

What you need to know

- Nothing is conceptually hard about multivariate x
- In practice, nonparametric methods struggle from curse of dimensionality
- Options considered:
\square Thin plate splines
\square Tensor product splines
\square Generalized additive models
\square Combinations (to model some interaction terms)

Curse of Dimensionality

- To maintain a fixed level of accuracy for a given nonparametric estimator, the sample size must increase exponentially in d
- Set MSE = δ

- Why? Using data in local nbhd \square In high dim, few points in any nbhd everything is far away in high dim
- Consider example with n uniformly distributed points in $[-1,1]^{\text {d }}$
$\mathrm{d}=1: \ln [-0,1,0.1], \mathrm{e} \frac{\mathrm{H}}{10}$ obs.in
$\square \mathrm{d}=10$
in $[-0.1,0.1]^{d}$,

$$
\text { roughly } n\left(\frac{0.2}{2}\right)^{10}=\frac{n}{10,000,000,000}
$$

Natural Thin Plate Splines

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- Solution: natural thin plate spline with knots at the $x_{i j}$
- For general λ, solution is a linear basis expansion of the form

$$
\begin{align*}
& f(x)=\beta_{0}+\beta^{\top} x+\sum_{j=1}^{n} b_{j} h_{j}(x) \tag{RBF}\\
& h_{j}(x)=\left\|x-x_{j}\right\|^{2} \log \left\|x-x_{j}\right\|
\end{align*}
$$

- Interpretation: We take an elastic flat plate that interpolates points $\left(x_{i} y_{i}\right)$ and penalize its "bending energy"

Tensor Product Splines

- We use this tensor product basis

$$
g_{j k}(x)=h_{1 j}\left(x_{1}\right) h_{2 k}\left(x_{2}\right)
$$

to model $f(x)$

$$
f(x)=\sum_{j=1}^{\mu_{1}} \sum_{k=1}^{M_{2}} \theta_{j k} g_{j k}(x)
$$

- This formulation extends (in theory) to any dimension d
- Note that the dimension of the basis grows exponentially with the input dimension d

Generalized Additive Models

- Both for computational reasons and added interpretability, models that assume an additive structure are very popular
- Assuming a GLM framework:

$$
g(\mu(x))=\alpha+f_{1}\left(x_{1}\right)+\ldots+f_{d}\left(x_{d}\right)
$$

- Is this model identifiable? No, can change α and shift fie to compensate \rightarrow exactly same $g(\mu)$.
Fix: Constrain $\sum_{i=1}^{n} f_{j}\left(x_{i j}\right)=0$
- Can model $f_{j}\left(x_{j}\right)$ using any smoother
many, many choices here
(see all of module 2)

Backfitting Algorithm

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: $\hat{\alpha}=\frac{1}{N} \sum_{1}^{N} y_{i}, \hat{f}_{j} \equiv 0, \forall i, j$. fit take avg., then fix
2. Cycle: $j=1,2, \ldots, p, \ldots, 1,2, \ldots, p, \ldots$, partial res.

until the functions \hat{f}_{j} change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book

Other GAM formulations

- Semiparametric models: model nonparam.
$g(\mu)=X^{\top} \beta+\alpha+f(z)$
- model linearly
- ANOVA decompositions:
$f(x)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)+\sum_{j<k} f_{j k}\left(x_{j}, x_{k}\right) \perp \ldots$
Choice of:
\square Maximum order of interaction
\square Which terms to include - may be not all main effects tinteroctio
\square What representation

$$
\begin{aligned}
& \text { resentation } \\
& \text {-reg. splines + tensor product for interaction } \\
& \text { or thin plate... }
\end{aligned}
$$

- Tradeoff between full model and decomposed model

Connection with Thin Plate Splines

- Recall formulation that lead to natural thin plate splines:

$$
\begin{gathered}
\min _{f} \sum_{i=1}^{n}\left\{y_{i}-f\left(x_{i}\right)\right\}^{2}+\lambda J(f) \\
J(f)=\iint_{\mathbb{R}^{2}}\left[\left(\frac{\partial^{2} f(x)}{\partial x_{1}^{2}}\right)^{2}+2\left(\frac{\partial^{2} f(x)}{\partial x_{1} x_{2}}\right)^{2}+\left(\frac{\partial^{2} f(x)}{\partial x_{2}^{2}}\right)^{2}\right] d x_{1} d x_{2}
\end{gathered}
$$

