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What you need to know 

n  Nothing is conceptually hard about multivariate x 

n  In practice, nonparametric methods struggle from curse of 
dimensionality 

n  Options considered: 
¨  Thin plate splines 
¨  Tensor product splines 
¨  Generalized additive models 
¨  Combinations (to model some interaction terms) 

©Emily Fox 2013 2 
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Curse of Dimensionality 

n  To maintain a fixed level of accuracy for a given nonparametric 
estimator, the sample size must increase exponentially in d 

n  Set MSE = δ 

n  Why?  Using data in local nbhd 
¨  In high dim, few points in any nbhd 

n  Consider example with n uniformly 
distributed points in [-1,1]d 
¨  d=1: 
¨  d=10 

Figure from Yoshua Bengio’s website 
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Natural Thin Plate Splines 

n  Solution: natural thin plate spline with knots at the xij 

n  For general λ, solution is a linear basis expansion of the form 
 
 
with 

 
 
n  Interpretation: We take an elastic flat plate that interpolates points 

(xi,yi) and penalize its “bending energy” 
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Tensor Product Splines 

n  We use this tensor product basis  
 
 
to model f(x) 

n  This formulation extends (in  
theory) to any dimension d 

n  Note that the dimension of  
the basis grows exponentially  
with the input dimension d 

5.7 Multidimensional Splines 163

FIGURE 5.10. A tensor product basis of B-splines, showing some selected pairs.
Each two-dimensional function is the tensor product of the corresponding one
dimensional marginals.

Figure 5.10 illustrates a tensor product basis using B-splines. The coeffi-
cients can be fit by least squares, as before. This can be generalized to d
dimensions, but note that the dimension of the basis grows exponentially
fast—yet another manifestation of the curse of dimensionality. The MARS
procedure discussed in Chapter 9 is a greedy forward algorithm for includ-
ing only those tensor products that are deemed necessary by least squares.

Figure 5.11 illustrates the difference between additive and tensor product
(natural) splines on the simulated classification example from Chapter 2.
A logistic regression model logit[Pr(T |x)] = h(x)T θ is fit to the binary re-
sponse, and the estimated decision boundary is the contour h(x)T θ̂ = 0.
The tensor product basis can achieve more flexibility at the decision bound-
ary, but introduces some spurious structure along the way.

From Hastie, Tibshirani, Friedman book 

gjk(x) = h1j(x1)h2k(x2)
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Generalized Additive Models 

n  Both for computational reasons and added interpretability, 
models that assume an additive structure are very popular 

n  Assuming a GLM framework: 

n  Is this model identifiable?   

n  Can model fj(xj) using any smoother  

g(µ(x)) =

©Emily Fox 2013 6 



4 

Backfitting Algorithm 
298 9. Additive Models, Trees, and Related Methods

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: α̂ = 1
N

∑N
1 yi, f̂j ≡ 0, ∀i, j.

2. Cycle: j = 1, 2, . . . , p, . . . , 1, 2, . . . , p, . . . ,

f̂j ← Sj

[
{yi − α̂−

∑

k !=j

f̂k(xik)}N1

]
,

f̂j ← f̂j −
1

N

N∑

i=1

f̂j(xij).

until the functions f̂j change less than a prespecified threshold.

cubic spline in the component Xj , with knots at each of the unique values
of xij , i = 1, . . . , N . However, without further restrictions on the model,
the solution is not unique. The constant α is not identifiable, since we
can add or subtract any constants to each of the functions fj , and adjust

α accordingly. The standard convention is to assume that
∑N

1 fj(xij) =
0 ∀j—the functions average zero over the data. It is easily seen that α̂ =
ave(yi) in this case. If in addition to this restriction, the matrix of input
values (having ijth entry xij) has full column rank, then (9.7) is a strictly
convex criterion and the minimizer is unique. If the matrix is singular, then
the linear part of the components fj cannot be uniquely determined (while
the nonlinear parts can!)(Buja et al., 1989).
Furthermore, a simple iterative procedure exists for finding the solution.

We set α̂ = ave(yi), and it never changes. We apply a cubic smoothing
spline Sj to the targets {yi − α̂ −

∑
k !=j f̂k(xik)}N1 , as a function of xij ,

to obtain a new estimate f̂j . This is done for each predictor in turn, using

the current estimates of the other functions f̂k when computing yi − α̂ −∑
k !=j f̂k(xik). The process is continued until the estimates f̂j stabilize. This

procedure, given in detail in Algorithm 9.1, is known as “backfitting” and
the resulting fit is analogous to a multiple regression for linear models.

