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Module 5: Classification 

1 

Overview of Classification So Far 

n  Supervised methods 

     Generative        Discriminative 

n  Objectives: 

n  Unsupervised methods (generative) 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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©Emily Fox 2013 3 

Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)

0 0.5 1

0

0.5

1

Complete data labeled 
by true cluster assignments 

(a)

0 0.5 1

0

0.5

1

©Emily Fox 2013 4 



3 

Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 
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n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 
p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)
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Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)

0 0.5 1

0

0.5

1

rik = p(zi = k | xi,⇡, ✓) =
⇡kp(xi | ✓k)PK
`=1 ⇡`p(xi | ✓`)
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Mixture Models for Classification 

n  Can use mixture models as a generative classifier in the 
unsupervised setting 

n  EM algorithm = iteratively: 
¨  Estimate responsibilities given parameter estimates 

¨  Maximize parameters given responsibilities 

n  For classification, threshold the estimated responsibilities 
¨  E.g.,  
 

n  Note: allows non-linear boundaries as in QDA 

(c)
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r̂ik =
⇡̂kN(xi, µ̂k, ⌃̂k)P
` ⇡̂`N(xi, µ̂`, ⌃̂`)

ĝ(xi) = argmax

k
r̂ik
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Example: Heart Disease Data 
n  Binary response = CHD (coronary heart disease) 
n  Predictor = systolic blood pressure 
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From Hastie, Tibshirani, Friedman book 

6.8 Mixture Models for Density Estimation and Classification 215
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FIGURE 6.17. Application of mixtures to the heart disease risk-factor study.
(Top row:) Histograms of Age for the no CHD and CHD groups separately, and
combined. (Bottom row:) estimated component densities from a Gaussian mix-
ture model, (bottom left, bottom middle); (bottom right:) Estimated component
densities (blue and orange) along with the estimated mixture density (green). The
orange density has a very large standard deviation, and approximates a uniform
density.

The mixture model also provides an estimate of the probability that
observation i belongs to component m,

r̂im =
α̂mφ(xi; µ̂m, Σ̂m)

∑M
k=1 α̂kφ(xi; µ̂k, Σ̂k)

, (6.33)

where xi is Age in our example. Suppose we threshold each value r̂i2 and
hence define δ̂i = I(r̂i2 > 0.5). Then we can compare the classification of
each observation by CHD and the mixture model:

Mixture model
δ̂ = 0 δ̂ = 1

CHD No 232 70
Yes 76 84

Although the mixture model did not use the CHD labels, it has done a fair
job in discovering the two CHD subpopulations. Linear logistic regression,
using the CHD as a response, achieves the same error rate (32%) when fit to
these data using maximum-likelihood (Section 4.4).
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What you need to know 

n  Discriminative vs. Generative classifiers 

n  LDA and QDA assume Gaussian class-conditional densities 
¨  Results in linear and quadratic decision boundaries, respectively 

n  KDE for classification 
¨  Challenging in areas with little data or in high dimensions 
¨  Estimating class-conditionals is not optimizing classification objective 

n  Naïve Bayes assumes factored form 
¨  Results in log odds that have GAM form 

n  Mixture models allow for unsupervised generative approach 
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Readings 

n  Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8 
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Online Learning 
Perceptron Algorithm 
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STAT/BIOSTAT 527, University of Washington 

Emily Fox 
May 28th, 2013 

Module 5: Classification 

Estimating Click Probabilities 

n  Goal: Predict whether a person clicks on an ad 
n  Basic approach: Logistic regression 

Query 
 

Ad Info 
 

Features 
of user 

MODEL 
Yes! 

No 
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Challenge 1: Complexity of Computing 
Gradients 
n  What’s the cost of a gradient update step for LR??? 
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Challenge 2: Data is streaming 

n  Assumption thus far: Batch data 

n  But, e.g., click prediction for ads is a streaming data task: 
¨  User enters query, and ad must be selected: 

n  Observe xi, and must predict yi 

¨  User either clicks or doesn’t click on ad: 
n  Label yi is revealed afterwards 

¨  Google gets a reward if user clicks on ad 

 
¨  Weights must be updated for next time: 
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Online Learning Problem 

n  At each time step t: 
¨  Observe features (covariates) of data point: 

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course   

¨  Make a prediction:  
n  Note: many models are possible, we focus on linear models 

