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Linear classifiers — Which line is better?
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Pick the one with the largest margin!
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Support vector machines (SVMs)
" J
min - |5]]3
yi(B-mi+B0) >1,Vie{l,...,n}

- m Solve efficiently by many methods,

- eg.,
quadratic programming (QP)
= Well-studied solution algorithms

& - Stochastic gradient descent

m Hyperplane defined by support
vectors
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What if the data are still not linearly

separable? . .
- g;g; 1EE

m [f data are not linearly separable, so
points don’t satisfy margin constraint;
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One against All
" JEE

°o o Learn 3 classifiers:

Learn 1 classifier: Multiclass SVM
" JEE—
Simultaneously learn 3 sets of weights
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Learn 1 classifier: Multiclass SVM
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What you need to know
" JEE
m Maximizing margin
m Derivation of SVM formulation
m Non-linearly separable case
Hinge loss
A.K.A. adding slack variables
m SVMs = Perceptron + L2 regularization
m Can optimize SVMs with SGD
Many other approaches possible
m Handling multiple classes




Reading
" JEE
m Hastie, Tibshirani, Friedman — 12.1-12.3
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Fighting the Bias-Variance Tradeoff
" SN

m Simple (a.k.a. weak) learners are good
e.g., naive Bayes, logistic regression, shallow decision

trees
Low variance, don’t usually overfit too badly

m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???

No!!l
But often yes...
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Voting (Ensemble Methods)
“

m  Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space

m  Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space
On average, do better than single classifier!

m  But how do you ???
force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?
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Boosting [Schapire, 1989]
"

m |dea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

m On each iteration t:
weight each training example by how incorrectly it was classified
Learn a hypothesis — h,
A strength for this hypothesis — o

m Final classifier: T
H(z) = sign Z athe(x)
t=1

m Practically useful
m Theoretically interesting
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Learning from Weighted Data
" JEE

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset
D(i) — weight of ith training example (x;y;)
Interpretations:

= ith training example counts as D(i) examples
= If | were to “resample” data, | would get more samples of “heavier” data points

= Now, in all calculations, whenever used, ith training example
counts as D(i) “examples”
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AdaBoost

"
m |Initialize weights to uniform dist: D4(i) = 1/n
m Fort=1..T
Train weak learner h, on distribution D, over the data
Choose weight a,

Update weights:
Dyt (i) =
= Where Z,is normalizer:
Zy =Y Dy(i) exp(—auy;hi ()

=1
m Output final classifier:

Dy (i) exp(—ayihe(z;))
Zy
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Picking Weight of Weak Learner
" JEE—
m Weigh h, higher if it did well on training data (weighted by D,):

1 <1_€t>
a; = —In
2 €t

Where ¢, is the weighted training error:

€ = Z Dy (i)I[he(x;) # yi]
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
" JEE

Training error of final classifier is bounded by:
1< 1<
- > H(z;) # il < - > exp(—yif(w:))
i=1 i=1

Where f(z) =) athy(z); H(z) = sign(f(z))
t

Why choose ¢ for hypothesis #, this way?
[Schapire, 1989]

" :
Z = Z Dy (i) exp(—auyihi(2:))

Training error of final classifier is bounded by: —

Y M) Al < Zexp( vif (1)) HZt

Where f(z) =Y aihi(x); H(a:) = sign(f(x))
t
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Why choose ¢, for hypothesis #, this way?

[Schapire, 1989]
* JEE

Training error of final classifier is bounded by:

||::]%

- ZH[H xz 7& yz] < — Zexp( yz xz =

Where f(x) Zatht(:c) H(m)—szgn(f(w))

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing ¢, and #, on each
iteration to minimize Z,

7, = Z Dy (i) exp(—azy;hy(z;))
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Why choose ¢ for hypothesis #, this way?

[Schapire, 1989]
" JEE

We can minimize this bound by choosing ¢; on each iteration to minimize Z,

Z, = Z Dy (i) exp(—awyihe(z;))

=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1—c¢
atzéln( €t t)

©Emily Fox 2013 22

11



Strong, weak classifiers
" JEE

m [f each classifier is (at least slightly) better than random
g <0.5

m AdaBoost will achieve zero training error (exponentially fast):

T

- S HH) Al < [[ 2 <ew |23 (1/2-a)

t=1

m [s it hard to achieve better than random training error?

©Emily Fox 2013 23

Boosting results — Digit recognition

[Schapire, 1989]
" JEE
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m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero
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Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets
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AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer. ML 1999]
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Demo!

http://cseweb.ucsd.edu/~yfreund/adaboost/

Boosting and Logistic Regression
" JEEE
Logistic regression assumes:
1

14 exp(f(=))
And tries to maximize data likelihood:

P(Y =1|X) =

n

P(D|H) = H

1
L exp(—yaf (0))

Equivalent to minimizing log loss

Zln(l + exp(—yi f(2:)))
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Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss
n

> In(1+ exp(—yif(x:)))

i=1

Boosting minimizes similar loss functlon!!
- Z eXp yz 371 H Zt

Both smooth approximations of 0/1 loss!
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Logistic regression and Boosting

Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
> (1 + exp(—yi f (i) > exp(—yif(x:))
=1 =1
m Define m Define
f@) =) ahy(z)
f)=Bo+ > Bih(z) o
. where /,(x) defined
where features x; are dynamically to fit data
predefined (not a linear classifier)

m Weights B; are learned in ~ m Weights o, learned
joint optimization incrementally
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What you need to know about Boosting

“
m Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error
m AdaBoost algorithm
m Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)
m  Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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Reading
" JEE
m Hastie, Tibshirani, Friedman — 10.1-10.6

©Emily Fox 2013 32

16



What you need to know from 527
" JE
m Module 1: Preliminaries of Nonparametrics
Loss functions and optimal predictions
Linear smoothers

Ridge regression, LASSO
Cross validation, etc.

m Module 2: Splines and Kernel Methods
Smoothing splines, penalized regression splines
Local polynomial regression, KDE

m Module 3: Bayesian Nonparametrics
Gaussian processes
Dirichlet process mixture of Gaussians
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What you need to know from 527
" JEE
m Module 4. Nonparametrics with Multiple Predictors
Thin plate splines, tensor product splines
GAMs
Projection pursuit

Multivariate kernels and KDE
Regression trees

m Module 5: Classification
Classification trees
Logistic regression (also looked at nonparametrics for GLMs)
LDA, QDA, KDE, naive Bayes, mixture models
Perceptron, SVM and with kernels for both
Boosting
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THANK YOU!!!
" S

m You have been a great, interactive class!
...especially for a 9am lecture =)

m We're looking forward to the poster session

m Thanks to Shirley, too!
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