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What you need to know
* JEE

m Nothing is conceptually hard about multivariate x

m In practice, nonparametric methods struggle from curse of
dimensionality

m Options considered:
Thin plate splines
Tensor product splines
Generalized additive models
Combinations (to model some interaction terms)
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Curse of Dimensionality
" JEE

m To maintain a fixed level of accuracy for a given nonparametric

estimator, the sample size must increase ex i ind

. SetMSE=6C A/
'\o([—f“)q

m Why? Using data in local nbhd 24
In high dim, few points in any nbhd " :
CUU\/'C"\.‘V‘ﬂ {S cnf Mﬂl‘-y in L\fol\ j‘uM:

m Consider example with n uniformly >
distributed points in [-1,1]¢ .
d=1: In [-0,1,0-1] ;¢ L3 °L‘.s‘

~ i 0 A : o
10 In 04,007 | 9 & i
i g 4
fouahly of02V° . O
™ 7> ™ 10,000, 00,000
Figure from Yoshua Bengio’s website
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Natural Thin Plate Splines
" S
min} {y; = f(@)}? + A (f)

1=
_ P\ (@) (@)
= [ 2 (G) - ()
m Solution: natural thin plate spline with knots at the x;
m For general A, solution is a Iinfiar basis expansion of the form

F@) = B £+ 2k hi(x)
with  — 3ol

hy(z) = [le — aj]|*log|le — ;|| RBF

m Interpretation: We take an elastic flat plate that interpolates points
(x,y,) and penalize its “bending energy”
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Tensor Product Splines
" SN
m We use this tensor product basis
gik(x) = hij(@1)hok(z2)
to model f()'Q\ A
Cly)= ZT %ﬁ( Q’JKO‘);kbb
J° %

m This formulation extends (in
theory) to any dimension d

m Note that the dimension of
the basis grows exponentially
with the input dimension d

From Hastie, Tibshirani, Friedman bgok
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Generalized Additive Models
" JEEE

m Both for computational reasons and added interpretability,
models that assume an additive structure are very popular

m Assuming a GLM framework:

g(u(@) = «a £ )+ ¢ (0)
= s this model identifiable? N  can chanse ok and shifk £
= ' 3& J
Lo com‘)wgabg — p,smc\’(7 Soame G(M)
s n
Fix:  Constfain Z_\Q}[X;J\: 0
m Can model f(x;) using any smoother

MONy | paony choieed here

(SZ( a,l\ oc (V\OAMJ-Q L\)

of (P<. .
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Backfitting Algorithm
"

Algorithm 9.1 The Backfitting Algorithm for, Additive Models.
— xl\\t \_, .
1. Initialize: & = J-Zl Yi, fJ =0,V doke ,\vg.,t(ﬂo\ Cw)(

’)

2. Cycle: 7 =1,2,...,p,...,1,2,...,p,..., ‘/?al"\'mt\ rS.
/\—A-——\
fi < Sil{w —&—ka(mik)}N] L"‘°s£n
A = NGV
H/—\smoo C@f ) \

:*""/ﬁ fi = Ji- ij(%:j)- . ~
«ﬁws - Ga v :t)s‘

until the functions fj change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book
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Other GAM formulations
" S

= Semiparametric models: L/—"'\OAL\ NON ParsM
g(w)= X8+« + £ (%)
"~ model lineel Iy

m ANOVA decompositions:

1) Duszvwz( %)+

R Lractions
Choice of: \mw Gu“% '\ cﬁPk"‘\fl ink

1 Maximum order of interactlon
1 Which terms to include — Mas/u nex A“ woin ccc,gcks ‘—m-uto((-;k

1 What representation aAv.c-& Cor s Cor
—v20a. splires + tansor of anikred
¥ s or -tlirv\ \axe .
m Tradeoff between full model and decomposed model
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Connection with Thin Plate Splines
" I

m Recall formulation that lead to natural thin plate splines:

mmz{% ()} + A (f)

n=1 L% Y. 2 (SIDY (TH

m There exists a J(f) such that the solution has the form

m However, it is more natural to just assume this form and apply

d
I = I+ ot f) =3 / £ ()2t
j=1
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Nadaraya-Watson Estimator

® JE— f(xo) = > ic1 Ko (w0, i)y
m Example: ,_J_L Z?=1 K (wo, ;)

Boxcar kernel > lo¢al avys

Epanechnikov A
. N““ J
Gaussian ‘&W]C“‘ S\w"“i‘\ A
W

m Often, choice of kernel matters much less than chbice of A

Nearest-Neighbor Kernel Epanechnikov Kernel

oy

o oy A
From Hastie,
Tibshirani,

Friedman
book

LS

A(zo) o

— T T T T L —
04 T 06 08 10 00 02 04 T 06
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Local Linear Regression
" J
m Locally weighted averages can be badly biased at the
boundaries because of asymmetries in the kernel

