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Module 1: Nonparametric Preliminaries 

Smoothing Parameter 

©Emily Fox 2013 2 

n  In both ridge and lasso regression, we saw that the parameter 
λ controlled the solution 
¨  Often, can straightforwardly equate with effective degrees of freedom 

n  Which λ (à estimator) should we choose??? 
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Two Goals 
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n  Model Selection: estimating the performance of models in order to 
select the best one 
¨  E.g., choosing λ 

n  Model Assessment: having chosen a final model, estimate its 
prediction error (generalization error) on new data 

n  Ideally, divide data into 3 parts 

 

TRAIN VALIDATION TEST 

Focus on Model Selection 
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n  Which estimator/smoothing parameter should we choose? 

n  Recall metrics for assessing the performance of an estimator… 

TRAIN VALIDATION 
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Measuring Predictive Performance 

n  Assume estimate           based on training data y1,…, yn  

n  The generalization error provides a measure of 
predictive performance 

©Emily Fox 2013 5 

f̂n(·)

GE(f̂n) = EY,X

h
L(Y, f̂n(X))

i

Measuring Predictive Performance 

n  Assume L2 loss 
n  Averaging over repeat training sets Yn = Y1,…, Yn we get 

the predictive risk at x* 

 
 

n  Recall  
©Emily Fox 2013 6 

EY ⇤,Yn

h
(Y ⇤ � f̂n(x

⇤))2
i
=

MSE[f̂n(x)] = bias(f̂n(x))
2 + var(f̂n(x))
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Measuring Predictive Performance 

n  Finally, let’s average over covariates x 

¨  Integrated MSE 

 
¨  Average MSE 

n  Note:    avg. pred. risk =        + avg. MSE 
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�2

Bias-Variance Tradeoff 

n  Minimizing risk = balancing bias and variance 

n  Note: f(x) is unknown, so cannot actually compute MSE 

©Emily Fox 2013 8 
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Focus on Model Selection 
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n  Which estimator/smoothing parameter should we choose? 

 

n  We saw that minimizing (average) prediction error can be 
equated with minimizing (average) MSE 

 
n  With a validation set, we can estimate the prediction error 

TRAIN VALIDATION 

Data Scarce Approximations 

©Emily Fox 2013 10 

n  Often, we do not have enough data to form suitably sized 
training and validation sets 
¨  What is a good training/test split?  Sensitivity? 
¨  Typically want to use as much data for training as possible 

 
n  Rely on other approximations 
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Approx 1: Training Data Only 
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n  Goal: Minimize average MSE 

n  Solution: Use training error 

min
�

E

"
1

n

nX

i=1

(f(xi)� f̂

�
n (xi))

2

#

Approx 2: Cross Validation 
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n  Goal: Minimize average MSE 

n  Solution: Mimic heldout data using *training* data 

n  Leave-one-out (LOO) cross validation (CV) algorithm: 
¨  Estimate fit using all but ith data point 
¨  Predict ith observation 
¨  Repeat for all i 

¨  Repeat for all values of λ 
 

min
�

E

"
1

n

nX

i=1

(f(xi)� f̂

�
n (xi))

2

#
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Approx 2: Cross Validation 
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n  Reasoning 

n  For linear smoothers 

n  Warning: Curves can be very flat…Don’t just choose and use without 
thinking.  Some rules of thumb (see Elements of Statistical Learning) 

Approx 2: Cross Validation 
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n  K-fold cross validation 

n  Algorithm 
1.  Fit model using data with kth fraction removed 
2.  Using fitted model, compute 

3.  Store 

4.  Repeat for each value of λ using same split of the data 

TRAIN TRAIN TRAIN VALID-
ATION TRAIN 

CVk =
1

nk

X

i2J(k)

(yi � f̂

�
�k(xi))

CV =
1

K

KX

k=1

CVk
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Approx 3: Generalized CV 
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n  Recall LOO ordinary CV for linear smoothers 

n  Instead of        , use 

n  Often very close to OCV solution  

Lii
1

n

nX

i=1

Lii

CV (�) =
1

n

nX

i=1

 
yi � f̂

�
n (xi)