¨  Observe true label: 
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details 

beyond scope of course 

¨  Update model: 
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The Perceptron Algorithm [Rosenblatt ‘58, ‘62] 

n  Classification setting: y in {-1,+1} 
n  Linear model 

¨  Prediction:  
 

n  Training:  
¨  Initialize weight vector:  
¨  At each time step: 

n  Observe covariates: 
n  Make prediction: 
n  Observe true class: 

n  Update model:   
¨  If prediction is not equal to truth 
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Intuition 

n  Why is this a reasonable update rule? 
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If ŷ = yt,

�

(t+1)  �

(t)

else

�

(t+1)  �

(t) + ytxt

ŷ = sign(�(t) · xt)

Which weight vector to report? 

n  Practical problem for all online learning methods 
n  Suppose you run online learning method and want to sell 

your learned weight vector… Which one do you sell??? 

n  Last one? 

n  Random 

n  Average  

n  Voting + more advanced  
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Choice can make a huge difference!! 
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[Freund & Schapire ’99] 

Mistake Bounds 

n  Algorithm “pays” every time it makes a mistake: 

n  How many mistakes is it going to make? 
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Linear Separability: More formally, Using Margin  

n  Data linearly separable, if there exists 
¨ a vector 
¨ a margin  

n  Such that 

Perceptron Analysis: Linearly Separable Case 

n  Theorem [Block, Novikoff]:  
¨  Given a sequence of labeled examples: 

¨  Each covariate vector has bounded norm: 

¨  If dataset is linearly separable: 

n  Then the number of mistakes made by the online perceptron on this 
sequence is bounded by 
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Perceptron Proof for Linearly Separable case 

n  Every time we make a mistake, we get γ closer to β*: 
¨  Mistake at time t: β(t+1) = β(t) + yt

 xt 
¨  Taking dot product with β*: 
¨  Thus after m mistakes:  

n  Similarly, norm of β(t+1) doesn’t grow too fast: 
¨    

¨  Thus, after m mistakes: 

n  Putting all together: 
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||�(t+1)||2 = ||�(t)||2 + 2yt(�
(t) · xt) + ||xt||2

Beyond Linearly Separable Case 
n  Perceptron algorithm is super cool! 

¨  No assumption about data distribution!  
n  Could be generated by an oblivious adversary, 

no need to be iid 
¨  Makes a fixed number of mistakes, and it’s 

done for ever! 
n  Even if you see infinite data 

 
n  However, real world not linearly separable 

¨  Can’t expect never to make mistakes again 
¨  Analysis extends to non-linearly separable 

case 
¨  Very similar bound, see Freund & Schapire  
¨  Converges, but ultimately may not give good 

accuracy (make many many many mistakes) 
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What is the Perceptron Doing??? 

n  When we discussed logistic regression: 
¨  Started from maximizing conditional log-likelihood 

n  When we discussed the perceptron: 
¨  Started from description of an algorithm 

n  What is the perceptron optimizing???? 

©Emily Fox 2013 25 
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Perceptron Prediction: Margin of 
Confidence 
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Hinge Loss 

n  Perceptron prediction: 

n  Makes a mistake when:  

n  Hinge loss (same as maximizing the margin used by SVMs) 
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Minimizing Hinge Loss in Batch Setting 

n  Given a dataset: 

n  Minimize average hinge loss: 

n  How do we compute the gradient? 
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Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 

©Carlos Guestrin 2013 29 

Subgradient of Hinge  

n  Hinge loss: 

 

n  Subgradient of hinge loss: 
¨  If  yt(β.xt) > 0: 
¨  If  yt (β.xt) < 0: 
¨  If  yt (β.xt) = 0: 
¨  In one line: 
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Subgradient Descent for Hinge Minimization 

n  Given data: 

n  Want to minimize: 

n  Subgradient descent works the same as gradient descent: 
¨  But if there are multiple subgradients at a point, just pick (any) one:  
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Perceptron Revisited 
n  Perceptron update: 

 
 

n  Batch hinge minimization update: 

n  Difference? 
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What you need to know 
n  Notion of online learning 
n  Perceptron algorithm 
n  Mistake bounds and proof 
n  In online learning, report averaged weights at the end 
n  Perceptron is optimizing hinge loss 
n  Subgradients and hinge loss 
n  (Sub)gradient decent for hinge objective 
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