N-W Kernel at Boundary

m Reinterpretation:
n 2
£ < a)’”lm’-'\ Z(‘/,{-a\
[

A A

\
wt)
¢ \( ¥L ’

A 1 5]
§(x) = Y :nlq Z Wi (x) (7&'0‘3 &(’;A&%{ L

(L oA o8 o8 1
’(0(,0'\6)“ From Hastie, Tibshirani, Friedman book

N wil¥) Y.
= fxy = 2—/—i~) N
Zwilx)

m Equivalent to the Nadaraya-Watson estimator
m Locally constant estimator obtained from weighted least squares

©Emily Fox 2013 12




Local Linear Regression
" JEE

m Consider locally weighted linear regression instead
= Local linear model around fixed target x, :

/6% r P - %)

m Minimize:

2
Mmin Z K, (x,,¥) (\/;- Bosy- 15.,4,(&40\5

2%, O

m Return: %

?( ) 601 &— g‘t £C Xo

(
Nok, - nox eq\m valent Yo C’csuns a [ocal wonstant .
m Fit a new local polynomial for every target x,
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Local Polynomial Regression
" JEE

m Consider local polynomial of degree d centered about Xo

Pxo(x;ﬁxo IBD’()"’ /Sw ()(«)(0}’\' &xo ()(- 0\ + ., -
* ]Sé\t (y )(0\‘\
Minimize: %?ZKA(%%)(@/ Py, (1 Bay))?

Equivalently: (5 (\/ )( ﬁ5 \'JX,, y Xx'}g>
Lo

A A : }
Rotum: £(%,)= By, U XasKe - (YY)

Bias only has components of degree d+7 and highe}
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Local Polynomial Regression
" S

m Rules of thumb:
Local linear fit helps at baundaries with minimum increase in variance
Local quadratic fit doesn’t help at boundaries and i es variance
Local quadratic fit helps most for capturing curvature in the interior
Asymptotic analysis > -
local polynomials of odd degree dominate those of even degree
(MSE dominated by boundary effects)

Recommended default choice: local linear regression
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Local Polynomial Regression
* JEE—

m Kernel smoothing and local regression extend straightforwardly
to the multivariate x scenario

IélinZKA(anxi)(yi — Py (; Bzvo))2
O =1

Need d-dimensional kernel

Nadaraya-Watson kernel smoother fits locally constant model
Local linear regression fits local hyperplane via weighted LS

m Challenges:
Defining kernel
Curse of dimensionality
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Example Univariate Kernels

m Gaussian K(z) = %6—2 \V“l A
s
. 3 v
m Epanechnikov K(x) = Z(l — x)2l(x)
m Tricube _ 70 3)3
K(z) = o7 (1 = |2[)"I(z)
m Boxcar K(z) = ll(x)

-3 -2 -1 0 1 2 3
From Hastie, Tibshirani, Friedman book
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Multivariate Kernels
" S

m Many choices, even more than in 1d

m Examples:
Radial basis kernels

Ky (zo,2) =

E.g., radial Epanechnikov, tricube, squared exponential (Gaussian)
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Multivariate Kernels
= JEE

m Many choices, even more than in 1d

m Examples:
Product kernels

K>\1,>\2 (xOv SC) =

m Choices:
Form
Kernel(s)
Bandwidth(s)
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Motivating Local Linear Regression
* JEE——
m Nadaraya-Watson smoothing can be applied to multivariate x

m However, boundary issues are even worse in higher dimensions
Messy to correct for boundary even in 2d (esp. for irregular boundaries)
Fraction of points close to the boundary increases with dimension

m Local polynomial regression corrects boundary errors up to
desired order

N-W Kernel at Boundary

From Hastie,
Tibshirani,
Friedman
book
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Local Linear Regression
* JEE

m Assume a RBF kernel
m For each target location x,, goal is todminimize )
n
Iélin Z K (2o, 2;) (yz — Bozy — Z Biwo(Tij — CUOj))
0 =1 j=1

m Equivalently,

= Solution: f,, = (X2 Wy X)) X2 Wy
m Return:

©Emily Fox 2013 21

Local Linear Example

m Astronomical study
Response = velocity measurements on a galaxy
Predictors = two positions

m Note the unusual star-shaped design - very irregular boundary
Must interpolate over regions with very few observations near boundary