1� Lii

!2

Approx 3: Generalized CV 
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n  One motivation: Invariance to orthonormal transformations 

 

GCV (�) =
1

n

nX

i=1

 
yi � f̂

�
n (xi)

1� ⌫�
n

!2
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Approx 3: Generalized CV 
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n  Using  

GCV (�) =
1

n

nX

i=1

 
yi � f̂

�
n (xi)

1� ⌫�
n

!2

(1� x)�2 ⇡ 1 + 2x

Approx 4: Mallows Cp Statistic 
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n  Goal: Minimize average MSE 

n  Solution: Approximate directly 

min
�

E

"
1

n

nX

i=1

(f(xi)� f̂

�
n (xi))

2

#

avg. MSE =
1

n
E
h
(f � f̂�

n )
T (f � f̂�

n )
i
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Approx 4: Mallows Cp Statistic 
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n  Estimate as 

n  Note:  Arises from considering L2 loss.  Log-likelihood loss 
leads to AIC.  For BIC, consider Bayesian model selection 

avg. MSE =
1

n
E
⇥
(Y � L�Y )T (Y � L�Y )

⇤
� �2 +

2

n
⌫��

2

Bayesian Model Selection 
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n  Assume some M possible models 
¨  Model Mm  m=1,…,M  has parameters          and prior   
¨  Prior over models  

n  Model posterior 

n  Compare models: 

✓m p(✓m | Mm)

p(Mm | Z) / p(Mm)p(Z | Mm)

/ p(Mm)

Z
p(Z | ✓m,Mm)p(✓m | Mm)d✓m

p(Mm)

p(Mm | Z)

p(M` | Z)
=

p(Mm)p(Z | Mm)

p(M`)p(Z | M`)

>
< 1
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Bayesian Model Selection 
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n  For Bayes factor, approximate  

n  If loss is             , then equivalent to BIC 
¨  Minimizing BIC = maximizing approximated posterior  

n  However, in addition to being able to select the best model, in 
Bayesian framework we also get the relative merit of each 

n  BIC is asymptotically consistent, but AIC is not 
n  For finite samples, BIC tends to choose too simple models 

log p(Z | Mm) ⇡ log p(Z | ˆ✓m,Mm)� ⌫m
2

log n+O(1)

�2 log p(Z | ˆ✓m,Mm)

⇡ e�
1
2BICm

PM
`=1 e

� 1
2BIC`

22 

Spline Model Overview, 
Regression Splines, 
Smoothing Splines 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 11th, 2013 

©Emily Fox 2013 

Module 2: Splines and Kernel Methods 
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Moving Beyond Linearity 

©Emily Fox 2013 23 

n  So far we have assumed standard linear models 

n  In the case of many predictors relative to number of observations, 
we considered penalized regression to avoid overfitting 

n  Often a convenient form, and necessary to assume simple 
structure to avoid overfitting in data-scarce regimes, but linear 
assumption rarely holds in practice 

Moving Beyond Linearity 

©Emily Fox 2013 24 

n  Consider generic functional forms (univariate x for now) 

¨  If constrained to linear forms à  
¨  If arbitrary à  

n  As before, penalize complexity.  Here, in terms of roughness. 

¨  If λ à 0,  
¨  If λ à ∞, 

n  Remarkable result: Explicit, finite-dimensional minimizer 
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Backtrack a bit… 

©Emily Fox 2013 25 

n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)

Piecewise Polynomial Fits 

©Emily Fox 2013 26 

n  Again, assume x univariate 

n  Polynomial fits are often good locally, but not globally 
¨  Adjusting coefficients to fit one region can make the function go wild in 

other regions 

n  Consider piecewise polynomial fits 
¨  Local behavior can often be well approximated by low-order polynomials 
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Piecewise Polynomial Fits 

©Emily Fox 2013 27 

2012 Jon Wakefield, Stat/Biostat 527

(a) (b)

(c) (d)

Figure 20: Piecewise polynomials, for the LIDAR data: (a) constant,

(b) linear, (c) quadratic, (d) cubic.

