
1

1

Support Vector
Machines

©Emily Fox 2013

STAT/BIOSTAT 527, University of Washington

Emily Fox
June 6th, 2013

Module 5: Classification

©Emily Fox 2013 2

Linear classifiers – Which line is better?

2

©Emily Fox 2013 3

Pick the one with the largest margin!

�

· x
+
�

0
=

0

“confidence” = yi(� · xi + �0)

©Emily Fox 2013 4

Support vector machines (SVMs)

β.
x

+
β 0

 =
 +

1

β.
x

+
β 0

 =
 -1

β.
x

+
β 0

 =
 0

margin 2γ	

n  Solve efficiently by many methods,
e.g.,
¨  quadratic programming (QP)

n  Well-studied solution algorithms

¨  Stochastic gradient descent

n  Hyperplane defined by support
vectors

min
�,�0

||�||22

yi(� · xi + �0) � 1, 8i 2 {1, . . . , n}

3

©Emily Fox 2013 5

What if the data are still not linearly
separable?

n  If data are not linearly separable, some
points don’t satisfy margin constraint:

n  How bad is the violation?

n  Tradeoff margin violation with ||β||:

min
�,�0

||�||22

yi(� · xi + �0) � 1, 8i 2 {1, . . . , n}

©Emily Fox 2013 6

What about multiple classes?

4

©Emily Fox 2013 7

One against All

Learn 3 classifiers:

©Emily Fox 2013 8

Learn 1 classifier: Multiclass SVM

Simultaneously learn 3 sets of weights

�

(yi) · xi + �

(yi)
0 � �

(y0) · xi + �

(y0)
0 + 1, 8y0 6= yi, 8i

5

©Emily Fox 2013 9

Learn 1 classifier: Multiclass SVM

min
�,�0

X

y

�

(y) · �(y) + C

X

i

⇠i

�

(yi) · xi + �

(yi)
0 � �

(y0) · xi + �

(y0)
0 + 1� ⇠i, 8y0 6= yi, 8i

⇠i � 0, 8i

�

(yi) · xi + �

(yi)
0 � �

(y0) · xi + �

(y0)
0 + 1, 8y0 6= yi, 8i

©Emily Fox 2013 10

What you need to know

n  Maximizing margin
n  Derivation of SVM formulation
n  Non-linearly separable case

¨ Hinge loss
¨ A.K.A. adding slack variables

n  SVMs = Perceptron + L2 regularization
n  Can optimize SVMs with SGD

¨ Many other approaches possible
n  Handling multiple classes

6

©Emily Fox 2013 11

Reading

n  Hastie, Tibshirani, Friedman – 12.1-12.3

12

Boosting

©Emily Fox 2013

STAT/BIOSTAT 527, University of Washington

Emily Fox
June 6th, 2013

Module 5: Classification

7

13

Fighting the Bias-Variance Tradeoff

n  Simple (a.k.a. weak) learners are good
¨ e.g., naïve Bayes, logistic regression, shallow decision

trees
¨ Low variance, don’t usually overfit too badly

n  Simple (a.k.a. weak) learners are bad
¨ High bias, can’t solve hard learning problems

n  Can we make weak learners always good???
¨ No!!!
¨ But often yes…

©Emily Fox 2013

14

Voting (Ensemble Methods)
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are

good at different parts of the input space
n  Output class: (Weighted) vote of each classifier

¨  Classifiers that are most “sure” will vote with more conviction
¨  Classifiers will be most “sure” about a particular part of the space
¨  On average, do better than single classifier!

n  But how do you ???
¨  force classifiers to learn about different parts of the input space?
¨  weigh the votes of different classifiers?

©Emily Fox 2013

8

15

Boosting
n  Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

n  On each iteration t:
¨  weight each training example by how incorrectly it was classified
¨  Learn a hypothesis – ht
¨  A strength for this hypothesis – αt

n  Final classifier:

n  Practically useful
n  Theoretically interesting

[Schapire, 1989]

©Emily Fox 2013

H(x) = sign

TX

t=1

↵tht(x)

!

16

Learning from Weighted Data
n  Sometimes not all data points are equal

¨  Some data points are more equal than others
n  Consider a weighted dataset

¨  D(i) – weight of i th training example (xi,yi)
¨  Interpretations:

n  i th training example counts as D(i) examples
n  If I were to “resample” data, I would get more samples of “heavier” data points

n  Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

©Emily Fox 2013

9

AdaBoost
n  Initialize weights to uniform dist: D1(i) = 1/n
n  For t = 1…T

¨  Train weak learner ht on distribution Dt over the data
¨  Choose weight αt

¨  Update weights:

n  Where Zt is normalizer:

n  Output final classifier:

©Emily Fox 2013 17

Dt+1(i) =
Dt(i) exp(�↵tyiht(xi))

Zt

Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))

Picking Weight of Weak Learner

n  Weigh ht higher if it did well on training data (weighted by Dt):

¨  Where εt is the weighted training error:

©Emily Fox 2013 18

↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
nX

i=1

Dt(i)I[ht(xi) 6= yi]

10

19

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Emily Fox 2013

1

n

nX

i=1

I[H(xi) 6= yi]
1

n

nX

i=1

exp(�yif(xi))

20

Training error of final classifier is bounded by:

Where

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Emily Fox 2013

1

n

nX

i=1

I[H(xi) 6= yi]
1

n

nX

i=1

exp(�yif(xi)) =

TY

t=1

Zt

Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))

11

21

Training error of final classifier is bounded by:

Where

If we minimize ∏t Zt, we minimize our training error

We can tighten this bound greedily, by choosing αt and ht on each

iteration to minimize Zt.