Velocity Velocity

Ry
uuny Y
South-North / South-North

East-West East-West
From Hastie, Tibshirani, Friedman book
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Motivating Local Polynomial
" S

m One way to think about motivating local polynomials is as follow
m Consider 2d example for simplicity

m For a suitably smooth function f(x) = f(x,,x,), we can approximate
it for values x=[x,,x,] in a nbhd of x,=[x,,X,,] as

0 0
f(x) = f(xo) + (1 — 1301)833]; + (z9 — xoz)axj(;
el f _ RS S RS o
+ (x1 — z01) 5 81:31 + (z1 — zo1) (2 1‘02)2 92010703 + (z2 — zo2) 5 83732

m Suggests the use of a local polynomial:

= Then, IéliDZKA(l‘o,ﬂfz‘)(yi — Py (25 82))?

=1 ©Emily Fox 2013 23

Scaling to High Dimensions
"

m Local regression becomes less useful in dimensions greater
than 2 or 3

Impossible to maintain localness (low bias) and large sample size (low
variance) without the total sample size increasing exponentially in d

m Again, curse of dimensionality
Sparsity of data
Points concentrate at boundaries

m Visualization of the fitted function is also hard in high
dimensions, and visualization is often a key goal in smoothing

©Emily Fox 2013 24
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Boundary Effects
" JEE

Everything is far away in high dimensions

Consider n data points uniformly distributed in a d-dimensional
unit ball

Example task: Consider nearest neighbor estimate at origin

o - 11/n
Median distance to closest data point is (1 —3 )
For n=500 and d=10, distance = 0.52
Closest point is likely more than ¥z way to the boundary

Prediction is harder near the edges of the sample boundary

©Emily Fox 2013 25

Boundary Effects Il
" I

Another way to think of this effect is in terms of volume

We want to compute the fraction of volume that lies between
radusR=1-gandR=1

The volume of a sphere is proportional to

The volume fraction is therefore:

Va(1) — Vg(1 —¢)
Va(1)

=1—(1—¢

Most of the volume of a sphere is concentrated in a thin shell
near the surface

©Emily Fox 2013 26
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Structured Local Regression
" JE
m As we have seen before, when faced with data scarcity relative
to model complexity, assume structure

m Structured kernels

Place more or less importance on certain dimensions (or combinations
thereof) by modifying the kernel

m Structured regression functions

Just as with splines, decompose the target regression function
E.g., ANOVA decompositions and fit low-dim terms with local regression

©Emily Fox 2013 27

Structured Kernels

* JEE—
m In many scenarios, RBF or spherical kernels are considered
m Places equal weight on all dimensions of x

Typically, standardize data so all dimensions have unit variance

m More generally, can consider structured kernels

Ka(zo,2) = K ((a; —x0)T Az — xo))

A

m Choices for A
Diagonal >
Low rank »>
General
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Projection Pursuit Regression
" JEE

m To help deal with high-dimensional regression, consider

M

f('xl’“"md) = o+ Z fm(wg—’lx)

m=1

lw, || = 1 for m=1,..., M

m Seek w,, so the model fits well

,,;.,, :,,,;;a
Ul ,,,, i ~,,
.:,/,, R

/,,a/ 7
i
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SRICEERRREE
/l/'{"' GRS

i
i /,,':,
/,/:, il i
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PPR Comments
= JEEE

f(xlw . 7'rd) = o+ Z fm(wfzfﬁ)
=1

If M is arbitrarily large, and for appropriate choice of f,,, PPR

can approximate any continuous function in R¢ arbitrarily well

Interpretation can be hard
M=1 “single index model” in econometrics - interpretable

Goal: Seek to minimize over {f,, w,, }

n M 2

Z Yi — Z o (wiy )
i=1 m=1

©Emily Fox 2013
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PPR Fitting Algorithm
" S

m Direction vectors w,, chosen in a forward-stagewise procedure to
minimize the fraction of unexplained variance

m Start by standardizing data to 0 mean and scale each covariate to
have the same variance

1. Set & = avg(y;)
2. Initialize ¢;, = y;,¢=1,...,n and m =20
Find the direction (unit vector) w* that minimizes
>z (& — S(w';))?
>im1 &
4. Set f(wTz;) = S(w ;)
Set m = m + 1 and update the residuals:
& & — fm(wTxy)
If m=M, stop.