152

2012 Jon Wakefield, Stat/Biostat 527

To motivate spline models, we fit piecewise constant, linear,

quadratic and cubic models using least squares, with three pieces in

each case.

The fits are displayed in Figure 20. The piecewise linear model is

shown in Figure 20(b). By forcing the curve to be continuous but

only allowing linear segments we see that the fit is not good

(particularly in the first segment). The lack of smoothness is also

undesirable.

The quadratic and cubic fits in panels (c) and (d) are far more

visually appealing, though neither provide satisfactory fits, because

we have only allowed three piecewise polynomials. In particular, in

panel (d) the cubic fit is still poor at the left endpoint.

153

From 
Wakefield 
book 

LIDAR Data Example 

Piecewise Constant/Linear Fits 

©Emily Fox 2013 28 

n  Example 1: Piecewise constant, with 3 basis functions 

  
n  Resulting model: 

n  Fit: Take mean of data in each region 

n  Example 2: Piecewise linear 
n  Add three basis functions: 

142 5. Basis Expansions and Regularization
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

h1(x) =

h2(x) =

h3(x) =

f(x) =
3X

m=1

�mhm(x)

From Hastie, Tibshirani, 
Friedman book 
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

hm+3 = hm(x)x
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Regression Splines – Linear  

©Emily Fox 2013 29 

n  Resulting piecewise linear model: 

¨  # of params? 

n  Typically prefer continuity… 
¨  Enforce 

¨  Which implies 

¨  # params? 

142 5. Basis Expansions and Regularization
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FIGURE 5.1. The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
ξ1 and ξ2. The blue curve represents the true function, from which the data were
generated with Gaussian noise. The remaining two panels show piecewise lin-
ear functions fit to the same data—the top right unrestricted, and the lower left
restricted to be continuous at the knots. The lower right panel shows a piecewise–
linear basis function, h3(X) = (X − ξ1)+, continuous at ξ1. The black points
indicate the sample evaluations h3(xi), i = 1, . . . , N .

From Hastie, Tibshirani, 
Friedman book 

f(x) = I(x < ⇠1)(�1 + �4x) + I(⇠1  x < ⇠2)(�2 + �5x) + I(⇠2  x)(�3 + �6x)

Regression Splines – Linear  

©Emily Fox 2013 30 

n  More directly, we can use the truncated power basis 

 

n  Resulting model: 

n  Continuous at the knots because all prior basis functions are 
contributing to the fit up to any single x 

From Wakefield book 

2012 Jon Wakefield, Stat/Biostat 527

The lack of continuity is a problem with this model, but we can

impose two constraints to enforce f(ξ−1 ) = f(ξ+
1 ) and

f(ξ−2 ) = f(ξ+
2 ), which implies

β1 + ξ1β4 = β2 + ξ1β5

β2 + ξ2β5 = β3 + ξ2β6

to give four parameters in total. A neater way of incorporating

these constraints is with the basis:

h1(x) = 1, h2(x) = x, h3(x) = (x−ξ1)+, h4(x) = (x−ξ2)+ (42)

where t+ denotes the positive part. The generic basis (x − ξ)+ is

sometimes referred to as a truncated line. The resultant function

f(x) = β0 + β1x + β2(x − ξ1)+ + β3(x − ξ2)+

is continuous at the knots, since all prior basis functions are

contributing to the fit up to any single x value.

156

2012 Jon Wakefield, Stat/Biostat 527

The model defined by the basis (42) is an order-2 spline and the

first derivative is discontinuous.

Figure 21 shows the basis functions for this representation.

Figure 21: Basis functions for piecewise linear model with two knots

at ξ1 and ξ2. The solid lines are the bases 1 and x, and the dashed

lines are the bases (x − ξ1)+ and (x − ξ2)+.

