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fMRI Prediction Subtask
= JEEE

m Goal: Predict semantic features from fMRI image

ooooooooooooo




Linear Regression — review
" S
= Model:

m Design matrix:

m Rewrite in matrix form:
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Linear Regression — review
" JEE—
m Least squares estimation:
Minimize residual sum of squares

Take gradient and set =0

m In Gaussian case, LS est. = maximum likelihood est.
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Linear Regression — review
" S

m Fitted values

m Number of parameters

m For any x, we can write
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Linear Smoothers
" JEE
n DAefinition:
fn of f is a linear smoother if, for each x, there exists
Uz) = (La(z), ... lo(2))"
such that

m Matrix form
Fitted values

Smoothing or “hat” matrix

m Effective degrees of freedom:
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Linear Smoothers
= JEE
m Note 1:

A linear smoother does not imply that f () is linear in x

m Note 2:

If Y; = c foralli, then fn(z) = ¢ forall x
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fMRI Prediction Subtask
= JEE

m Goal: Predict semantic features from fMRI image
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Regularization in Linear Regression
" S

m Overfitting usually leads to very large parameter choices, e.g.:
2.2+ 3.1 X—-0.30 X2 -1.1 + 4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Ridge Regression
" JEEE

m Ameliorating issues with overfitting:

m New objective:
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Ridge Regression
" JE

m New objective: n
Bm‘dge _ argmﬁinZ(yi _ (50 + BTCU'L'))2 + AHBH%
=1

Reformulate:
Set gradient =0

m Linear smoother!!
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Ridge Regression
" JEE
m Solution is indexed by the regularization parameter A
m Larger A
m Smaller A

m AsA>0

B AsA >

©Emily Fox 2013

Shrinkage Properties
* JEE—
B’l”idge — (XTX + )\I)_lXTy

m If orthogonal covariates X7 X = J

m Effective degrees of freedom:
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Ridge Coefficient Path
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m Typical approach: select A using cross validation
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A Bayesian Formulation
" JE
m Consider a model with likelihood
yi | B~ N(Bo+ ] B,07)

2
B~ N (0, %Ip)

and prior

m Forlarge A

m The posterior is

Bly~N (B”’dge, 2(XTX + M) XTXo?(XTX + )J)_1>
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Variable Selection
= JEE

m Ridge regression: Penalizes large weights

m What if we want to perform “feature selection™?
E.g., Which regions of the brain are important for word prediction?
Can’t simply choose predictors with largest coefficients in ridge solution
Computationally impossible to perform “all subsets” regression

Stepwise procedures are sensitive to data perturbations and often include
features with negligible improvement in fit

m Try new penalty: Penalize non-zero weights
Penalty:

Leads to sparse solutions
Just like ridge regression, solution is indexed by a continuous param A
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LASSO Regression
* JEE
m LASSO: least absolute shrinkage and selection operator

m New objective:
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LASSO Solutions
= JEE

m The LASSO solution is nonlinear in y...not a linear smoother
Degrees of freedom cannot be computed as before
Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011)
Standard errors via the bootstrap

m Efficient algorithms exist for solving
Will return to this in a few slides
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Geometric Intuition for Sparsity
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Soft Threshholding
" JEE
m To see why LASSO results in sparse solutions, look at
conditions that must hold at optimum

m [, penalty ||BH1 is not differentiable whenever 3; = 0

m Look at subgradient...
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Subgradients of Convex Functions
" S

m Gradients lower bound convex functions:

m Gradients are unique at x if function differentiable at x

m Subgradients: Generalize gradients to non-differentiable points:
Any plane that lower bounds function:
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Soft Threshholding

= JEE
m Gradient of RSS term:

m Subgradient of full objective:
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Soft Threshholding

" JE
m Set subgradient = 0: ajfj—c;i—=XA B <0
aﬁjF(ﬂ): [—Cj—A,—Cj-i-)\} 5]‘:0
ajﬁj—cj—i—)\ ﬂ]‘>0

N
m The value of ¢; =2 zi(y' — B ;2" ;) constrains O;
=1

ooooooooooooo




Soft Threshholding
"

) { (cj+N)/a; ¢; < =X

B; = 0 ¢ € [=M\ N

(cj—A)/aj Cj>>\

=

=
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Coordinate Descent
= JEE

Given a function F
Want to find minimum

Coordinate descent:

How do we pick a coordinate?

When does this converge to optimum?
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Often, hard to find minimum for all coordinates, but easy for one coordinate
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Stochastic Coordinate Descent for LASSO
(aka Shooting Algorithm)
N

m Repeat until convergence
Pick a coordinate j at random

n Set: A (Cj + )\)/aj c; < -
B = 0 cj € [=A A
(cj—)\)/aj Cj>)\
= Where:
N N
a; =23 (@) =23 a0 -l
i=1 =1

m Other common technique = LARS
Least angle regression and shrinkage, Efron et al. 2004
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Recall: Ridge Coefficient Path
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m Typical approach: select A using cross validation
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Now: LASSO Coefficient Path
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LASSO Example
" JEEE
Term Least Squares  Ridge Lasso
Intercept 2.465 2.452  2.468
lcavol 0.680 0.420 0.533 From
. Rob
2 2 1
lweight 0.263 0.238 0.169 Tibshirani
age —0.141 —0.046 slides
lbph 0.210 0.162  0.002
svi 0.305 0.227 0.094
lcp —0.288 0.000
gleason —0.021 0.040
pggib 0.267 0.133
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Sparsistency
* JEE—

m Typical Statistical Consistency Analysis:

Holding model size (p) fixed, as number of samples (n) goes to
infinity, estimated parameter goes to true parameter

m Here we want to examine p >> n domains

m Let both model size p and sample size n go to infinity!
Hard case: n= klog p
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Sparsistency
* JEE——

m Rescale LASSO objective by n:

m Theorem (Wainwright 2008, Zhao and Yu 2006, ...):
Under some constraints on the design matrix X, if we solve the LASSO
regression using

Then for some ¢,>0, the following holds with at least probability

The LASSO problem has a unique solution with support contained
within the true support
B7| > caA, for some c,>0, then S(5) = S(8*)

If min
JES(B*)
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Comments
= JEE

m In general, can’t solve analytically for GLM (e.qg., logistic reg.)

Gradually decrease A and use efficiency of computing B()\k) from B()\k,l)
= warm-start strategy

See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

m If n > p, but variables are correlated, ridge regression tends
to have better predictive performance than LASSO
(Zou & Hastie 2005)
Elastic net is hybrid between LASSO and ridge regression
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Fused LASSO
= JEEE

m  Might want coefficients of neighboring
voxels to be similar

m How to modify LASSO penalty to account for this?

m Graph-guided fused LASSO
Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
Penalty:
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A Bayesian Formulation
" JEE
m Consider a model with likelihood
o yi | B~ N(Bo+ ] B8,07)
P Bj ~ Lap(B;; )
Lap(8;; A) = ge_wj'

where
m Forlarge A

m LASSO solution is equivalent to the mode of the posterior
m Note: posterior mode # posterior mean in this case

m There is no closed-form for the posterior. Rely on approx. methods.
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