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Linear classifiers – Which line is better? 
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Pick the one with the largest margin! 

�

· x
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0
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“confidence” = yi(� · xi + �0)
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Support vector machines (SVMs) 
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n  Solve efficiently by many methods, 
e.g., 
¨  quadratic programming (QP) 

n  Well-studied solution algorithms 

¨  Stochastic gradient descent  

n  Hyperplane defined by support 
vectors 

min
�,�0

||�||22

yi(� · xi + �0) � 1, 8i 2 {1, . . . , n}
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What if the data are still not linearly 
separable? 

n  If data are not linearly separable, some 
points don’t satisfy margin constraint: 

n  How bad is the violation? 

n  Tradeoff margin violation with ||β||: 

min
�,�0

||�||22

yi(� · xi + �0) � 1, 8i 2 {1, . . . , n}
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What about multiple classes? 
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One against All 

Learn 3 classifiers: 
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Learn 1 classifier: Multiclass SVM 

Simultaneously learn 3 sets of weights 

�

(yi) · xi + �

(yi)
0 � �

(y0) · xi + �

(y0)
0 + 1, 8y0 6= yi, 8i
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Learn 1 classifier: Multiclass SVM 

min
�,�0

X

y

�

(y) · �(y) + C

X

i

⇠i

�

(yi) · xi + �
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0 + 1, 8y0 6= yi, 8i
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What you need to know 

n  Maximizing margin 
n  Derivation of SVM formulation 
n  Non-linearly separable case 

¨ Hinge loss 
¨ A.K.A. adding slack variables 

n  SVMs = Perceptron + L2 regularization 
n  Can optimize SVMs with SGD 

¨ Many other approaches possible 
n  Handling multiple classes 
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Reading 

n  Hastie, Tibshirani, Friedman – 12.1-12.3 

12 

Boosting 
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Fighting the Bias-Variance Tradeoff 

n  Simple (a.k.a. weak) learners are good 
¨ e.g., naïve Bayes, logistic regression, shallow decision 

trees 
¨ Low variance, don’t usually overfit too badly 

n  Simple (a.k.a. weak) learners are bad 
¨ High bias, can’t solve hard learning problems 

n  Can we make weak learners always good??? 
¨ No!!! 
¨ But often yes… 

©Emily Fox 2013 

14 

Voting  (Ensemble Methods) 
n  Instead of learning a single (weak) classifier, learn many weak classifiers that are 

good at different parts of the input space 
n  Output class: (Weighted) vote of each classifier 

¨  Classifiers that are most “sure” will vote with more conviction 
¨  Classifiers will be most “sure” about a particular part of the space 
¨  On average, do better than single classifier! 

n  But how do you ???  
¨  force classifiers to learn about different parts of the input space? 
¨  weigh the votes of different classifiers? 
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Boosting 
n  Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote 

n  On each iteration t:  
¨  weight each training example by how incorrectly it was classified 
¨  Learn a hypothesis – ht 
¨  A strength for this hypothesis – αt  

n  Final classifier: 

n  Practically useful 
n  Theoretically interesting 

[Schapire, 1989] 
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H(x) = sign

 
TX

t=1

↵tht(x)

!
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Learning from Weighted Data 
n  Sometimes not all data points are equal 

¨  Some data points are more equal than others 
n  Consider a weighted dataset 

¨  D(i) – weight of i th training example (xi,yi) 
¨  Interpretations: 

n  i th training example counts as D(i) examples 
n  If I were to “resample” data, I would get more samples of “heavier” data points 

n  Now, in all calculations, whenever used, i th training example 
counts as D(i) “examples” 
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AdaBoost 
n  Initialize weights to uniform dist: D1(i) = 1/n 
n  For t = 1…T 

¨  Train weak learner ht on distribution Dt over the data 
¨  Choose weight αt  

¨  Update weights: 

n  Where Zt is normalizer: 

 
 
n  Output final classifier: 
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Dt+1(i) =
Dt(i) exp(�↵tyiht(xi))

Zt

Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))

Picking Weight of Weak Learner 

n  Weigh ht higher if it did well on training data (weighted by Dt): 

 
 

¨  Where εt is the weighted training error: 
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↵t =
1

2
ln

✓
1� ✏t
✏t

◆

✏t =
nX

i=1

Dt(i)I[ht(xi) 6= yi]
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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I[H(xi) 6= yi] 
1
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nX

i=1

exp(�yif(xi))

20 

Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 

©Emily Fox 2013 

1

n

nX

i=1

I[H(xi) 6= yi] 
1

n

nX

i=1

exp(�yif(xi)) =

TY

t=1

Zt

Zt =

nX

i=1
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Training error of final classifier is bounded by: 
 
 
 
 
Where  
 
 
If we minimize ∏t Zt, we minimize our training error 
  
We can tighten this bound greedily, by choosing αt and ht on each 

iteration to minimize Zt. 
 
