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Module 1: Nonparametric Preliminaries 

fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 
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Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 

LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression
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Soft Threshholding  

n  To see why LASSO results in sparse solutions, look at 
conditions that must hold at optimum 

n  L1 penalty            is not differentiable whenever  

n  Look at subgradient… 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 
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Soft Threshholding  

n  Gradient of RSS term: 

n  Subgradient of full objective: 
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Soft Threshholding  

n  Set subgradient = 0: 

n  The value of              constrains 
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Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick a coordinate? 

n  When does this converge to optimum?  
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Stochastic Coordinate Descent for LASSO 
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at random 

n  Set: 

n  Where:  

¨  For convergence rates, see Shalev-Shwartz and Tewari 2009 

n  Other common technique = LARS 
¨ Least angle regression and shrinkage, Efron et al. 2004 
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Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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Now: LASSO Coefficient Path  
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LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133
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Sparsistency 

n  Typical Statistical Consistency Analysis:  
¨  Holding model size (p) fixed, as number of samples (n) goes to 

infinity, estimated parameter goes to true parameter 

n  Here we want to examine p >> n domains 
n  Let both model size p and sample size n go to infinity! 

¨  Hard case: n = k log p 

©Emily Fox 2013 19 
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Sparsistency 

n  Rescale LASSO objective by n: 

n  Theorem (Wainwright 2008, Zhao and Yu 2006, …): 
¨  Under some constraints on the design matrix X, if we solve the LASSO 

regression using 

     
     Then for some c1>0, the following holds with at least probability 
 
 
•  The LASSO problem has a unique solution with support contained 

within the true support 
•  If        for some c2>0, then  
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min
j2S(�⇤)

|�⇤
j | > c2�n S(�̂) = S(�⇤)

Comments 
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n  In general, can’t solve analytically for GLM (e.g., logistic reg.) 
¨  Gradually decrease λ and use efficiency of computing            from 

= warm-start strategy  
¨  See Friedman et al. 2010 for coordinate ascent + warm-starting strategy 

n  If n > p, but variables are correlated, ridge regression tends  
to have better predictive performance than LASSO  
(Zou & Hastie 2005) 
¨  Elastic net is hybrid between LASSO and ridge regression 

 
 

�̂(�k) �̂(�k�1)
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Fused LASSO 
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n  Might want coefficients of neighboring  
voxels to be similar 

n  How to modify LASSO penalty to account for this? 

n  Graph-guided fused LASSO 
¨  Assume a 2d lattice graph connecting neighboring pixels in the fMRI image 
¨  Penalty: 

A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior 
 
     where  
 
n  For large λ 

n  LASSO solution is equivalent to the mode of the posterior 
n  Note: posterior mode ≠ posterior mean in this case 
 
 
n  There is no closed-form for the posterior.  Rely on approx. methods. 
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Selecting Smoothing 
Parameters 
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Module 1: Nonparametric Preliminaries 

Smoothing Parameter 
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n  In both ridge and lasso regression, we saw that the parameter 
λ controlled the solution 
¨  Often, can straightforwardly equate with effective degrees of freedom 

n  Which λ (à estimator) should we choose??? 
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Two Goals 
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n  Model Selection: estimating the performance of models in order to 
select the best one 
¨  E.g., choosing λ 

n  Model Assessment: having chosen a final model, estimate its 
prediction error (generalization error) on new data 

n  Ideally, divide data into 3 parts 

 

TRAIN VALIDATION TEST 

Focus on Model Selection 
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n  Which estimator/smoothing parameter should we choose? 

n  Recall metrics for assessing the performance of an estimator… 

TRAIN VALIDATION 
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Measuring Predictive Performance 

n  Assume estimate           based on training data y1,…, yn  

n  The generalization error provides a measure of 
predictive performance 
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f̂n(·)

GE(f̂n) = EY,X

h
L(Y, f̂n(X))

i

Measuring Predictive Performance 

n  Assume L2 loss 
n  Averaging over repeat training sets Yn = Y1,…, Yn we get 

the predictive risk at x* 

 
 

n  Recall  
©Emily Fox 2013 29 

EY ⇤,Yn

h
(Y ⇤ � f̂n(x

⇤))2
i
=

MSE[f̂n(x)] = bias(f̂n(x))
2 + var(f̂n(x))
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Measuring Predictive Performance 

n  Finally, let’s average over covariates x 

¨  Integrated MSE 

 
¨  Average MSE 

n  Note:    avg. pred. risk =        + avg. MSE 

©Emily Fox 2013 30 

�2

Bias-Variance Tradeoff 

n  Minimizing risk = balancing bias and variance 

n  Note: f(x) is unknown, so cannot actually compute MSE 

©Emily Fox 2013 31 



16 

Focus on Model Selection 
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n  Which estimator/smoothing parameter should we choose? 