- There exists a $J(f)$ such that the solution has the form
- However, it is more natural to just assume this form and apply

$$
J(f)=J\left(f_{1}+f_{2}+\cdots+f_{d}\right)=\sum_{j=1}^{d} \int f_{j}^{\prime \prime}\left(t_{j}\right)^{2} d t_{j}
$$

Module 4: Coping with Multiple Predictors

Multidimensional Kernel

 MethodsSTAT/BIOSTAT 527, University of Washington Emily Fox
May $14^{\text {th }}, 2013$

Nadaraya-Watson Estimator

Example: $\quad f\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}$
\square Boxcar kernel \rightarrow local avgs
\square Epanechnikov
\square Gaussian typical

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)}
$$

- Often, choice of kernel matters much less than choice of λ

Local Linear Regression

- Locally weighted averages can be badly biased at the boundaries because of asymmetries in the kernel

- Equivalent to the Nadaraya-Watson estimator
- Locally constant estimator obtained from weighted least squares

Local Linear Regression

- Consider locally weighted linear regression instead
- Local linear model around fixed target x_{0} :

$$
\beta_{0 x_{0}}+\beta_{1 x_{0}}\left(x-x_{0}\right)
$$

- Minimize:

$$
\min _{\underline{\beta}_{x_{0}}} \sum_{i} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-\beta_{0 x_{0}}-\beta_{1 x_{0}}\left(x_{i}-x_{0}\right)\right)^{2}
$$

- Return:

$$
\hat{f}\left(x_{0}\right)=\hat{\beta}_{0 x_{0}} \longleftarrow \text { fit at } x_{0}
$$

Note: not equivalent to fitting a local constant!

- Fit a new local polynomial for every target x_{0}

Local Polynomial Regression

- Consider local polynomial of degree d centered about x_{0} $P_{x_{0}}\left(x ; \beta_{x_{0}}\right)=\beta_{0 x_{0}}+\beta_{1 x_{0}}\left(x-x_{0}\right)+\frac{\beta_{2 x_{0}}}{2!}\left(x-x_{0}\right)^{2}+\cdots$
$+\frac{\beta_{d x_{1}}}{d!}\left(x-x_{0}\right)^{d}$
- Minimize: $\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(\begin{array}{l}d! \\ y_{i}\end{array}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}$
- Equivalently:

$$
\begin{aligned}
& \min _{\beta_{x_{0}}}\left(y-x_{x_{0}} \beta_{x_{0}}\right)^{\top} W_{x_{0}}\left(y-x_{x_{0}} \beta\right) \\
& \hat{n} \\
& =\hat{\beta}_{0} x_{0}
\end{aligned} \quad\left[\begin{array}{ccc}
1 & x_{1}-x_{0} & \cdots \\
\vdots & \frac{\left(x_{1}-x_{0}\right)^{d}}{d!} \\
1 & x_{n}<x_{0} & \cdots \\
\frac{\left(x_{n}-x_{0}\right)^{d}}{d!}
\end{array}\right]
$$

- Return: $\hat{f}\left(x_{0}\right)=\hat{\beta}_{0} x_{0} \quad\left[\begin{array}{lll}1 & x_{n} \cup x_{v} & \cdots\end{array} \frac{\left(x_{n}-x_{0}\right)}{d!}\right.$

Local Polynomial Regression

- Rules of thumb:
\square Local linear fit helps at boundaries with minimum increase in variance
\square Local quadratic fit doesn't help at boundaries and increases variance
\square Local quadratic fit helps most for capturing curvature in the interior
\square Asymptotic analysis \rightarrow
local polynomials of odd degree dominate those of even degree (MSE dominated by boundary effects)
\square Recommended default choice: local linear regression

Local Polynomial Regression

- Kernel smoothing and local regression extend straightforwardly to the multivariate x scenario

$$
\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}
$$

Need d-dimensional kernel
\square Nadaraya-Watson kernel smoother fits locally constant model Local linear regression fits local hyperplane via weighted LS...