In principle, the second step in (2) of Algorithm 9.1 is not needed, since
the smoothing spline fit to a mean-zero response has mean zero (Exer-
cise 9.1). In practice, machine rounding can cause slippage, and the ad-
justment is advised.

This same algorithm can accommodate other fitting methods in exactly
the same way, by specifying appropriate smoothing operators Sj :

• other univariate regression smoothers such as local polynomial re-
gression and kernel methods;

From Hastie, Tibshirani, Friedman book 
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Other GAM formulations 

n  Semiparametric models: 

 
n  ANOVA decompositions: 

 
 
 
Choice of: 
¨  Maximum order of interaction 
¨  Which terms to include 
¨  What representation 

n  Tradeoff between full model and decomposed model 

f(x) =

g(µ) =

©Emily Fox 2013 8 
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Connection with Thin Plate Splines 

n  Recall formulation that lead to natural thin plate splines:  

n  There exists a J(f) such that the solution has the form 

n  However, it is more natural to just assume this form and apply 

min
f

nX

i=1

{yi � f(xi)}2 + �J(f)
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Nadaraya-Watson Estimator 
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n  Example: 
¨  Boxcar kernel à  
¨  Epanechnikov 
¨  Gaussian 

n  Often, choice of kernel matters much less than choice of λ 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, 
Tibshirani, 
Friedman 

book 

Local Linear Regression 
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n  Locally weighted averages can be badly biased at the 
boundaries because of asymmetries in the kernel 

n  Reinterpretation: 

n  Equivalent to the Nadaraya-Watson estimator 
n  Locally constant estimator obtained from weighted least squares 

6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

From Hastie, Tibshirani, Friedman book 
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Local Linear Regression 

©Emily Fox 2013 13 

n  Consider locally weighted linear regression instead 
n  Local linear model around fixed target x0 :  

n  Minimize: 

n  Return: 
 

n  Fit a new local polynomial for every target x0  

Local Polynomial Regression 

©Emily Fox 2013 14 

n  Consider local polynomial of degree d centered about x0 

 
n  Minimize: 
 
n  Equivalently: 

n  Return: 
n  Bias only has components of degree d+1 and higher 

P

x0(x;�x0) =

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2
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Local Polynomial Regression 
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n  Rules of thumb: 
¨  Local linear fit helps at boundaries with minimum increase in variance 
¨  Local quadratic fit doesn’t help at boundaries and increases variance 
¨  Local quadratic fit helps most for capturing curvature in the interior 
¨  Asymptotic analysis à 

local polynomials of odd degree dominate those of even degree 
(MSE dominated by boundary effects) 

¨  Recommended default choice: local linear regression 

Local Polynomial Regression 

©Emily Fox 2013 16 

n  Kernel smoothing and local regression extend straightforwardly 
to the multivariate x scenario 

 
¨  Need d-dimensional kernel 

¨  Nadaraya-Watson kernel smoother fits locally constant model 
¨  Local linear regression fits local hyperplane via weighted LS 
¨  … 

n  Challenges: 
¨  Defining kernel 
¨  Curse of dimensionality 

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2
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Example Univariate Kernels 
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n  Gaussian 
 
n  Epanechnikov 
 
n  Tricube 

n  Boxcar 

K(x) =
1

2⇡
e

� x

2

K(x) =
3

4
(1� x)2I(x)

K(x) =
70

81
(1� |x|3)3I(x)

K(x) =
1

2
I(x)

194 6. Kernel Smoothing Methods
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FIGURE 6.2. A comparison of three popular kernels for local smoothing. Each
has been calibrated to integrate to 1. The tri-cube kernel is compact and has two
continuous derivatives at the boundary of its support, while the Epanechnikov ker-
nel has none. The Gaussian kernel is continuously differentiable, but has infinite
support.

• This leaves a more general problem to deal with: observation weights
wi. Operationally we simply multiply them by the kernel weights be-
fore computing the weighted average. With nearest neighborhoods, it
is now natural to insist on neighborhoods with a total weight content
k (relative to

∑
wi). In the event of overflow (the last observation

needed in a neighborhood has a weight wj which causes the sum of
weights to exceed the budget k), then fractional parts can be used.