157

h3(x) = (x� ⇠1)+

h4(x) = (x� ⇠2)+

h2(x) = x

h1(x) = 1
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Regression Splines – Cubic  

©Emily Fox 2013 31 

n  Naively, extend as 

n  But, 1st derivate is discontinuous (check this) 
n  Drop the truncated linear basis: 

n  Has continuous 1st derivative (check), but not 2nd 

n  Popular to consider cubic spline: 

 
n  Has continuous 1st and 2nd derivatives 
n  Typically people stop here 

f(x) = �0 + �1x+ �2x
2 + �3(x� ⇠1)+ + �4(x� ⇠1)

2
+ + �5(x� ⇠2)+ + �6(x� ⇠2)

2
+

f(x) = �0 + �1x+ �2x
2 + �3x

3 + b1(x� ⇠2)
3
+ + b2(x� ⇠2)

3
+

Cubic Spline Basis and Fit 

©Emily Fox 2013 32 

5.2 Piecewise Polynomials and Splines 143
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Piecewise Cubic Polynomials

ξ1ξ1

ξ1ξ1

ξ2ξ2

ξ2ξ2

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

2012 Jon Wakefield, Stat/Biostat 527

Figure 22: Basis functions for a piecewise cubic spline model, with

two knots at ξ1 and ξ2. Panel (a) shows the bases 1, x, x2, x3, and

panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+.

160

2012 Jon Wakefield, Stat/Biostat 527

For K knots we write the cubic spline function as

f(x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

bk(x − ξk)3+, (43)

so that we have K + 4 coefficients.

We simply have a linear model, f(x) = E[Y | c] = cγ, where

c =

2

6666664

1 x1 x2
1 x3

1 (x1 − ξ1)3+ ... (x1 − ξK)3+

1 x2 x2
2 x3

2 (x2 − ξ1)3+ ... (x2 − ξK)3+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3+ ... (xn − ξK)3+

3

7777775
, γ =

2

666666666666664

β0

β1

β2

β3

b1

...

bK

3

777777777777775

.

Estimator: bγ = (cTc)−1cTY . Linear smoother: bY = SY , S = c(cTc)−1cT.
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Cubic Splines as Linear Smoothers 

©Emily Fox 2013 33 

n  Cubic spline function with K knots: 

 
n  Simply a linear model 

n  Estimator: 

n  Linear smoother: 

f(x) = �0 + �1x+ �2x
2 + �3x

3 +
KX

k=1

bk(x� ⇠k)
3
+

Natural Cubic Splines 

©Emily Fox 2013 34 

n  For polynomial regression, fit near boundaries is erratic. 
¨  Problem is worse for splines: each is fit locally so no global constraint 

n  Natural cubic splines enforce linearity beyond boundary knots 

n  Starting from a cubic spline basis, the natural cubic spline basis is 

n  Derivation 

N1(x) = 1 N2(x) = x Nk+2(x) = dk(x)� dK�1(x)

dk(x) =
(x� ⇠k)3+ � (x� ⇠K)3+

⇠K � ⇠k
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Regression Splines – Summary  

©Emily Fox 2013 35 

n  Definition: 
 An order-M spline with knots 
 is a piecewise M-1 degree polynomial with M-2 
 continuous derivatives as the knots 

 
 A spline that is linear beyond the boundary knots is 
 called a natural spline 

n  Choices: 
¨  Order of the spline 
¨  Number of knots 
¨  Placement of knots 

⇠1 < ⇠2 < · · · < ⇠K

Return to Smoothing Splines 

©Emily Fox 2013 36 

n  Objective: 

 
n  Solution: 

¨  Natural cubic spline 
¨  Place knots at every observation location xi 

n  Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook 

n  Notes: 
¨  Would seem to overfit, but penalty term shrinks spline coefficients 

toward linear fit 
¨  Will not typically interpolate data, and smoothness is determined by λ 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx
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Smoothing Splines 

©Emily Fox 2013 37 

n  Model is of the form: 

n  Rewrite objective: 

n  Solution: 

n  Linear smoother: 

f(x) =
nX

j=1

Nj(x)�j

(y �N�)T (y �N�) + ��T⌦N�

Splines – Summary  

©Emily Fox 2013 38 

n  Regression splines:  
 Fewer number of knots and no regularization 

 
n  Smoothing splines:  

 Knots at every observation and regularization 
 (smoothness penalty) to avoid interpolators 

  


