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fMRI Prediction Subtask
= JEE

m Goal: Predict semantic features from fMRI image




Regularization in Linear Regression
" JEE
m Overfitting usually leads to very large parameter choices, e.g.:
2.2+3.1X-0.30 X2 -1.1+4,700,910.7 X - 8,585,638.4 X2 + ...
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m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Ridge Regression
"

m Ameliorating issues with overfitting: P{nA(Ehﬁon of Wﬁ'l"\tS
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m New objective:
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Variable Selection PRt
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m Ridge regression: Penalizes large weights e M)
<t

_ voriable. _
m What if we want to perform “feature selection™?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose predictors with largest coefficients in ridge solution
Computationally impossible to perform “all subsets” regression

b-\sc O swhsets of predickars ... cantt do this

Stepwise procedures are sensitive to data perturbations and often include

features with negligible improvement in fit <__ oy.w\// 3 boickﬂ,u[«nj
a 9.

m Try new penalty: Penalize non-zero weights

Penalty: “6“ | - 2 |go\

Leads to sparse solutions

Just like ridge regression, solution is indexed by w
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LASSO Regression
" JEE

m LASSO: least absolute shrinkage and selection operator

= New objec't\ive: )
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Geometric Intuition for Sparsity
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Soft Threshholding
" JEE
m To see why LASSO results in sparse solutions, look at

conditions that must hold at optimum

= L, penalty ||(]|1is not differentiable whenever 3; =0

m Look at subgradient...
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Subgradients of Convex Functions
" O

m Gradients lower bound convex functions:

m Gradients are unique at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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Soft Threshholding

= JEEE
m Gradient of RSS term:

m Subgradient of full objective:
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Soft Threshholding

® JE—
m Set subgradient = 0: ajfj—ci=X  B; <0
85]}7‘(5): [*Cj*)y*Cj‘F)\} ﬁJ:O
CLij-Cj—F)\ 5j>0

N
m Thevalue of ¢; =2 z%(y' — B ;2" ;) constrains B;
=1
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Soft Threshholding
" J

(Cj + )\)/G;j ¢ < —A

Bj = 0 cj € [—)\, )\]
(cj—)\)/aj Cj>)\

/ From
Ck Kevin Murphy
/ textbook

ooooooooooooo




Coordinate Descent
= JEE

m Given a function F
Want to find minimum

m Often, hard to find minimum for all coordinates, but easy for one coordinate

m Coordinate descent:

= How do we pick a coordinate?
m  When does this converge to optimum?
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
Pick a coordinate j at random

= Set: ) (Cj + )\)/(Lj ¢ < -2
,Bj = 0 Cj € [—)\, )\]
(cj—A)/aj Cj>>\
= Where:

For convergence rates, see Shalev-Shwartz and Tewari 2009

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
" JEE
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
" S
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LASSO Example

Term Least Squares  Ridge Lasso

Intercept 2.465 2.452  2.468
lcavol 0.680 0.420 0.533 From
lveight 0.263  0.238 0.169 %g‘;hirani
age —0.141 —0.046 slides
1bph 0.210 0.162  0.002
svi 0.305 0.227  0.094
lcp —0.288 0.000
gleason —0.021 0.040
pgg4b 0.267 0.133
Sparsistency

“
m Typical Statistical Consistency Analysis:

Holding model size (p) fixed, as number of samples (n) goes to
infinity, estimated parameter goes to true parameter

m Here we want to examine p >> n domains

m Let both model size p and sample size n go to infinity!
Hard case: n= klog p
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Sparsistency
* JEE—

m Rescale LASSO objective by n:

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
Under some constraints on the design matrix X, if we solve the LASSO
regression using

Then for some ¢,>0, the following holds with at least probability

The LASSO problem has a unique solution with support contained
within the true support
B;| > caAy, for some c,>0, then S(B) = S(6%)

If min
JES(B)
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Comments
= JEEE

m In general, can’t solve analytically for GLM (e.g., logistic reg.)

Gradually decrease A and use efficiency of computing B(Ak) from B(/\k_l)
= warm-start strategy
See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If n > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO

(Zou & Hastie 2005)
Elastic net is hybrid between LASSO and ridge regression
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Fused LASSO

Might want coefficients of neighboring
voxels to be similar

How to modify LASSO penalty to account for this?

Graph-guided fused LASSO

Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
Penalty:
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A Bayesian Formulation
“

Consider a model with likelihood
T 2
yi | B~ N(Bo+x; B,07)

and prior
Bj ~ Lap(Bj; A)
where A
Lap(8;; A) = e %]
For large A

LASSO solution is equivalent to the mode of the posterior
Note: posterior mode # posterior mean in this case

There is no closed-form for the posterior. Rely on approx. methods.
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Smoothing Parameter
* JEE
m In both ridge and lasso regression, we saw that the parameter

A controlled the solution
Often, can straightforwardly equate with effective degrees of freedom

m Which A (= estimator) should we choose???

ooooooooooooo
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Two Goals
" JEE
m Model Selection: estimating the performance of models in order to

select the best one
o E.g., choosing A

m Model Assessment: having chosen a final model, estimate its
prediction error (generalization error) on new data

m Ideally, divide data into 3 parts

TRAIN VALIDATION TEST
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Focus on Model Selection
" JE
m Which estimator/smoothing parameter should we choose?

