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Module 1: Nonparametric Preliminaries 

fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 
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Linear Regression – review  
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n  Model: 

n  Design matrix: 

 

n  Rewrite in matrix form: 

Linear Regression – review  
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n  Least squares estimation: 
¨  Minimize residual sum of squares 

¨  Take gradient and set = 0 

n  In Gaussian case, LS est. = maximum likelihood est. 
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Linear Regression – review  
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n  Fitted values 

 

n  Number of parameters 

 
n  For any x, we can write 

Linear Smoothers 
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n  Definition: 
          of      is a linear smoother if, for each x, there exists 
 
 
    such that 
 
n  Matrix form 

¨  Fitted values 

¨  Smoothing or “hat” matrix 

n  Effective degrees of freedom:   

f̂n f
`(x) = (`1(x), . . . , `n(x))

T
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Linear Smoothers 
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n  Note 1:  
 
A linear smoother does not imply that           is linear in x 

n  Note 2: 
 
If               for all i, then                    for all x    

f(x)

Yi = c f̂n(x) = c

8 
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fMRI Prediction Subtask 
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n  Goal: Predict semantic features from fMRI image 

Features 
of word 

Regularization in Linear Regression 

n  Overfitting usually leads to very large parameter choices, e.g.: 

n  Regularized or penalized regression aims to impose a 
“complexity” penalty by penalizing large weights 
¨  “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 

10 ©Carlos Guestrin 2005-2009 
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Ridge Regression 
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n  Ameliorating issues with overfitting:  

n  New objective: 

Ridge Regression 
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n  New objective: 

 
¨  Reformulate: 

 
¨  Set gradient = 0 

n  Linear smoother!! 

�̂

ridge = argmin
�

nX

i=1

(yi � (�0 + �

T
xi))

2 + �||�||22
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Ridge Regression 
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n  Solution is indexed by the regularization parameter λ 
n  Larger λ 

n  Smaller λ  

n  As λ à 0 

n  As λ à∞ 

 

Shrinkage Properties 
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n  If orthogonal covariates 

n  Effective degrees of freedom:   

 

XTX = I

�̂ridge = (XTX + �I)�1XT y
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Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 

A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior  
 
n  For large λ 

 
n  The posterior is 

yi | � ⇠ N(�0 + x

T
i �,�

2)

� ⇠ N

✓
0,

�2

�
Ip

◆

� | y ⇠ N
⇣
�̂ridge,�2(XTX + �I)�1XTX�2(XTX + �I)�1

⌘
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Variable Selection 
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n  Ridge regression: Penalizes large weights 
 

n  What if we want to perform “feature selection”? 
¨  E.g., Which regions of the brain are important for word prediction? 
¨  Can’t simply choose predictors with largest coefficients in ridge solution 
¨  Computationally impossible to perform “all subsets” regression 

¨  Stepwise procedures are sensitive to data perturbations and often include 
features with negligible improvement in fit  

n  Try new penalty: Penalize non-zero weights 
¨  Penalty: 

¨  Leads to sparse solutions 
¨  Just like ridge regression, solution is indexed by a continuous param λ 

LASSO Regression 
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n  LASSO: least absolute shrinkage and selection operator 

n  New objective: 
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LASSO Solutions 

n  The LASSO solution is nonlinear in y…not a linear smoother 
¨  Degrees of freedom cannot be computed as before 
¨  Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011) 
¨  Standard errors via the bootstrap 

n  Efficient algorithms exist for solving 
¨  Will return to this in a few slides 

©Emily Fox 2013 19 

Geometric Intuition for Sparsity 
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Picture of Lasso and Ridge regression

β̂ β̂2
. .β
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β

Lasso Ridge Regression

From  
Rob 
Tibshirani 
slides 
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Soft Threshholding  

n  To see why LASSO results in sparse solutions, look at 
conditions that must hold at optimum 

n  L1 penalty            is not differentiable whenever  

n  Look at subgradient… 

©Emily Fox 2013 21 

�j = 0||�||1

Subgradients of Convex Functions 

n  Gradients lower bound convex functions: 

n  Gradients are unique at x if function differentiable at x 

n  Subgradients: Generalize gradients to non-differentiable points: 
¨  Any plane that lower bounds function: 

