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Linear classifiers — Which line is better?
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Pick the one with the largest margin!
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Support vector machines (SVMs)
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- m Solve efficiently by many methods,

- eg.,
quadratic programming (QP)
= Well-studied solution algorithms

& - Stochastic gradient descent
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What if the data are still not linearly

separable?
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Demo!

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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What about multiple classes?
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Learn 3 classifiers:
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Learn 1 classifier: Multiclass SVM
" S

Slmulggngously learn 3 sets of weights
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Learn 1 classifier: Multiclass SVM
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What you need to know
* JEE—
m Maximizing margin

m Derivation of SWM‘formulation

m Non-linearly separable case
Hinge loss
A.K.A. adding slack variables

m SVMs = Perceptron + L2 regularization

m Can optimize SVMs with SGD
Many other approaches possible

m Handling multiple classes

Reading
" JEE
m Hastie, Tibshirani, Friedman — 12.1-12.3
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Fighting the Bias-Variance Tradeoff
" JEE

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression, shallow decision
trees ... decision stam es \ —
Low variance, don’t usually overfit too badly

m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
7
But often yes... how "




Voting (Ensemble Methods)
" BN

m  Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space Y he ! Y"' ?_“ "f
m  Output class: (Weighted) vote of each classifier v /
0 Classifiers that are most “sure” will vote with more conviction i o, = S‘tflnﬂlf"\
1 Classifiers will be most “sure” about a particular part of the space t
1 On average, do better than single classifier!

°
Hix) = Sign Z a,(u,(m\

of vote

= But how do you ???
01 force classifiers to learn about different parts of the input space?
1 weigh the votes of different classifiers?
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Boosting [Schapire, 1989] 5,,3:0;&":‘,‘3’23::?2

Idea: given a weak learner, run it multiple times on| (reweighted) ‘
training data, then let learned classifiers vote

Y" e (X)) SO Correch cless
m On each iteration t: Vabe (X;) <0 =) interrect
1 weight each training example by how incorrectly it was classified s» {a”

O Learn a hypothesis — h,
0 A strength for this hypothesis — o,

m Final classifier:

T
H(x) = sign Z athy(z)
m Practically useful t=1
m Theoretically interesting
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Learning from Weighted Data
" SN )
= Sometimes not all data points are equal
1 Some data points are more equal than others
m Consider a weighted dataset
| m weight of i th training example (x;,y;)
[ Interpretations: D( J)

= jth training example counts as D(i) examples sma\\
= If | were to “resample” data, | would get more samples of “heavier” data points (xj y)]

Now, in all calculations, whenever used, i th training example
counts as D(i) “examples” Ey,\m‘,\¢: Aec’« Sion £72eS
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AdaBoost
" JEEE
m [nitialize weights to uniform dist: D,(i) = 1/n
m Fort=1..T WL(:Y"??‘I,'IS

0 Train weak learner h, on distribution D, over the data
01 Choose weight o, 7 O (MS",.A“ vl gtk
) ol

bhck k0 |
1 Update weights: Dy(i) ( L ("“‘)ﬁ)l( for row<
. 1) exXpl—oy; Z; .
Diyr(i) = = 1% 7 tYille € ‘/{l««”«)w
= Where Z, is normalizer: nofmah'bﬁm 3 correct clags
Zt = Z Dy (i) exp(—auyihi(;)) 3 “’"3“ becruss
i=1
= Output final classifier;r (8 Vs l‘w()‘.{ko
. =\ ncorre e
H(Y“} Slﬂﬁ (%ﬂ‘l— L‘&(K\) =) wli'}k\' (" C.
HK -J-%ocus more here
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Picking Weight of Weak Learner

"
m Weigh h, higher if it did well on training data (weighted by D,):
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Why choose ¢, for hypothesis 4, this way?
[Schapire, 1989]
" J
Training error of final classifier is bounded by:

(4
2 less .