• Boundary issues arise. The metric neighborhoods tend to contain less
points on the boundaries, while the nearest-neighborhoods get wider.

• The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =

{
(1− |t|3)3 if |t| ≤ 1;
0 otherwise

(6.6)

This is flatter on the top (like the nearest-neighbor box) and is differ-
entiable at the boundary of its support. The Gaussian density func-
tion D(t) = φ(t) is a popular noncompact kernel, with the standard-
deviation playing the role of the window size. Figure 6.2 compares
the three.

6.1.1 Local Linear Regression

We have progressed from the raw moving average to a smoothly varying
locally weighted average by using kernel weighting. The smooth kernel fit
still has problems, however, as exhibited in Figure 6.3 (left panel). Locally-
weighted averages can be badly biased on the boundaries of the domain,

From Hastie, Tibshirani, Friedman book 

Multivariate Kernels 
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n  Many choices, even more than in 1d 

n  Examples: 
¨  Radial basis kernels 

 
 
 
 
E.g., radial Epanechnikov, tricube, squared exponential (Gaussian) 

K�(x0, x) =
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Multivariate Kernels 
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n  Many choices, even more than in 1d 

n  Examples: 
¨  Product kernels 

n  Choices: 
¨  Form 
¨  Kernel(s) 
¨  Bandwidth(s) 

K�1,�2(x0, x) =

Motivating Local Linear Regression 

©Emily Fox 2013 20 

n  Nadaraya-Watson smoothing can be applied to multivariate x 

n  However, boundary issues are even worse in higher dimensions 
¨  Messy to correct for boundary even in 2d (esp. for irregular boundaries) 
¨  Fraction of points close to the boundary increases with dimension 

n  Local polynomial regression corrects boundary errors up to 
desired order  6.1 One-Dimensional Kernel Smoothers 195

N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

From Hastie, 
Tibshirani, 
Friedman 

book 

6.4 Structured Local Regression Models in IRp 201

East-West

South-North

Velocity

East-West
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Velocity

FIGURE 6.8. The left panel shows three-dimensional data, where the response
is the velocity measurements on a galaxy, and the two predictors record positions
on the celestial sphere. The unusual “star”-shaped design indicates the way the
measurements were made, and results in an extremely irregular boundary. The
right panel shows the results of local linear regression smoothing in IR2, using a
nearest-neighbor window with 15% of the data.

Although the scatter-cloud and wire-frame pictures in Figure 6.8 look at-
tractive, it is quite difficult to interpret the results except at a gross level.
From a data analysis perspective, conditional plots are far more useful.

Figure 6.9 shows an analysis of some environmental data with three pre-
dictors. The trellis display here shows ozone as a function of radiation,
conditioned on the other two variables, temperature and wind speed. How-
ever, conditioning on the value of a variable really implies local to that
value (as in local regression). Above each of the panels in Figure 6.9 is an
indication of the range of values present in that panel for each of the condi-
tioning values. In the panel itself the data subsets are displayed (response
versus remaining variable), and a one-dimensional local linear regression is
fit to the data. Although this is not quite the same as looking at slices of
a fitted three-dimensional surface, it is probably more useful in terms of
understanding the joint behavior of the data.

6.4 Structured Local Regression Models in IRp

When the dimension to sample-size ratio is unfavorable, local regression
does not help us much, unless we are willing to make some structural as-
sumptions about the model. Much of this book is about structured regres-
sion and classification models. Here we focus on some approaches directly
related to kernel methods.
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Local Linear Regression 
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n  Assume a RBF kernel  

n  For each target location x0, goal is to minimize 

n  Equivalently, 

n  Solution: 
n  Return: 

min
�

x0

nX

i=1

K

�

(x0, xi

)

✓
y

i

� �0x0 �
dX

j=1

�

jx0(xij

� x0j)

◆2

�̂
x0 = (XT

x0
W

x0Xx0)
�1XT

x0
W

x0y

Local Linear Example 
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n  Astronomical study 
¨  Response = velocity measurements on a galaxy 
¨  Predictors = two positions 

n  Note the unusual star-shaped design à very irregular boundary 
¨  Must interpolate over regions with very few observations near boundary 6.4 Structured Local Regression Models in IRp 201

East-West

South-North

Velocity

East-West

South-North

Velocity

FIGURE 6.8. The left panel shows three-dimensional data, where the response
is the velocity measurements on a galaxy, and the two predictors record positions
on the celestial sphere. The unusual “star”-shaped design indicates the way the
measurements were made, and results in an extremely irregular boundary. The
right panel shows the results of local linear regression smoothing in IR2, using a
nearest-neighbor window with 15% of the data.