- Challenges:
\square Defining kernel
\square Curse of dimensionality

Example Univariate Kernels

- Gaussian
$K(x)=\frac{1}{2 \pi} e^{-\frac{x}{2}}$
- Epanechnikov
$K(x)=\frac{3}{4}(1-x)^{2} I(x)$
- Tricube

$$
K(x)=\frac{70}{81}\left(1-|x|^{3}\right)^{3} I(x)
$$

- Boxcar

$$
K(x)=\frac{1}{2} I(x)
$$

Multivariate Kernels

- Many choices, even more than in 1d
- Examples:
\square Radial basis kernels
$K_{\lambda}\left(x_{0}, x\right)=$
E.g., radial Epanechnikov, tricube, squared exponential (Gaussian)

Multivariate Kernels

- Many choices, even more than in 1d
- Examples:
\square Product kernels
$K_{\lambda_{1}, \lambda_{2}}\left(x_{0}, x\right)=$
- Choices:
\square Form
Kernel(s)
\square Bandwidth(s)

Motivating Local Linear Regression

- Nadaraya-Watson smoothing can be applied to multivariate x
- However, boundary issues are even worse in higher dimensions
\square Messy to correct for boundary even in 2d (esp. for irregular boundaries)
\square Fraction of points close to the boundary increases with dimension
- Local polynomial regression corrects boundary errors up to desired order

From Hastie,
Tibshirani, Friedman

Local Linear Regression

- Assume a RBF kernel
- For each target location x_{0}, goal is to minimize
$\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-\beta_{0 x_{0}}-\sum_{j=1}^{d} \beta_{j x_{0}}\left(x_{i j}-x_{0 j}\right)\right)^{2}$
- Equivalently,
- Solution: $\hat{\beta}_{x_{0}}=\left(X_{x_{0}}^{T} W_{x_{0}} X_{x_{0}}\right)^{-1} X_{x_{0}}^{T} W_{x_{0}} y$
- Return:

Local Linear Example

- Astronomical study
\square Response = velocity measurements on a galaxy
\square Predictors = two positions
- Note the unusual star-shaped design \rightarrow very irregular boundary
\square Must interpolate over regions with very few observations near boundary

Motivating Local Polynomial

- One way to think about motivating local polynomials is as follow
- Consider 2d example for simplicity
- For a suitably smooth function $f(x)=f\left(x_{1}, x_{2}\right)$, we can approximate it for values $x=\left[x_{1}, x_{2}\right]$ in a nbhd of $x_{0}=\left[x_{01}, x_{02}\right]$ as

$$
\begin{aligned}
f(x) & \approx f\left(x_{0}\right)+\left(x_{1}-x_{01}\right) \frac{\partial f}{\partial x_{01}}+\left(x_{2}-x_{02}\right) \frac{\partial f}{\partial x_{02}} \\
& +\left(x_{1}-x_{01}\right)^{2} \frac{1}{2} \frac{\partial^{2} f}{\partial x_{01}^{2}}+\left(x_{1}-x_{01}\right)\left(x_{2}-x_{02}\right) \frac{1}{2} \frac{\partial^{2} f}{\partial x_{01} \partial x_{02}}+\left(x_{2}-x_{02}\right)^{2} \frac{1}{2} \frac{\partial^{2} f}{\partial x_{02}^{2}}
\end{aligned}
$$

- Suggests the use of a local polynomial:
- Then, $\min _{\beta_{x_{0}}} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)\left(y_{i}-P_{x_{0}}\left(x ; \beta_{x_{0}}\right)\right)^{2}$

Scaling to High Dimensions

- Local regression becomes less useful in dimensions greater than 2 or 3
\square Impossible to maintain localness (low bias) and large sample size (low variance) without the total sample size increasing exponentially in d
- Again, curse of dimensionality
\square Sparsity of data
\square Points concentrate at boundaries
- Visualization of the fitted function is also hard in high dimensions, and visualization is often a key goal in smoothing

Boundary Effects

- Everything is far away in high dimensions
- Consider n data points uniformly distributed in a d-dimensional unit ball
- Example task: Consider nearest neighbor estimate at origin
- Median distance to closest data point is $\left(1-\frac{1^{1 / n}}{2}\right)^{d}$
\square For $n=500$ and $d=10$, distance ≈ 0.52
\square Closest point is likely more than $1 / 2$ way to the boundary
- Prediction is harder near the edges of the sample boundary