Why choose αt for hypothesis ht this way?
[Schapire, 1989]

©Emily Fox 2013

1

n

nX

i=1

I[H(xi) 6= yi]
1

n

nX

i=1

exp(�yif(xi)) =

TY

t=1

Zt

Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))

22

Why choose αt for hypothesis ht this way?

We can minimize this bound by choosing αt on each iteration to minimize Zt.

For boolean target function, this is accomplished by [Freund & Schapire ’97]:

[Schapire, 1989]

©Emily Fox 2013

Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))

12

23

Strong, weak classifiers

n  If each classifier is (at least slightly) better than random
¨  εt < 0.5

n  AdaBoost will achieve zero training error (exponentially fast):

n  Is it hard to achieve better than random training error?

©Emily Fox 2013

1

n

nX

i=1

I[H(xi) 6= yi]
TY

t=1

Zt exp

�2

TX

t=1

(1/2� ✏t)
2

!

24

Boosting results – Digit recognition

n  Boosting often
¨  Robust to overfitting
¨  Test set error decreases even after training error is zero

[Schapire, 1989]

©Emily Fox 2013

13

25

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]

error error

er
ro

r

©Emily Fox 2013

26 ©Emily Fox 2013

14

Demo!

©Emily Fox 2013 27

http://cseweb.ucsd.edu/~yfreund/adaboost/

28

Boosting and Logistic Regression

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

©Emily Fox 2013

P (D|H) =

nY

i=1

1

1 + exp(�yif(xi))

nX

i=1

ln(1 + exp(�yif(xi)))

15

29

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

Boosting minimizes similar loss function!!

Both smooth approximations of 0/1 loss!

©Emily Fox 2013

nX

i=1

ln(1 + exp(�yif(xi)))

1

n

nX

i=1

exp(�yif(xi)) =

TY

t=1

Zt

30

Logistic regression and Boosting

Logistic regression:
n  Minimize loss fn

n  Define

 where features xj are
predefined

n  Weights βj are learned in

joint optimization

Boosting:
n  Minimize loss fn

n  Define

 where ht(x) defined
dynamically to fit data
 (not a linear classifier)

n  Weights αt learned

incrementally
©Emily Fox 2013

nX

i=1

ln(1 + exp(�yif(xi)))

f(x) = �0 +
X

j

�jh(xj)

nX

i=1

exp(�yif(xi))

16

31

What you need to know about Boosting

n  Combine weak classifiers to obtain very strong classifier
¨  Weak classifier – slightly better than random on training data
¨  Resulting very strong classifier – can eventually provide zero training error

n  AdaBoost algorithm
n  Boosting v. Logistic Regression

¨  Similar loss functions
¨  Single optimization (LR) v. Incrementally improving classification (B)

n  Most popular application of Boosting:
¨  Boosted decision stumps!
¨  Very simple to implement, very effective classifier

©Emily Fox 2013

32

Reading

n  Hastie, Tibshirani, Friedman – 10.1-10.6

©Emily Fox 2013

17

33

What you need to know from 527

n  Module 1: Preliminaries of Nonparametrics
¨  Loss functions and optimal predictions
¨  Linear smoothers
¨  Ridge regression, LASSO
¨  Cross validation, etc.

n  Module 2: Splines and Kernel Methods
¨  Smoothing splines, penalized regression splines
¨  Local polynomial regression, KDE

n  Module 3: Bayesian Nonparametrics
¨  Gaussian processes
¨  Dirichlet process mixture of Gaussians

©Emily Fox 2013

34

What you need to know from 527

n  Module 4: Nonparametrics with Multiple Predictors
¨  Thin plate splines, tensor product splines
¨  GAMs
¨  Projection pursuit
¨  Multivariate kernels and KDE
¨  Regression trees

n  Module 5: Classification
¨  Classification trees
¨  Logistic regression (also looked at nonparametrics for GLMs)
¨  LDA, QDA, KDE, naïve Bayes, mixture models
¨  Perceptron, SVM and with kernels for both
¨  Boosting

©Emily Fox 2013

18

35

n You have been a great, interactive class!
…especially for a 9am lecture =)

n We’re looking forward to the poster session

n Thanks to Shirley, too!

©Emily Fox 2013

THANK YOU!!!