Although the scatter-cloud and wire-frame pictures in Figure 6.8 look at-
tractive, it is quite difficult to interpret the results except at a gross level.
From a data analysis perspective, conditional plots are far more useful.

Figure 6.9 shows an analysis of some environmental data with three pre-
dictors. The trellis display here shows ozone as a function of radiation,
conditioned on the other two variables, temperature and wind speed. How-
ever, conditioning on the value of a variable really implies local to that
value (as in local regression). Above each of the panels in Figure 6.9 is an
indication of the range of values present in that panel for each of the condi-
tioning values. In the panel itself the data subsets are displayed (response
versus remaining variable), and a one-dimensional local linear regression is
fit to the data. Although this is not quite the same as looking at slices of
a fitted three-dimensional surface, it is probably more useful in terms of
understanding the joint behavior of the data.

6.4 Structured Local Regression Models in IRp

When the dimension to sample-size ratio is unfavorable, local regression
does not help us much, unless we are willing to make some structural as-
sumptions about the model. Much of this book is about structured regres-
sion and classification models. Here we focus on some approaches directly
related to kernel methods.

From Hastie, Tibshirani, Friedman book 
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Motivating Local Polynomial 
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n  One way to think about motivating local polynomials is as follow 
n  Consider 2d example for simplicity 
n  For a suitably smooth function f(x) = f(x1,x2), we can approximate 

it for values x=[x1,x2] in a nbhd of x0=[x01,x02] as 

n  Suggests the use of a local polynomial: 

n  Then,  min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2

f(x) ⇡ f(x0) + (x1 � x01)
@f

@x01
+ (x2 � x02)

@f

@x02

+ (x1 � x01)
2 1

2

@

2
f

@x

2
01

+ (x1 � x01)(x2 � x02)
1

2

@

2
f

@x01@x02
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@

2
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Scaling to High Dimensions 
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n  Local regression becomes less useful in dimensions greater 
than 2 or 3 
¨  Impossible to maintain localness (low bias) and large sample size (low 

variance) without the total sample size increasing exponentially in d 

n  Again, curse of dimensionality 
¨  Sparsity of data 
¨  Points concentrate at boundaries 

n  Visualization of the fitted function is also hard in high 
dimensions, and visualization is often a key goal in smoothing 
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Boundary Effects 
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n  Everything is far away in high dimensions 

n  Consider n data points uniformly distributed in a d-dimensional 
unit ball 

n  Example task: Consider nearest neighbor estimate at origin 

n  Median distance to closest data point is 
¨  For n=500 and d=10, distance ≈ 0.52 
¨  Closest point is likely more than ½ way to the boundary 

n  Prediction is harder near the edges of the sample boundary 

 
1� 1

2

1/n
!d

Boundary Effects II 
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n  Another way to think of this effect is in terms of volume 

n  We want to compute the fraction of volume that lies between 
radius R = 1 − ε and R = 1  

n  The volume of a sphere is proportional to 

n  The volume fraction is therefore:  

n  Most of the volume of a sphere is concentrated in a thin shell 
near the surface  

Vd(1)� Vd(1� ✏)

Vd(1)
= 1� (1� ✏)d
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Structured Local Regression 
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n  As we have seen before, when faced with data scarcity relative 
to model complexity, assume structure 

n  Structured kernels 
¨  Place more or less importance on certain dimensions (or combinations 

thereof) by modifying the kernel 

n  Structured regression functions 
¨  Just as with splines, decompose the target regression function 
¨  E.g., ANOVA decompositions and fit low-dim terms with local regression 

Structured Kernels 
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n  In many scenarios, RBF or spherical kernels are considered 

n  Places equal weight on all dimensions of x 
¨  Typically, standardize data so all dimensions have unit variance 

n  More generally, can consider structured kernels 

n  Choices for A 
¨  Diagonal à  
¨  Low rank à 
¨  General 

K�,A(x0, x) = K

✓
(x� x0)TA(x� x0)