Boundary Effects II

- Another way to think of this effect is in terms of volume
- We want to compute the fraction of volume that lies between radius $R=1-\varepsilon$ and $R=1$
- The volume of a sphere is proportional to
- The volume fraction is therefore:

$$
\frac{V_{d}(1)-V_{d}(1-\epsilon)}{V_{d}(1)}=1-(1-\epsilon)^{d}
$$

- Most of the volume of a sphere is concentrated in a thin shell near the surface

Structured Local Regression

- As we have seen before, when faced with data scarcity relative to model complexity, assume structure
- Structured kernels
\square Place more or less importance on certain dimensions (or combinations thereof) by modifying the kernel
- Structured regression functions
\square Just as with splines, decompose the target regression function
\square E.g., ANOVA decompositions and fit low-dim terms with local regression

Structured Kernels

- In many scenarios, RBF or spherical kernels are considered
- Places equal weight on all dimensions of x
\square Typically, standardize data so all dimensions have unit variance
- More generally, can consider structured kernels

$$
K_{\lambda, A}\left(x_{0}, x\right)=K\left(\frac{\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right)}{\lambda}\right)
$$

- Choices for A
\square Diagonal \rightarrow
\square Low rank \rightarrow
\square General

Projection Pursuit Regression

- To help deal with high-dimensional regression, consider

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

$\square\left\|w_{m}\right\|=1$ for $m=1, \ldots, M$

- Seek w_{m} so the model fits well

PPR Comments

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

- If M is arbitrarily large, and for appropriate choice of f_{m}, PPR can approximate any continuous function in R^{d} arbitrarily well
- Interpretation can be hard
- $M=1$ "single index model" in econometrics \rightarrow interpretable
- Goal: Seek to minimize over $\left\{f_{m}, w_{m}\right\}$

$$
\sum_{i=1}^{n}\left(y_{i}-\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x_{i}\right)\right)^{2}
$$

PPR Fitting Algorithm

- Direction vectors w_{m} chosen in a forward-stagewise procedure to minimize the fraction of unexplained variance
- Start by standardizing data to 0 mean and scale each covariate to have the same variance

1. Set $\hat{\alpha}=\operatorname{avg}\left(y_{i}\right)$
2. Initialize $\hat{\epsilon}_{i}=y_{i}, i=1, \ldots, n \quad$ and $\quad m=0$
3. Find the direction (unit vector) w^{*} that minimizes

$$
I(w)=1-\frac{\sum_{i=1}^{n}\left(\hat{\epsilon}_{i}-S\left(w^{T} x_{i}\right)\right)^{2}}{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}}
$$

4. Set $\hat{f}_{m}\left(w^{* T} x_{i}\right)=S\left(w^{* T} x_{i}\right)$
5. Set $m=m+1$ and update the residuals:

$$
\hat{\epsilon}_{i} \leftarrow \hat{\epsilon}_{i}-\hat{f}_{m}\left(w^{* T} x_{i}\right)
$$

If $m=\mathrm{M}$, stop.

PPR Fitting Algorithm Comments

$$
f\left(x_{1}, \ldots, x_{d}\right)=\alpha+\sum_{m=1}^{M} f_{m}\left(w_{m}^{T} x\right)
$$

- Algorithm considered is a greedy forward-wise procedure
- After each step, the f_{m} 's from the previous steps can be readjusted using backfitting
- Can lead to fewer terms, but unclear if it improves predictions
- Typically the w_{m} 's are not readjusted
- Choice of M can be based on a threshold in improvement of fit or using CV

Structured Regression Functions

- Often, instead of structuring the kernel, it makes sense and is simpler to structure the regression function itself
- Just as with splines, we can consider ANOVA decompositions
$f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)+\sum_{k<\ell} f_{k \ell}\left(x_{k}, x_{\ell}\right)+\ldots$
or, more simply, standard GAMs

$$
f\left(x_{1}, x_{2}, \ldots, x_{p}\right)=\alpha+\sum_{j} f_{j}\left(x_{j}\right)
$$

- Can use 1d (or low-dim) local regression as the smoother for each term and fit using backfitting algorithm