VALIDATION

m Recall metrics for assessing the performance of an estimator...
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Measuring Predictive Performance
" JEE——
= Assume estimate f,,(+) based on training data A

m The generalization error provides a measure of
predictive performance

GE(fx) = By [L(Y, fa(X)]
= /t/ (-'\ch
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Measuring Predictive Performance

|
E . 1
m Assume L, loss Y= k)te X €[e)=0 verle)s

m Averaging over repeat training sets Y, = Y, ..., Y, we get
the predictive risk at x*

By, [(Y* = fula"))?] = Evy L™ £iv) *cw)-@(x‘lﬂ

o
o iy ti‘,t:'if“i) ool AT M@cﬂh
= E\‘l I [Y*“ Q (‘\[i' )5 ]* w ) v E‘(n‘:e(;}ea

A MSE (o8
- Dﬂ* N$E (Q"(X‘Y)) / <)
1 — sk

. )
¢ l(rtiu(_('o]e, L(ror

m Recall MSE[f,(x)] = bias(f,(2))? + var(f,(z))

ooooooooooooo
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Measuring Predictive Performance
* JEEE—
m Finally, let's average over covariates x

1 Integrated MSE J" HSE (?{\ [x)) ‘P [XJ c[)(

suMmoary VLY o snputs

[ Average MSE

[RACAENED)

Nt

Monte Colo €55
¥a~P

m Note: avg. pred. risk = 02 + avg. MSE

0N A P
L5 e iy
N e Yn; n * "
\'.ff"f‘_.‘ﬂ%\- nlW 0\0(' l(:' v \/‘ 7 Yv\

: : (N
Bias-Variance Tradeoff (&‘pr‘mﬂ
o e
" S

m Minimizing risk = balancing bias and variance

\ ,(\%E
ve’
Lias
‘\,66 §9,c s‘;(-) 0 L.\Mah,\ wm?(nx{ty —
- -\) 09’(10/\0»\ solution

m Note: f(x) is unknown, so cannot actually compute MSE
'S
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Focus on Model Selection
= JEEE

m Which estimator/smoothing parameter should we choose?

RAIN VALIDATION

m We saw that minimizing (average) prediction error can be
equated with minimizing (average) MSE

m With a validation set, we can estimate the prediction error
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Data Scarce Approximations
" JEE
m Often, we do not have enough data to form suitably sized
training and validation sets

What is a good training/test split? Sensitivity?
Typically want to use as much data for training as possible

m Rely on approximations
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Approx 1: Training Data Only
" S
m Goal: Minimize average MSE

n

min B | S () — o))

1=1

m Solution: Use training error
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Approx 2: Cross Validation
* JEE——

m Goal: Minimize average MSE
n

min %mei) — PMa))?

m Solution: Mimic heldout data using *training* data

m Leave-one-out (LOO) cross validation (CV) algorithm:
Estimate fit using all but " data point
Predict " observation
Repeat for all i

Repeat for all values of A
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Approx 2: Cross Validation

m Reasoning

m For linear smoothers

m Warning: Curves can be very flat...Don'’t just choose and use without
thinking. Some rules of thumb (see Elements of Statistical Learning)
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Approx 2: Cross Validation

m K-fold cross validation
VALID-
TRAIN | TRAIN | - 8 | TRAIN | TRAIN

= Algorithm
1. Fit model using data with k™ fraction removed
2. Using fitted model, compute

cvk_—z — ()

zEJ(k)
3. Store

1 K
CV=2> CVi

4. Repeat for each value of A using same split of the data

©Emily Fox 2013 37

18



Approx 3: Generalized CV
" S

m Recall LOO ordinary CV for linear smoothers

UOEESS (—yll _fg(ﬁl))

=1

1 n
» Instead of L;;, use - z; Li;
1=

m Often very close to OCV solution
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Approx 3: Generalized CV

" JEE— X
GOV (\) = %i (—yi - _f’ixi)>

i=1 n

m  One motivation: Invariance to orthonormal transformations
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Approx 3: Generalized CV
" I

2
1« Yi — JM 331)
GCV(A) = ﬁ :E ( — )

’I’L

m Using (1—2)?~1+2x
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Approx 4: Mallows C, Statistic
" JEE—

m Goal: Minimize average MSE
n

min B | - S(F () — w0

i=1
m Solution: Approximate directly

avg, MSE = =5 [(/ = )7 (7 = )

ooooooooooooo
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Approx 4: Mallows C Statistic
" JEE—
avg. MSE = %E (Y = L*Y)T (Y = LMY)] —o? + %Wﬂ

m Estimate as

m Note: Arises from considering L, loss. Log-likelihood loss
leads to AIC. For BIC, consider Bayesian model selection
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Bayesian Model Selection
* JEE——
m Assume some M possible models

Model M,, m=1,...,M has parameters Qm and prior p(@m | Mm)
Prior over models p(M,,,)

m Model posterior
(M, | Z) o< p(Mp)p(Z | Miy,)

< p(M) [ (2| Mo )p(61 | My ),
m Compare models:

p(My, | Z) _ p(My)p(Z | M) 2 1
p(Me | Z)  p(Me)p(Z | M)
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Bayesian Model Selection
* JE
m For Bayes factor, approximate
10g p(Z | Myn) ~ 10gp(Z | fins Myn) = - logn + O(1)

m Iflossis —210gp(Z | Oy, M), then equivalent to BIC
Minimizing BIC = maximizing approximated posterior

m However, in addition to being able to select the best model, in
Bayesian framework we also get the relative merit of each

o—3BIC,,
=y VY
Z@:]_ e 2:B:[Cg

m BIC is asymptotically consistent, but AIC is not
m For finite samples, BIC tends to choose too simple models
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