�

◆
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Projection Pursuit Regression 
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n  To help deal with high-dimensional regression, consider 

¨  ||wm|| = 1 for m=1,…, M 

n  Seek wm so the model fits well 

f(x1, . . . , xd) = ↵+
MX

m=1

fm(wT
mx)

PPR Comments 
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n  If M is arbitrarily large, and for appropriate choice of fm, PPR 
can approximate any continuous function in Rd arbitrarily well 

n  Interpretation can be hard 

n  M=1 “single index model” in econometrics à interpretable 

n  Goal: Seek to minimize over { fm, wm } 

f(x1, . . . , xd) = ↵+
MX

m=1

fm(wT
mx)

nX

i=1

✓
yi �

MX

m=1

fm(wT
mxi)

◆2
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PPR Fitting Algorithm 
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n  Direction vectors wm chosen in a forward-stagewise procedure to 
minimize the fraction of unexplained variance 

n  Start by standardizing data to 0 mean and scale each covariate to 
have the same variance 

1.  Set 
2.  Initialize  
3.  Find the direction (unit vector) w* that minimizes 

4.  Set 
5.  Set m = m + 1 and update the residuals: 

      If m=M, stop.   

↵̂ = avg(yi)
✏̂i = yi, i = 1, . . . , n and m = 0

I(w) = 1�
Pn

i=1(✏̂i � S(wT
xi))2Pn

i=1 ✏̂
2
i

f̂m(w⇤T
xi) = S(w⇤T

xi)

✏̂i  ✏̂i � f̂m(w⇤T
xi)

PPR Fitting Algorithm Comments 
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n  Algorithm considered is a greedy forward-wise procedure 

n  After each step, the fm’s from the previous steps can be 
readjusted using backfitting 

n  Can lead to fewer terms, but unclear if it improves predictions 

n  Typically the wm’s are not readjusted 

n  Choice of M can be based on a threshold in improvement of fit 
or using CV 

f(x1, . . . , xd) = ↵+
MX

m=1

fm(wT
mx)
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Structured Regression Functions 

©Emily Fox 2013 33 

n  Often, instead of structuring the kernel, it makes sense and is 
simpler to structure the regression function itself 

n  Just as with splines, we can consider ANOVA decompositions 
 
 
 
 
or, more simply, standard GAMs 

n  Can use 1d (or low-dim) local regression as the smoother for 
each term and fit using backfitting algorithm 

f(x1, x2, . . . , xp) = ↵+
X

j

fj(xj) +
X

k<`

fk`(xk, x`) + . . .

f(x1, x2, . . . , xp) = ↵+
X

j

fj(xj)

Varying Coefficient Models 
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n  Special case of a structured model 
n  Divide the set of d covariates into two sets 

n  Consider a conditionally linear model 

n  Due to its local nature, it’s natural to fit such a model using 
locally weighted LS 

f(x) =

min
↵(z0),�(z0)

nX

i=1

K�(z0, zi)(yi � ↵(z0)� x1i�1(z0)� · · ·� xqi�q(z0))
2
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Varying Coefficient Models 
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n  Example = Human aorta data 
n  Response = diameter of aorta 
n  Covariates 

¨  Linear in “age” 
¨  Coefficients vary in  

“gender” and “depth” 

n  Separate model for M/F 

n  Results: 
¨  Aorta thickens with age 
¨  Relationship is less clear 

for larger depth 

6.5 Local Likelihood and Other Models 205
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FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorta, separately for males and females. The yellow bands indicate one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local if the fitting method ac-
commodates observation weights. Here are some examples:

• Associated with each observation yi is a parameter θi = θ(xi) = xT
i β

linear in the covariate(s) xi, and inference for β is based on the log-

likelihood l(β) =
∑N

i=1 l(yi, x
T
i β). We can model θ(X) more flexibly

by using the likelihood local to x0 for inference of θ(x0) = xT
0 β(x0):

l(β(x0)) =
N∑

i=1

Kλ(x0, xi)l(yi, x
T
i β(x0)).