©Carlos Guestrin 2013 22 
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Soft Threshholding  

n  Gradient of RSS term: 

n  Subgradient of full objective: 
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Soft Threshholding  

n  Set subgradient = 0: 

n  The value of              constrains 
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cj = 2
NX

i=1

x

i
j(y

i � �

0
�jx

i
�j) �j

@�jF (�) =

8
<

:

aj�j � cj � � �j < 0
[� cj � �,�cj + �] �j = 0

aj�j � cj + � �j > 0
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Soft Threshholding  
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�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

From  
Kevin Murphy 
textbook 

Coordinate Descent 
n  Given a function F 

¨  Want to find minimum 

n  Often, hard to find minimum for all coordinates, but easy for one coordinate 
 
n  Coordinate descent: 

n  How do we pick a coordinate? 

n  When does this converge to optimum?  

©Carlos Guestrin 2013 26 



14 

Stochastic Coordinate Descent for LASSO 
(aka Shooting Algorithm) 

n  Repeat until convergence 
¨ Pick a coordinate j at random 

n  Set: 

n  Where:  

n  Other common technique = LARS 
¨ Least angle regression and shrinkage, Efron et al. 2004 
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�̂j =

8
<

:

(cj + �)/aj cj < ��
0 cj 2 [��,�]

(cj � �)/aj cj > �

cj = 2
NX

i=1

x

i
j(y

i � �

0
�jx

i
�j)aj = 2

NX

i=1

(xi
j)

2

Recall: Ridge Coefficient Path 

n  Typical approach: select λ using cross validation 
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From  
Kevin Murphy 
textbook 
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Now: LASSO Coefficient Path  
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From  
Kevin Murphy 
textbook 

LASSO Example  
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Estimated coefficients

Term Least Squares Ridge Lasso

Intercept 2.465 2.452 2.468

lcavol 0.680 0.420 0.533

lweight 0.263 0.238 0.169

age −0.141 −0.046

lbph 0.210 0.162 0.002

svi 0.305 0.227 0.094

lcp −0.288 0.000

gleason −0.021 0.040

pgg45 0.267 0.133

From  
Rob 
Tibshirani 
slides 
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Sparsistency 

n  Typical Statistical Consistency Analysis:  
¨  Holding model size (p) fixed, as number of samples (n) goes to 

infinity, estimated parameter goes to true parameter 

n  Here we want to examine p >> n domains 
n  Let both model size p and sample size n go to infinity! 

¨  Hard case: n = k log p 
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Sparsistency 

n  Rescale LASSO objective by n: 

n  Theorem (Wainwright 2008, Zhao and Yu 2006, …): 
¨  Under some constraints on the design matrix X, if we solve the LASSO 

regression using 

     
     Then for some c1>0, the following holds with at least probability 
 
 
•  The LASSO problem has a unique solution with support contained 

within the true support 
•  If        for some c2>0, then  
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min
j2S(�⇤)

|�⇤
j | > c2�n S(�̂) = S(�⇤)
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Comments 
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n  In general, can’t solve analytically for GLM (e.g., logistic reg.) 
¨  Gradually decrease λ and use efficiency of computing            from 

= warm-start strategy  
¨  See Friedman et al. 2010 for coordinate ascent + warm-starting strategy 

n  If n > p, but variables are correlated, ridge regression tends  
to have better predictive performance than LASSO  
(Zou & Hastie 2005) 
¨  Elastic net is hybrid between LASSO and ridge regression 

 
 

�̂(�k) �̂(�k�1)

Fused LASSO 
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n  Might want coefficients of neighboring  
voxels to be similar 

n  How to modify LASSO penalty to account for this? 

n  Graph-guided fused LASSO 
¨  Assume a 2d lattice graph connecting neighboring pixels in the fMRI image 
¨  Penalty: 
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A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior 
 
     where  
 
n  For large λ 

n  LASSO solution is equivalent to the mode of the posterior 
n  Note: posterior mode ≠ posterior mean in this case 
 
 
n  There is no closed-form for the posterior.  Rely on approx. methods. 

yi | � ⇠ N(�0 + x

T
i �,�

2)

�j ⇠ Lap(�j ;�)

Lap(�j ;�) =
�

2
e��|�j |


