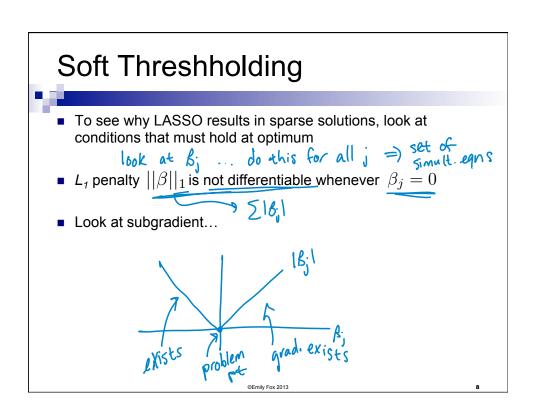
- LASSO: least absolute shrinkage and selection operator
- New objective:

w objective:

$$\min_{B} \sum_{i=1}^{n} \left\{ y_i - \left(B_0 + B^T X_i \right) \right\}^2 + \left(\sum_{i=1}^{n} \left(B_i + B^T X_i \right) \right)^2 + \left$$

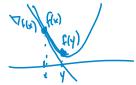






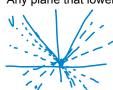
Subgradients of Convex Functions

Gradients lower bound convex functions:



$$f(y) \geq f(x) + \nabla f(x) (y-x)$$

- Gradients are unique at **x** if function differentiable at **x**
- Subgradients: Generalize gradients to non-differentiable points:
 - Any plane that lower bounds function:

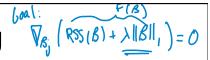


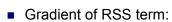
For 18;1: VE[-1,1] on-differentiable points:

Ve of (x) subgradient

if $f(y) \ge f(x) + \sqrt{(y-x)}$

Soft Threshholding





$$\frac{\partial}{\partial \beta_{j}} RSS(\beta) = a_{j} \beta_{j} - c_{j}$$

 $-2\sum_{\substack{i=1\\ j \neq i}}^{n}(X_{i}^{j})^{2}$ Here: $X_{i,j}=X_{i}^{j}$

Subgradient of full objective:

$$\frac{\partial_{\mathcal{B}_{j}}F(\mathcal{B})}{\partial_{\mathcal{B}_{j}}F(\mathcal{B})} = \frac{(\alpha_{j}\beta_{j}-c_{j})*\lambda}{\alpha_{j}\beta_{j}-c_{j}-\lambda}\frac{\beta_{j}<0}{\beta_{j}<0}$$

$$= \frac{(\alpha_{j}\beta_{j}-c_{j}-\lambda)\beta_{j}<0}{(\alpha_{j}\beta_{j}-c_{j}+\lambda)\beta_{j}=0}$$

$$\frac{(\alpha_{j}\beta_{j}-c_{j}+\lambda)\beta_{j}>0}{(\alpha_{j}\beta_{j}-c_{j}+\lambda)\beta_{j}>0}$$

Mer of levent pesiduals
how relevant from model
how relevant from model
thou server who jth
x; is for who jth
covariate
beyond
beyond
what the
what the
others can

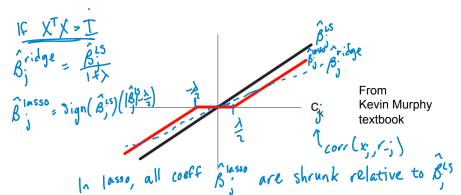
Soft Threshholding

If
$$\beta_{j}=0$$
 $-\lambda \angle C_{j} \angle \lambda$ if not strong corr, $\beta_{j}=0$

■ The value of $c_j = 2\sum_{i=1}^N x_j^i(y^i - \beta_{-j}'x_{-j}^i)$ constrains β_j

Soft Threshholding

$$\hat{\beta}_{j} = \begin{cases} (c_{j} + \lambda)/a_{j} & c_{j} < -\lambda \\ 0 & c_{j} \in [-\lambda, \lambda] \\ (c_{j} - \lambda)/a_{j} & c_{j} > \lambda \end{cases} = \operatorname{Sign}\left(\frac{c_{j}}{a_{j}}\right) \left(\frac{|c_{j}|}{a_{j}} - \frac{\lambda}{a_{j}}\right)_{+}$$



Coordinate Descent

- Often, hard to find minimum for all coordinates, but easy for one coordinate 1-d optimization problem ... Just solved this
- Coordinate descent:

While not converged Pick coord j. Bj = min F(B1,..., Bj-1, b, Bj+1,..., Bp)

- How do we pick a coordinate?

 Round robin, randomly smartly...

 When does this converge to optimum?

