
1

Mixture Models for
Classification

STAT/BIOSTAT 527, University of Washington

Emily Fox
May 30th, 2013

©Emily Fox 2013

Module 5: Classification

1

Overview of Classification So Far

n  Supervised methods

 Generative Discriminative

n  Objectives:

n  Unsupervised methods (generative)

©Emily Fox 2013 2

2

Density as Mixture of Gaussians

n  Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)

©Emily Fox 2013 3

Clustering our Observations

n  Imagine we have an assignment of each xi to a Gaussian
Our actual observations

C. Bishop, Pattern Recognition & Machine Learning

(b)

0 0.5 1

0

0.5

1

Complete data labeled
by true cluster assignments

(a)

0 0.5 1

0

0.5

1

©Emily Fox 2013 4

3

Clustering our Observations

n  Imagine we have an assignment of each xi to a Gaussian

C. Bishop, Pattern Recognition & Machine Learning

Complete data labeled
by true cluster assignments

(a)

0 0.5 1

0

0.5

1

n  Introduce latent cluster
indicator variable zi

n  Then we have
p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)

©Emily Fox 2013 5

Clustering our Observations

n  We must infer the cluster assignments from the observations

C. Bishop, Pattern Recognition & Machine Learning

n  Posterior probabilities of
assignments to each cluster
given model parameters:

Soft assignments to clusters

(c)

0 0.5 1

0

0.5

1

rik = p(zi = k | xi,⇡, ✓) =
⇡kp(xi | ✓k)PK
`=1 ⇡`p(xi | ✓`)

©Emily Fox 2013 6

4

Mixture Models for Classification

n  Can use mixture models as a generative classifier in the
unsupervised setting

n  EM algorithm = iteratively:
¨  Estimate responsibilities given parameter estimates

¨  Maximize parameters given responsibilities

n  For classification, threshold the estimated responsibilities
¨  E.g.,

n  Note: allows non-linear boundaries as in QDA

(c)

0 0.5 1

0

0.5

1

©Emily Fox 2013

r̂ik =
⇡̂kN(xi, µ̂k, ⌃̂k)P
` ⇡̂`N(xi, µ̂`, ⌃̂`)

ĝ(xi) = argmax

k
r̂ik

7

Example: Heart Disease Data
n  Binary response = CHD (coronary heart disease)
n  Predictor = systolic blood pressure

©Emily Fox 2013

From Hastie, Tibshirani, Friedman book

6.8 Mixture Models for Density Estimation and Classification 215

No CHD

Age

C
ou

nt

20 30 40 50 60

0
5

10
15

20

CHD

Age

C
ou

nt

20 30 40 50 60

0
5

10
15

Combined

Age

C
ou

nt

20 30 40 50 60

0
5

10
15

20
25

30

20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Age

M
ix

tu
re

 E
st

im
at

e

20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Age

M
ix

tu
re

 E
st

im
at

e

20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Age

M
ix

tu
re

 E
st

im
at

e

FIGURE 6.17. Application of mixtures to the heart disease risk-factor study.
(Top row:) Histograms of Age for the no CHD and CHD groups separately, and
combined. (Bottom row:) estimated component densities from a Gaussian mix-
ture model, (bottom left, bottom middle); (bottom right:) Estimated component
densities (blue and orange) along with the estimated mixture density (green). The
orange density has a very large standard deviation, and approximates a uniform
density.

The mixture model also provides an estimate of the probability that
observation i belongs to component m,

r̂im =
α̂mφ(xi; µ̂m, Σ̂m)

∑M
k=1 α̂kφ(xi; µ̂k, Σ̂k)

, (6.33)

where xi is Age in our example. Suppose we threshold each value r̂i2 and
hence define δ̂i = I(r̂i2 > 0.5). Then we can compare the classification of
each observation by CHD and the mixture model:

Mixture model
δ̂ = 0 δ̂ = 1

CHD No 232 70
Yes 76 84

Although the mixture model did not use the CHD labels, it has done a fair
job in discovering the two CHD subpopulations. Linear logistic regression,
using the CHD as a response, achieves the same error rate (32%) when fit to
these data using maximum-likelihood (Section 4.4).

8

5

What you need to know

n  Discriminative vs. Generative classifiers

n  LDA and QDA assume Gaussian class-conditional densities
¨  Results in linear and quadratic decision boundaries, respectively

n  KDE for classification
¨  Challenging in areas with little data or in high dimensions
¨  Estimating class-conditionals is not optimizing classification objective

n  Naïve Bayes assumes factored form
¨  Results in log odds that have GAM form

n  Mixture models allow for unsupervised generative approach
©Emily Fox 2013 9

Readings

n  Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8

©Emily Fox 2013 10

6

11

Online Learning
Perceptron Algorithm

©Emily Fox 2013

STAT/BIOSTAT 527, University of Washington

Emily Fox
May 28th, 2013

Module 5: Classification

Estimating Click Probabilities

n  Goal: Predict whether a person clicks on an ad
n  Basic approach: Logistic regression

Query

Ad Info

Features
of user

MODEL
Yes!

No

7

Challenge 1: Complexity of Computing
Gradients
n  What’s the cost of a gradient update step for LR???