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

From Hastie, Tibshirani, Friedman book 

Varying Coefficient Models 
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n  Alternatively, one can use splines instead of local regression 
as a smoother for the varying coefficient functions  

n  Consider penalized linear splines with L knots 
¨  For univariate x and z, for simplicity, we have 

�j(z)

E[y | x, z] = ↵

(0)
0 + ↵

(0)
1 z +

LX

`=1

b

(0)
` (z � ⇠`)+

+

 
↵

(1)
0 + ↵

(1)
1 z +

LX

`=1

b

(1)
` (z � ⇠`)+

!
x
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Example: Time-Varying Coeff 
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n  Let z correspond to time t, a simple case being: 

n  This model directly relates to (Bayesian) dynamic linear models 
 
 
 
 
 
 
 
 
See West and Harrison 1997 

yt =

yt = ↵+ zt�t + ✏t ✏t ⇠ N(0,�2
✏ )

�t = �t�1 + ⌫t vt ⇠ N(0,�2
⌫)

Kernel Density Estimation 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 
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Kernel Density Estimation 
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n  Popular choice = Gaussian kernel  à Gaussian KDE 
208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 

Multivariate KDE 
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n  In 1d  

n  In Rd, assuming a product kernel, 

n  Typical choice = Gaussian RBF 

p̂(x0) =
1

n�

nX

i=1

K�(x0, xi)

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;
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Multivariate KDE 
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n  Risk grows as O(n-4/(4+d)) 
n  Example: To ensure relative MSE < 0.1 at 0 when the density is 

a multivariate norm and optimal bandwidth is chosen 

n  Always report confidence bands, which get wide with d 

p̂(x0) =
1

n�1 · · ·�d

nX

i=1

8
<

:

dY

j=1

K�j (x0j , xij)

9
=

;

Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 

2012 Jon Wakefield, Stat/Biostat 527

library(sm)

library(rpanel)

library(rgl)

provide.data(airpc)

pc3 <- cbind(Comp.1[Period==3],Comp.2[Period==3])

par(mfrow=c(1,2))

sm.density(pc3,display="slice")

points(pc3[,1],pc3[,2])

sm.density(pc3,display="image")

#

par(mfrow=c(1,1))

sm.density(pc3)

sm.density(pc3,hmult=0.5)

sm.density(pc3,hmult=2)

447

2012 Jon Wakefield, Stat/Biostat 527

−2 0 2 4 6

−1
0

1
2

3

pc3[1]

 75 

 50 

 50 

 50 

 25 

−2 0 2 4 6

−1
0

1
2

3

pc3[1]

pc3[2
]

Figure 80: Two-dimensional estimate for the aircraft data.
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Multivariate KDE Example 
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n  Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 
n  Examine first 2 principle components of the data 
n  Perform KDE with independent kernels 2012 Jon Wakefield, Stat/Biostat 527
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Figure 81: Two-dimensional estimate for the aircraft data.
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Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 81: Two-dimensional estimate for the aircraft data.

449

2012 Jon Wakefield, Stat/Biostat 527

pc3[1]

−2

0

2

4

6pc3[2]

−1

0

1

2

3

Density function

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Figure 82: Two-dimensional estimate for the aircraft data.
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Figure 83: Two-dimensional estimate for the aircraft data.
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Classification and Regression Trees

If the aim is classification the only changes in the algorithm

concern the criteria for splitting nodes and pruning the tree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj(T ), defined in (112), within

(113), but this is not suitable for classification.

For a node j, j = 1, ..., J , representing a region Rj with nj

observations estimate the node specific probabilities as

p̂jk =
1

nj

∑

i:xi∈Rj

I(yi = k)

for k = 0, 1, ..., K − 1. This is simply the proportion of class k

observations in node j. Any observations that fall into node j are

classified to class

k(j) = arg maxk p̂jk,

the majority class in node j.

452

What you need to know 

n  As with splines: 
¨  Nothing is conceptually hard about multivariate x 
¨  In practice, nonparametric methods struggle from curse of 

dimensionality 

n  For multivariate kernel methods, need multivar kernel 
¨  Radial basis kernels 
¨  Product kernels 
¨  Structured kernels, including learning like projection pursuit 

n  Methods: 
¨  Local polynomial regression 
¨  Local polynomial regression in structured regression like GAMs 
¨  KDE  

©Emily Fox 2013 44 
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Readings 

n  Wakefield – 12.4-12.6 
n  Hastie, Tibshirani, Friedman – 6.3-6.4, 11.2 
n  Wasserman – 5.12, 6.5 
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