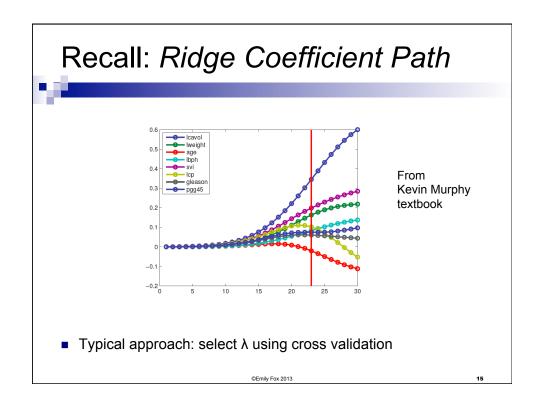
 e.g. strongly convex, strongly convex, strongly

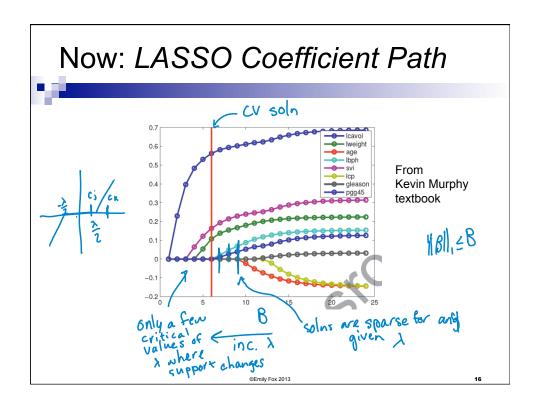
Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - □ Pick a coordinate *j* at random

$$\hat{\beta}_{j} = \begin{cases} (c_{j} + \lambda)/a_{j} & c_{j} < -\lambda \\ 0 & c_{j} \in [-\lambda, \lambda] \\ (c_{j} - \lambda)/a_{j} & c_{j} > \lambda \end{cases}$$

- $c_{j} = 2\sum_{i=1}^{N} (x_{j}^{i})^{2} \qquad c_{j} = 2\sum_{i=1}^{N} x_{j}^{i} (y^{i} \beta'_{-j} x_{-j}^{i})$ Where:
- ☐ For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - □ Least angle regression and shrinkage, Efron et al. 2004





LASSO	à cu solns				
			V	V	
^_	Term	Least Squares	Ridge	Lasso	
₿ 1	intercept	2.465	2.452	2.468	
â,	lcavol	0.680	0.420	0.533	From
	lweight	0.263	0.238	0.169	Rob Tibshirani
•	age	-0.141	-0.046	6	slides
	lbph	0.210	0.162	0.002	
•	svi	0.305	0.227	0.094	not in the
	lcp	-0.288	0.000	1//	model
	gleason	-0.021	0.040		/
<u>,</u>	pgg45	0.267	0.133	1/-	sparse
bφ	ı			V	30.113
		©Emily Fox 2013			17

Sparsistency

- Typical Statistical Consistency Analysis:
 - □ Holding model size (*p*) fixed, as number of samples (*n*) goes to infinity, estimated parameter goes to true parameter

- Here we want to examine *p* >> *n* domains
- Let both model size p and sample size n go to infinity!
 - □ Hard case: $n = k \log p$

1 grows slowly relative to P

Emily Fox 2013

Sparsistency

Rescale LASSO objective by
$$n$$
:
$$\min_{\mathcal{B}} \frac{1}{n} RSS(\mathcal{B}) + \lambda_n \leq |\mathcal{B}_j|$$

- Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
 - □ Under some constraints on the design matrix *X*, if we solve the LASSO regression using

Then for some c₁>0, the following holds with at least probability

- The LASSO problem has a unique solution with support contained within the true support $S(\hat{\beta}^{14550}) \subseteq S(\hat{\beta}^{1})$
- If $\min_{j \in S(\beta^*)} |\beta_j^*| > \underline{c_2 \lambda_n}$ for some c₂>0, then $S(\hat{\beta}) = S(\beta^*)$

©Emily Fox 2013

Comments

- In general, can't solve analytically for GLM (e.g., logistic reg.)
 - $\ \square$ Gradually decrease λ and use efficiency of computing $\hat{\beta}(\lambda_k)$ from $\hat{\beta}(\lambda_{k-1})$ = warm-start strategy
 - □ See Friedman et al. 2010 for coordinate ascent + warm-starting strategy
- If n > p, but variables are correlated, ridge regression tends to have better predictive performance than LASSO (Zou & Hastie 2005)
 - □ Elastic net is hybrid between LASSO and ridge regression

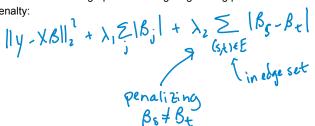
$$\|y - \chi B\|_{2}^{2} + \lambda_{1} \sum_{j=1}^{2} \|S_{j}\|_{2}^{2}$$
(still some issues, but other solns)

Fused LASSO

Might want coefficients of neighboring voxels to be similar

discover regions of importance

- How to modify LASSO penalty to account for this?
- Graph-quided fused LASSO
 - □ Assume a 2d lattice graph connecting neighboring pixels in the fMRI image



A Bayesian Formulation

Consider a model with likelihood

and prior

$$y_i \mid \beta \sim N(\beta_0 + x_i^T \beta, \sigma^2)$$

$$\beta_j \sim \text{Lap}(\beta_j; \lambda)$$

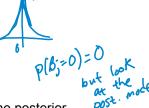
where

$$\beta_j \sim \text{Lap}(\beta_j; \lambda)$$

$$\text{Lap}(\beta_j; \lambda) = \frac{\lambda}{2} e^{-\lambda |\beta_j|}$$

For large λ

more perked around O



- LASSO solution is equivalent to the **mode** of the posterior
- Note: posterior mode ≠ posterior mean in this case

any given posterior sample is not sparse, but it will be penalized like in ridge

There is no closed-form for the posterior. Rely on approx. methods.

Spike + Slab Pilor as an atternative