I(w)=1-

©Emily Fox 2013 31

PPR Fitting Algorithm Comments
" S
flxy, ... xq) = a+ Z_ fom (W 2)

m Algorithm considered is a greedy forward-wise procedure

m After each step, the f,,’s from the previous steps can be
readjusted using backfitting

m Can lead to fewer terms, but unclear if it improves predictions
m Typically the w,,’s are not readjusted

m Choice of M can be based on a threshold in improvement of fit
or using CV

©Emily Fox 2013 32

16



Structured Regression Functions
* JE
m Often, instead of structuring the kernel, it makes sense and is
simpler to structure the regression function itself

m Just as with splines, we can consider ANOVA decompositions

f(z1,22,...,2p) =+ ij(xj) -i-kag(.CCk,.CCg) +...
J

k<t

or, more simply, standard GAMs

f(.I'l,.IQ,...,I'p) :Oé—i_zfj(xj)
J

m Can use 1d (or low-dim) local regression as the smoother for
each term and fit using backfitting algorithm

©Emily Fox 2013
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Varying Coefficient Models
* JEE

m Special case of a structured model

m Divide the set of d covariates into two sets

m Consider a conditionally linear model
flx) =
m Due to its local nature, it's natural to fit such a model using
locally weighted LS

min Y " Kx(20,2) (g — a(z0) — 21iB1(20) — -+ — 24iBq(20))?
a(20),8(20) “—{

©Emily Fox 2013 34
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Varying Coefficient Models

“
m Example = Human aorta data
m Response = diameter of aorta

Male Female

m Covariates
Linear in “age”
Coefficients vary in
“gender” and “depth”

m Separate model for M/F

Age Intercept

m Results:
Aorta thickens with age
Relationship is less clear

Age Slope

for larger depth 00 02 04 06 08 10 00 02 04 06 08

Distance Down Aorta Distance Down Aorta

From Hastie, Tibshirani, Friedman book

©Emily Fox 2013
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Varying Coefficient Models

* JEE—
m Alternatively, one can use splines instead of local regression
as a smoother for the varying coefficient functions 3;(2)

m Consider penalized linear splines with L knots
For univariate x and z, for simplicity, we have

L
Ely|x, 2] = a(()o) +al92 4+ Z béo)(z — &)+
=1

L
+ (0461) + agl)z + Z bgl)(z — §g)+> x

{=1

©Emily Fox 2013
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Example: Time-Varying Coeff
"

m Let z correspond to time ¢, a simple case being:
Yt =

m This model directly relates to (Bayesian) dynamic linear models
yp=a+zb:+e €~ N(0,0?2)
Bt = Br—1+ 14 vy ~ N(0,07)

See West and Harrison 1997
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Kernel Density Estimation
* JEE—
m Kernel methods are often used for density estimation
(actually, classical origin)
4

m Assume random sample X\,u-) )(n ~ V A

?
m Choice #1: empirical estimate? {;’ Ln Z gx‘; ] “ ml | | |

m Choice #2: as before, maybe we should use an estimatoL A

NS O e NHdOa) i ot e
n\é&e———

m Choice #3: again, consider kernel weightings instead

A( ) = I X, ¥. Parzen
pre) = X Z K%, ) 05k
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19



Kernel Density Estimation
" JEEE

m Popular choice = Gaussian kernel - Gaussian KDE

1 A
02470, (x-x)
a g
= [Py 4 ) f
A S
\gweicicd ]

; [T TR AT AT T W T 1 .
- g\ .
[} 100 120 140 160 180 200 220
Systolic Blood Pressure (for CHD group)

From Hastie, Tibshirani, Friedman book
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Multivariate KDE
* JE—
= In1d plwo) = %ZKA(@"O,%)

m In RY assuming a product kernel,

n d
. 1
p(zo0) = m Z H Ky, (zoj, Tij)

i=1 | j=1

m Typical choice = Gaussian RBF

©Emily Fox 2013 40
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Multivariate KDE
" SN

n

d
. 1
p(wo) = m; jl;[lKAj (fvoMij)}

m Risk grows as O(n#/(4+d))

m Example: To ensure relative MSE < 0.1 at 0 when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d

©Emily Fox 2013 a

Multivariate KDE Example
" S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data

m Perform KDE with independent kernels

4

©Emily Fox 2013 42

21



Multivariate KDE Example
" S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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What you need to know
" JEE

m As with splines:

Nothing is conceptually hard about multivariate x

In practice, nonparametric methods struggle from curse of
dimensionality

m For multivariate kernel methods, need multivar kernel
Radial basis kernels
Product kernels
Structured kernels, including learning like projection pursuit

m Methods:
Local polynomial regression
Local polynomial regression in structured regression like GAMs
KDE

©Emily Fox 2013 44
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Readings
" J
m Wakefield — 12.4-12.6
m Hastie, Tibshirani, Friedman — 6.3-6.4, 11.2
m Wasserman — 5.12, 6.5
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