Varying Coefficient Models

- Special case of a structured model
- Divide the set of d covariates into two sets
- Consider a conditionally linear model

$$
f(x)=
$$

- Due to its local nature, it's natural to fit such a model using locally weighted LS
$\min _{\alpha\left(z_{0}\right), \beta\left(z_{0}\right)} \sum_{i=1}^{n} K_{\lambda}\left(z_{0}, z_{i}\right)\left(y_{i}-\alpha\left(z_{0}\right)-x_{1 i} \beta_{1}\left(z_{0}\right)-\cdots-x_{q i} \beta_{q}\left(z_{0}\right)\right)^{2}$

Varying Coefficient Models

- Example = Human aorta data
- Response = diameter of aorta
- Covariates
\square Linear in "age"
\square Coefficients vary in "gender" and "depth"
- Separate model for M/F
- Results:
\square Aorta thickens with age
\square Relationship is less clear for larger depth

From Hastie, Tibshirani, Friedman book

Varying Coefficient Models

- Alternatively, one can use splines instead of local regression as a smoother for the varying coefficient functions $\beta_{j}(z)$
- Consider penalized linear splines with L knots
\square For univariate x and z, for simplicity, we have

$$
\begin{aligned}
E[y \mid x, z]= & \alpha_{0}^{(0)}+\alpha_{1}^{(0)} z+\sum_{\ell=1}^{L} b_{\ell}^{(0)}\left(z-\xi_{\ell}\right)_{+} \\
& +\left(\alpha_{0}^{(1)}+\alpha_{1}^{(1)} z+\sum_{\ell=1}^{L} b_{\ell}^{(1)}\left(z-\xi_{\ell}\right)_{+}\right) x
\end{aligned}
$$

Example: Time-Varying Coeff

- Let z correspond to time t, a simple case being:

$$
y_{t}=
$$

- This model directly relates to (Bayesian) dynamic linear models

$$
\begin{array}{ll}
y_{t}=\alpha+z_{t} \beta_{t}+\epsilon_{t} & \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right) \\
\beta_{t}=\beta_{t-1}+\nu_{t} & v_{t} \sim N\left(0, \sigma_{\nu}^{2}\right)
\end{array}
$$

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample

\hat{p}
- Choice \#1: empirical estimate? $\hat{p}=\frac{1}{n} \sum \delta_{x_{i}}$

- Choice \#2: as before, maybe we should use an estimator

- Choice \#3: again, consider kernel weightings instead

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum K_{\lambda}\left(x_{0}, x_{i}\right) \quad \begin{gathered}
\text { parzen } \\
\text { est. }
\end{gathered}
$$

Kernel Density Estimation

- Popular choice $=$ Gaussian kernel \rightarrow Gaussian KDE

$$
\left.\begin{array}{rl}
\hat{p} & =\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(x-x_{i}\right)
\end{array} \dot{\phi}_{\lambda}\right)
$$

Multivariate KDE

- $\ln 1 d$

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda} \sum_{i=1}^{n} K_{\lambda}\left(x_{0}, x_{i}\right)
$$

- In R^{d}, assuming a product kernel,

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Typical choice $=$ Gaussian RBF

Multivariate KDE

$$
\hat{p}\left(x_{0}\right)=\frac{1}{n \lambda_{1} \cdots \lambda_{d}} \sum_{i=1}^{n}\left\{\prod_{j=1}^{d} K_{\lambda_{j}}\left(x_{0 j}, x_{i j}\right)\right\}
$$

- Risk grows as $O\left(n^{-4 /(4+\mathrm{d})}\right)$
- Example: To ensure relative MSE <0.1 at 0 when the density is a multivariate norm and optimal bandwidth is chosen
- Always report confidence bands, which get wide with d

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

What you need to know

- As with splines:
\square Nothing is conceptually hard about multivariate x
\square In practice, nonparametric methods struggle from curse of dimensionality
- For multivariate kernel methods, need multivar kernel
\square Radial basis kernels
\square Product kernels
\square Structured kernels, including learning like projection pursuit
- Methods:
\square Local polynomial regressionLocal polynomial regression in structured regression like GAMs

Readings

- Wakefield - 12.4-12.6
- Hastie, Tibshirani, Friedman - 6.3-6.4, 11.2
- Wasserman - 5.12, 6.5

