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Module 1: Nonparametric Preliminaries 

fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 
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Linear Regression – review  
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n  Model: 

n  Design matrix: 

 

n  Rewrite in matrix form: 

Linear Regression – review  
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n  Least squares estimation: 
¨  Minimize residual sum of squares 

¨  Take gradient and set = 0 

n  In Gaussian case, LS est. = maximum likelihood est. 
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Linear Regression – review  
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n  Fitted values 

 

n  Number of parameters 

 
n  For any x, we can write 

Linear Smoothers 
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n  Definition: 
          of      is a linear smoother if, for each x, there exists 
 
 
    such that 
 
n  Matrix form 

¨  Fitted values 

¨  Smoothing or “hat” matrix 

n  Effective degrees of freedom:   

f̂n f
`(x) = (`1(x), . . . , `n(x))

T
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Linear Smoothers 
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n  Note 1:  
 
A linear smoother does not imply that           is linear in x 

n  Note 2: 
 
If               for all i, then                    for all x    

f(x)

Yi = c f̂n(x) = c
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fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 

10 ©Carlos Guestrin 2005-2009 
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 

Ridge Regression 
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n  New objective: 

 
¨  Reformulate: 

 
¨  Set gradient = 0 

n  Linear smoother!! 

�̂

ridge = argmin
�

nX

i=1

(yi � (�0 + �

T
xi))

2 + �||�||22
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Ridge Regression 

©Emily Fox 2013 13 

n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 

 

Shrinkage Properties 
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n  If orthogonal covariates 

n  Effective degrees of freedom:   

 

XTX = I

�̂ridge = (XTX + �I)�1XT y
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 

A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior  
 
n  For large λ 

 
n  The posterior is 

yi | � ⇠ N(�0 + x

T
i �,�

2)

� ⇠ N

✓
0,

�2

�
Ip

◆

� | y ⇠ N
⇣
�̂ridge,�2(XTX + �I)�1XTX�2(XTX + �I)�1

⌘
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 

LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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LASSO Solutions 

n  The LASSO solution is nonlinear in y…not a linear smoother 
¨  Degrees of freedom cannot be computed as before 
¨  Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011) 
¨  Standard errors via the bootstrap 

n  Efficient algorithms exist for solving 
¨  Will return to this in a few slides 
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Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression
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