 
 

Why choose αt for hypothesis ht this way? 
[Schapire, 1989] 
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Why choose αt for hypothesis ht this way? 

We can minimize this bound by choosing αt on each iteration to minimize Zt. 
 
 
 
 
 
For boolean target function, this is accomplished by [Freund & Schapire ’97]:  
 
 
 
 
 
 
 

[Schapire, 1989] 
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Zt =

nX

i=1

Dt(i) exp(�↵tyiht(xi))
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Strong, weak classifiers 

n  If each classifier is (at least slightly) better than random 
¨   εt < 0.5 

n  AdaBoost will achieve zero training error (exponentially fast): 

n  Is it hard to achieve better than random training error? 
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Boosting results – Digit recognition 

n  Boosting often 
¨  Robust to overfitting 
¨  Test set error decreases even after training error is zero 

[Schapire, 1989] 
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Boosting: Experimental Results 

Comparison of C4.5, Boosting C4.5, Boosting decision 
stumps (depth 1 trees), 27 benchmark datasets 

[Freund & Schapire, 1996] 

error error 

er
ro

r 
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Demo! 
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http://cseweb.ucsd.edu/~yfreund/adaboost/ 
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Boosting and Logistic Regression 

Logistic regression assumes: 
 
 
And tries to maximize data likelihood: 
 
 
 
Equivalent to minimizing log loss 
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P (D|H) =

nY

i=1

1

1 + exp(�yif(xi))

nX

i=1

ln(1 + exp(�yif(xi)))
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Boosting and Logistic Regression 

Logistic regression equivalent to minimizing log loss 

Boosting minimizes similar loss function!! 

Both smooth approximations of 0/1 loss! 
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nX

i=1

ln(1 + exp(�yif(xi)))
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Logistic regression and Boosting 

Logistic regression: 
n  Minimize loss fn 

n  Define  

    
 where features xj are 
predefined 

 
n  Weights βj are learned in 

joint optimization 
 
 
 

Boosting: 
n  Minimize loss fn 

n  Define  

   where ht(x) defined 
dynamically to fit data 
 (not a linear classifier) 

 
n  Weights αt learned 

incrementally 
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nX

i=1

ln(1 + exp(�yif(xi)))

f(x) = �0 +
X

j

�jh(xj)

nX

i=1

exp(�yif(xi))



16 

31 

What you need to know about Boosting 

n  Combine weak classifiers to obtain very strong classifier 
¨  Weak classifier – slightly better than random on training data 
¨  Resulting very strong classifier – can eventually provide zero training error 

n  AdaBoost algorithm 
n  Boosting v. Logistic Regression  

¨  Similar loss functions 
¨  Single optimization (LR) v. Incrementally improving classification (B) 

n  Most popular application of Boosting: 
¨  Boosted decision stumps! 
¨  Very simple to implement, very effective classifier 

©Emily Fox 2013 
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Reading 

n  Hastie, Tibshirani, Friedman – 10.1-10.6 

©Emily Fox 2013 
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What you need to know from 527 

n  Module 1: Preliminaries of Nonparametrics 
¨  Loss functions and optimal predictions 
¨  Linear smoothers 
¨  Ridge regression, LASSO 
¨  Cross validation, etc. 

n  Module 2:  Splines and Kernel Methods 
¨  Smoothing splines, penalized regression splines 
¨  Local polynomial regression, KDE 

n  Module 3:  Bayesian Nonparametrics 
¨  Gaussian processes  
¨  Dirichlet process mixture of Gaussians 
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What you need to know from 527 

n  Module 4:  Nonparametrics with Multiple Predictors 
¨  Thin plate splines, tensor product splines 
¨  GAMs 
¨  Projection pursuit 
¨  Multivariate kernels and KDE 
¨  Regression trees 

n  Module 5:  Classification 
¨  Classification trees 
¨  Logistic regression (also looked at nonparametrics for GLMs) 
¨  LDA, QDA, KDE, naïve Bayes, mixture models 
¨  Perceptron, SVM and with kernels for both 
¨  Boosting 

©Emily Fox 2013 
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n You have been a great, interactive class! 
…especially for a 9am lecture =) 

n We’re looking forward to the poster session 

n Thanks to Shirley, too! 
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THANK YOU!!! 