 

n  We saw that minimizing (average) prediction error can be 
equated with minimizing (average) MSE 

 
n  With a validation set, we can estimate the prediction error 

TRAIN VALIDATION 

Data Scarce Approximations 
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n  Often, we do not have enough data to form suitably sized 
training and validation sets 
¨  What is a good training/test split?  Sensitivity? 
¨  Typically want to use as much data for training as possible 

 
n  Rely on approximations 
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Approx 1: Training Data Only 
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n  Goal: Minimize average MSE 

n  Solution: Use training error 

min
�

E

"
1

n

nX

i=1

(f(xi)� f̂

�
n (xi))

2

#

Approx 2: Cross Validation 
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n  Goal: Minimize average MSE 

n  Solution: Mimic heldout data using *training* data 

n  Leave-one-out (LOO) cross validation (CV) algorithm: 
¨  Estimate fit using all but ith data point 
¨  Predict ith observation 
¨  Repeat for all i 

¨  Repeat for all values of λ 
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Approx 2: Cross Validation 
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n  Reasoning 

n  For linear smoothers 

n  Warning: Curves can be very flat…Don’t just choose and use without 
thinking.  Some rules of thumb (see Elements of Statistical Learning) 

Approx 2: Cross Validation 
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n  K-fold cross validation 

n  Algorithm 
1.  Fit model using data with kth fraction removed 
2.  Using fitted model, compute 

3.  Store 

4.  Repeat for each value of λ using same split of the data 

TRAIN TRAIN TRAIN VALID-
ATION TRAIN 
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Approx 3: Generalized CV 
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n  Recall LOO ordinary CV for linear smoothers 

n  Instead of        , use 

n  Often very close to OCV solution  
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Approx 3: Generalized CV 
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n  One motivation: Invariance to orthonormal transformations 
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Approx 3: Generalized CV 
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n  Using  
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1

n

nX

i=1

 
yi � f̂

�
n (xi)

1� ⌫�
n

!2

(1� x)�2 ⇡ 1 + 2x

Approx 4: Mallows Cp Statistic 

©Emily Fox 2013 41 

n  Goal: Minimize average MSE 

n  Solution: Approximate directly 
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Approx 4: Mallows Cp Statistic 
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n  Estimate as 

n  Note:  Arises from considering L2 loss.  Log-likelihood loss 
leads to AIC.  For BIC, consider Bayesian model selection 
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1

n
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Bayesian Model Selection 
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n  Assume some M possible models 
¨  Model Mm  m=1,…,M  has parameters          and prior   
¨  Prior over models  

n  Model posterior 

n  Compare models: 

✓m p(✓m | Mm)

p(Mm | Z) / p(Mm)p(Z | Mm)

/ p(Mm)

Z
p(Z | ✓m,Mm)p(✓m | Mm)d✓m

p(Mm)

p(Mm | Z)

p(M` | Z)
=

p(Mm)p(Z | Mm)

p(M`)p(Z | M`)

>
< 1
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Bayesian Model Selection 
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n  For Bayes factor, approximate  

n  If loss is             , then equivalent to BIC 
¨  Minimizing BIC = maximizing approximated posterior  

n  However, in addition to being able to select the best model, in 
Bayesian framework we also get the relative merit of each 

n  BIC is asymptotically consistent, but AIC is not 
n  For finite samples, BIC tends to choose too simple models 

log p(Z | Mm) ⇡ log p(Z | ˆ✓m,Mm)� ⌫m
2

log n+O(1)

�2 log p(Z | ˆ✓m,Mm)

⇡ e�
1
2BICm

PM
`=1 e

� 1
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