©Emily Fox 2013 13

�

(t+1)
j �

(t)
j + ⌘

(
���(t)

j +
X

i

xij

⇣
yi � p̂(y = 1 | xi,�

(t))
⌘)

Challenge 2: Data is streaming

n  Assumption thus far: Batch data

n  But, e.g., click prediction for ads is a streaming data task:
¨  User enters query, and ad must be selected:

n  Observe xi, and must predict yi

¨  User either clicks or doesn’t click on ad:
n  Label yi is revealed afterwards

¨  Google gets a reward if user clicks on ad

¨  Weights must be updated for next time:

©Emily Fox 2013 14

8

Online Learning Problem

n  At each time step t:
¨  Observe features (covariates) of data point:

n  Note: many assumptions are possible, e.g., data is iid, data is adversarially chosen… details beyond scope of course

¨  Make a prediction:
n  Note: many models are possible, we focus on linear models

¨  Observe true label:
n  Note: other observation models are possible, e.g., we don’t observe the label directly, but only a noisy version... Details

beyond scope of course

¨  Update model:

©Emily Fox 2013 15

The Perceptron Algorithm [Rosenblatt ‘58, ‘62]

n  Classification setting: y in {-1,+1}
n  Linear model

¨  Prediction:

n  Training:
¨  Initialize weight vector:
¨  At each time step:

n  Observe covariates:
n  Make prediction:
n  Observe true class:

n  Update model:
¨  If prediction is not equal to truth

©Emily Fox 2013 16

9

Intuition

n  Why is this a reasonable update rule?

©Emily Fox 2013 17

If ŷ = yt,

�

(t+1) �

(t)

else

�

(t+1) �

(t) + ytxt

ŷ = sign(�(t) · xt)

Which weight vector to report?

n  Practical problem for all online learning methods
n  Suppose you run online learning method and want to sell

your learned weight vector… Which one do you sell???

n  Last one?

n  Random

n  Average

n  Voting + more advanced

©Emily Fox 2013 18

10

Choice can make a huge difference!!

©Emily Fox 2013 19

[Freund & Schapire ’99]

Mistake Bounds

n  Algorithm “pays” every time it makes a mistake:

n  How many mistakes is it going to make?

©Emily Fox 2013 20

11

©Emily Fox 2013 21

Linear Separability: More formally, Using Margin

n  Data linearly separable, if there exists
¨ a vector
¨ a margin

n  Such that

Perceptron Analysis: Linearly Separable Case

n  Theorem [Block, Novikoff]:
¨  Given a sequence of labeled examples:

¨  Each covariate vector has bounded norm:

¨  If dataset is linearly separable:

n  Then the number of mistakes made by the online perceptron on this
sequence is bounded by

©Emily Fox 2013 22

12

Perceptron Proof for Linearly Separable case

n  Every time we make a mistake, we get γ closer to β*:
¨  Mistake at time t: β(t+1) = β(t) + yt

 xt
¨  Taking dot product with β*:
¨  Thus after m mistakes:

n  Similarly, norm of β(t+1) doesn’t grow too fast:
¨ 

¨  Thus, after m mistakes:

n  Putting all together:

©Emily Fox 2013 23

||�(t+1)||2 = ||�(t)||2 + 2yt(�
(t) · xt) + ||xt||2

Beyond Linearly Separable Case
n  Perceptron algorithm is super cool!

¨  No assumption about data distribution!
n  Could be generated by an oblivious adversary,

no need to be iid
¨  Makes a fixed number of mistakes, and it’s

done for ever!
n  Even if you see infinite data

n  However, real world not linearly separable

¨  Can’t expect never to make mistakes again
¨  Analysis extends to non-linearly separable

case
¨  Very similar bound, see Freund & Schapire
¨  Converges, but ultimately may not give good

accuracy (make many many many mistakes)

©Emily Fox 2013 24

13

What is the Perceptron Doing???

n  When we discussed logistic regression:
¨  Started from maximizing conditional log-likelihood

n  When we discussed the perceptron:
¨  Started from description of an algorithm

n  What is the perceptron optimizing????

©Emily Fox 2013 25

©Emily Fox 2013 26

Perceptron Prediction: Margin of
Confidence

14

Hinge Loss

n  Perceptron prediction:

n  Makes a mistake when:

n  Hinge loss (same as maximizing the margin used by SVMs)

©Emily Fox 2013 27

Minimizing Hinge Loss in Batch Setting

n  Given a dataset:

n  Minimize average hinge loss:

n  How do we compute the gradient?

©Emily Fox 2013 28

15

Subgradients of Convex Functions

n  Gradients lower bound convex functions:

n  Gradients are unique at x if function differentiable at x

n  Subgradients: Generalize gradients to non-differentiable points:
¨  Any plane that lower bounds function:

©Carlos Guestrin 2013 29

Subgradient of Hinge

n  Hinge loss:

n  Subgradient of hinge loss:
¨  If yt(β.xt) > 0:
¨  If yt (β.xt) < 0:
¨  If yt (β.xt) = 0:
¨  In one line:

©Emily Fox 2013 30

16

Subgradient Descent for Hinge Minimization

n  Given data:

n  Want to minimize:

n  Subgradient descent works the same as gradient descent:
¨  But if there are multiple subgradients at a point, just pick (any) one:

©Emily Fox 2013 31

(x1, y1), . . . , (xn, yn)

1

n

nX

i=1

`(�, xi) =
1

n

nX

i=1

(�yi(� · xi))+

Perceptron Revisited
n  Perceptron update:

n  Batch hinge minimization update:

n  Difference?

©Emily Fox 2013 32

�

(t+1) �

(t) + I
h
yt(�

(t) · xt)  0
i
ytxt

�

(t+1) �

(t) + ⌘

1

n

n
X

i=1

n

I
h

yi(�
(t) · xi)  0

i

yixi

o

17

What you need to know
n  Notion of online learning
n  Perceptron algorithm
n  Mistake bounds and proof
n  In online learning, report averaged weights at the end
n  Perceptron is optimizing hinge loss
n  Subgradients and hinge loss
n  (Sub)gradient decent for hinge objective

©Emily Fox 2013 33

