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Overview of Classification So Far
" JEE
= Supervised methods [)‘\;‘7")/"‘1 ()("/‘7"‘\ “|Abt’(¢l

Sout b cless [abel oy
Generative Discriminative o5ty """7
LDA, QDA logstic req. Jata
KOE for class. CART

Nave B“‘/es

m Objectives:

mog PO | osd B kb

= Unsupervised methods (generative) y Vo Xa deka

MY fuce moMs

ooooooooooooo




Density as Mixture of Gaussians
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Clustering our Observations
" JEEE

m |Imagine we have an assignment of each x; to a Gaussian
Our actual observations
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Clustering our Observations
"
m Imagine we have an assignment of each x; to a Gaussian

m Introduce latent cluster ¢
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Clustering our Observations
" JEE

m We must infer the cluster assignments from the observations

m Posterior probabilities of

1 assignments to each cluster
*given* model parameters:
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Mixture Models for Classification
= JEEE

m Can use mixture models as a generative classifier in the
unsupervised setting
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Example: Heart Disease Data
" JEEE

m Binary response = CHD (coronary heart disease)

m Predictor = systofic blood pressure ause,
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From Hastie, Tibshirani, Friedman book
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What you need to know
* JEEE

m Discriminative vs. Generative classifiers

LDA and QDA assume Gaussian class-conditional densities
Results in linear and quadratic decision boundaries, respectively

KDE for classification
Challenging in areas with little data or in high dimensions
Estimating class-conditionals is not optimizing classification objective

Naive Bayes assumes factored form
Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach
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Readings
= JEEE
m Hastie, Tibshirani, Friedman — 4.3, 4.4.5, 6.6.2-6.6.3, 6.8
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Estimating Click Probabilities

" JEE
m Goal: Predict whether a person clicks on an ad
m Basic approach: Logistic regression
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Challenge 1: Complexity of Computing

_Gradients i dems of 04
* JEEE— g
m What's the cost of a gradient update step for,LR???
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Challenge 2: Data is streaming
» D
m Assumption thus far: Bat
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m But, e.g., click predlctlon for ads is a streaming data task:

1 User enters query, and ad must be selected:
= Observe x;, and must predict y,
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= Label Yy, is revealed afterwards 11(\/‘1(: Ll)
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o1 Google gets a reward if user clicks on ad
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ﬁ(t)é__ﬁ() b‘/_

©Emily Fox 2013 14




Online Learning Problem
S

m At each time step t:
1 Observe features (covariates) of data point:

= Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen... details beyond scope of course
! v Ky z)
1 Make a prediction: Ve /‘
= Note: many models are possiple, we focus on linear models 2
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1 Observe true label:

= Note: other observation models are possible, e.g., we don't observe the label directly, but only a noisy version... Details
beyond scope of course
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The Perceptron Algorithm weseaiarss e

" JEE——
m Classification setting: y in {-1,+1}  (aste HE(. [rom LUAR
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m Training: n)
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[ At each time step:
m Observe covariates:

= Make prediction: \/ - % %v\ [K){ ) X)

= Observe true class: y&' & trud lkl)(.\
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Intuition
" S
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else Yy = Slgn(ﬁ : xt)

(t+1) (t)
B2 = B 4y
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Which weight vector to report?
" JEEE

m Practical problem for all online learning methods

m Suppose you run online learning method and want to sell
your learned weight vector... Which one do you sell???
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Choice can make a huge difference!!
" S
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Mistake Bounds ~ lhy dus & work
" JEE
m Algorithm “pays” every time it makes a mistake:
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Linear Separability: More }‘9 ally, Using Margin
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Perceptron Analysis: Linearly Separable Case

" JEEE
m Theorem [Block, Novikoff]:
[ Given a sequence of labeled examples: {’(U ‘/\ )/ o /(X"/ Y")
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1 Each covariate vector has bounded norm:
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m Then the number of mistakes made by the online perceptron on this
sequence is bounded by
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Perceptron Proof for Linearly Separable case
" JEE

m Every time we make a mistake, we get y closer to B™:

Mistake at time t: B*1é& RO + y, x, . @)
¥,

Taking dot product with B : s -/3“‘ ). B /!6 + 7/")(“’)
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Beyond Linearly Separable Case
“

m Perceptron algorithm is super cool!

No assumption about data distribution!

= Could be generated by an oblivious adversary,
no need to be iid

Makes a fixed number of mistakes, and it's 4
done for ever! + . - =
= Even if you see infinite data =
+ - -
+ o+
m However, real world not linearly separable + =
, . . F
Can’t expect never to make mistakes again + + = =
Analysis extends to non-linearly separable
case

Very similar bound, see Freund & Schapire

Converges, but ultimately may not give good
accuracy (make many many many mistakes)
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What is the Perceptron Doing???
" JEE
m When we discussed logistic regression:
Started from maX|m|zmg conditional log-likelihood

mgx? (Y1Y,8)

m When we discussed the perceptron:
Started from description of an algorithm

m What is the perceptron optimizing????

Perceptron Prediction: Margin of
nfidence 0

| ¢0
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Hinge Loss
" JEE
m Perceptron prediction: Siﬂ)n ((QXB

m Makes a mistake when: x)>0 )
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\/{B~Y)< 6 = 2(613{ ’\i(s.x) elst
m Hinge loss (same as maximizing the margin used by SVMs)
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Minimizing Hinge Loss in Batch Setting
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= Given a dataset: (Y”\/’\,..‘ /(5(”/(/,\)

m  Minimize average hinge loss:
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m How do we compute the gradient?
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Subgradients of Convex Functions
" S

m  Gradients lower bound convex functions:

NERT Wt y-x)

m Gradients are unigue at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
1 Any plane that lower bounds function: © chg()() SubﬁraJ;“”L'
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Subgradient of Hinge
" JEEE—

m Hinge loss:

m Subgradient of hinge loss:
OIf yBx) >0 dL(B,¥) ¢
CHyBx) <0 )0 (8x) 7Y
O If y(Bxy) = 0 M[ﬁ,)()’ (2, o) 0. -yx
1 In one line:
)8, ﬂ[y(m)"w)f )
miskaka indiccbor
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Subgradient Descent for Hinge Minimization
" JEE

m Givendata: (z1,y1),...,(Tn,Yn)

m Wantto m|n|m|ze

- Ze B,x;) = Z( vi(B - )+

=1

m Subgradient wworks the same as gradient descent:
[ But if there are multiple subgradients at a point, just pick (any) one:
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Perceptron Revisited
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m Perceptron update: {/\/\.
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What you need to know
* JEE—

Notion of online learning

Perceptron algorithm

Mistake bounds and proof

In online learning, report averaged weights at the end
Perceptron is optimizing hinge loss

Subgradients and hinge loss

(Sub)gradient decent for hinge objective
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