% ZH[H(ZEJ # yi] < - ZGXP(—yif(f”i))

Where f(z) = athi(x); H(z) = sign(f(z))
t

! pnk X0 Y&%o{kh(x)
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]

“ g
= z Dy (i) exp(—aqyihe(z;))

1

Training error of final classifier is bounded by: K

Where f(z) =) athy(z); H(z) = sign(f(z))
t
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Why choose ¢ for hypothesis #, this way?
[Schapire, 1989]

"
Training error of final classifier is bounded by:

Y M) Al < Zexp( vif () = HZt

Where f(z) =Y aihi(x); H(a:) = sign(f(x))
t

If we minimize [J, Z.,, we minimize o ining error

We can tighten this bound greedily, by choosmg/ﬁnd-h,.on each
iteration to minimize Z,
P‘Q\_

7= 3 i spl- )
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Why choose ¢, for hypothesis #, this way?
[Schapire, 1989]
" S

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Zy = ZDt(i) exp(—aqyihg(z;)) U“w' Aef. O

-~

i=1 ¥ Qex 7

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—6t
e (1)
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M N
Strong, weak classifiers s - +
- S S
bt -+
m If each classifier is (at least slightly) better than randomo)m."\\ + -
< 0.5 - +
\(S .
m AdaBoost will achieve zero training error gexponenttally fast \' '
Iz wgpel loaV"‘ Qor &4”
—ZI[[H z;) # y] < HZt < exp ( 22 1/2 —€) )
t=1 "o —~—

as €, mpves
away from 5
t},ls b’:ﬁu 7

m Is it hard to achieve better than random training error?
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Boosting results — Digit recognition

[Schapire, 1989]
" JEEE
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Test set error decreases even after training error is zero -/
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Boosting: Experimental Results

poalbe\ e [Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer. ML 1999]
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http://cseweb.ucsd.edu/~yfreund/adaboost/
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Boosting and Logistic Regression
" JEE

Logistic regression assumes:
) con= ot 26, h(¥)
P(Y =1|X) = iy
1 +exp(f(x))

And tries to maximize data likelihood:

T 1 = min o PDI#)
P(DIH) = 1;[1 1+ exp(—yif(z:)) ? 0/‘3 6

(2

Equivalent to minimizing log loss

n

Zln(l + exp(—yif(z:)))

=1

Boosting and Logistic Regression
" JEE
Logistic regression equivalent to minimizing log loss

er)(l + exp(—yi f(xi)))

=1

Boosting minimizes similar loss function!!
n T
1
~ X exp(—yif (@) = [[ 2
1) t=1
c:/tb{ approximations of 0/1 loss!
FoLuse mo’e

n o vLry |
0 w\"g ‘(ﬂzg(‘%lj eks
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Logistic regression and Boosting
* JEE—

Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
105
Zln 1 —l—exp( Yi (%))) ‘—L» Zexp( yzf(%))
=1
m Define m Deflne

o) = 50‘*‘253 (z;) M fl@) =) o

where #,(x) defined

where features x. are dynamlcallv to fit data
predefined —— (not a linear classifier)

m Weights B;are learned in ~ m Weights g, learned
joint optimization incrementally
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What you need to know about Boosting
" S

m Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error
m AdaBoost algorithm
m Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)
m  Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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Reading

" JEE
m Hastie, Tibshirani, Friedman — 10.1-10.6
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What you need to know from 527
" JEE—

m Module 1: Preliminaries of Nonparametrics
Loss functions and optimal predictions
Linear smoothers
Ridge regression, LASSO
Cross validation, etc.

m Module 2: Splines and Kernel Methods
Smoothing splines, penalized regression splines
Local polynomial regression, KDE

m Module 3. Bayesian Nonparametrics
Gaussian processes
Dirichlet process mixture of Gaussians
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What you need to know from 527
* JEE
m Module 4: Nonparametrics with Multiple Predictors

Thin plate splines, tensor product splines
GAMs

Projection pursuit

Multivariate kernels and KDE
Regression trees

m Module 5: Classification
Classification trees
Logistic regression (also looked at nonparametrics for GLMs)
LDA, QDA, KDE, naive Bayes, mixture models
Perceptron, SVM and with kernels for both
Boosting
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THANK YOu!!

m You have been a great, interactive class!
...especially for a 9am lecture =)

m We're looking forward to the poster session

m Thanks to Shirley, too!
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