Module 1: Nonparametric Preliminaries

Selecting Smoothing
Parameters

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 11t 2013

©Emily Fox 2013

Smoothing Parameter
" JEE
m In both ridge and lasso regression, we saw that the parameter

A controlled the solution
Often, can straightforwardly equate with effective degrees of freedom

m Which A (= estimator) should we choose??? Lineas s,,\oo-kl,.(/s
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Two Goals

Model Selection: estimating the performance of models in order to
select the best one
o E.g., choosing A

@nodel Assessment: having chosen a final model, estimate its
prediction error (generalization error) on new data

m |deally, divide data into 3 par
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Focus on Model Selection

m Which estimator/smoothing parameter should we choose?

VALIDATION

m Recall metrics for assessing the performance of an estimator...
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Measuring Predictive Performance
" JEE——
= Assume estimate f,,(+) based on training data A

T Q‘n(e,cl
m The generalization error provides a measure of
predictive performance

GE(fx) = By [L(Y, fa(X)]
= /t/ (-'\ch
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Measuring Predictive Performance
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m Assume L, loss ER ORI €[e)=0 vorle)s

m Averaging over repeat training sets Y, = Y, ..., Y, we get
the predictive risk at x°

By, [ = fu@)?] = By LY™-6(v) o) 1]
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m Recall MSE[f,(x)] = bias(f,(2))? + var(f,(z))
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Measuring Predictive Performance
" JEE

m Finally, let's average over covariates x

1 Integrated MSE J" HSE (?{\ [x)) ‘P [XJ c[)(

qumwmory VAT ol srputs

[ Average MSE
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m Note: (avg. pred. risk = (72+ﬂg._M_&E)
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Bias-Variance Tradeoff (&‘pr‘muﬁ
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m Minimizing risk = balancing bias and variance
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= Note: fgxg js unknown, so cannot actually compute MSE
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Focus on Model Selection
= JEEE

m Which estimator/smoothing parameter should we choose?

noex A
oo
n m

m We saw that minimizing (average) prediction error can be 1

equated with minimizing (average) MSE ,lpb\
sk, Cam Lraimi™)

wsn
m With a valldathn set, We canrestimate the prediction error

L7 (g B

A=) L \05 n \/A\c
g\:[l.
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Data Scarce Approximations
" JEEE
m Often, we do not have enough data to form suitably sized
training and validation sets

1 What is a good training/test split? Sensitivity?
0 Typically want to use as much data for training as possible

m Rely on other approximations
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T _UCE UG
Approx A= Traming Data Only

m Goal: Minimize average MSE

LS () - fm»))?]

=1
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A

m Solution: Use tr%mlng error
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Approx 2: Cross Validation
" JEE—

m Goal: Minimize average MSE
n

min %me — PMa))?

m Solution: Mimic heldout data using *training* data

m Leave-one-out (LOO) cross validatign (CV) algorithm:
[ Estimate fit using all but /" data point f no oS- t/"
A &
[ Predict t" observation
1 Repeat for all i

Q)= & 2L Y

azh

1 Repeat for all values of A
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Approx 2: Cross Validation
" JEEE
T e (k- 60 ]z B »«Cfxa\*@”*ﬂ)m}
RN AR "3”
cog E[(Q(sa\«?n("#’U

m For linear smoothers

) 3 ly do B
CV()) = (y‘l__ | i o ‘/nt‘z (P'r’\\
c\/\\_/ A_ :th fian elemenk oF
)\ ’ 13,{— Mak . X

m Warning: Curves can be very flat...Don'’t just choose and use without
thinking. Some rules of thumb (see Elements of Statistical Learning)
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Approx 2: Cross Validation

k\“’;“‘-\(f k:? [0)

m K-fold cross validation

Ly L m\’s'“e’ 3
L] Algorlthm w obg"\
1. Fit model using data with k™ fraction removed  yln 25‘;0,_?
2. Using fitted model, compute wlo K A
) 1 A
CVi=— > (i — (@)
D) L ok
(I\&lctj (:o/

3. Store

V(ﬂ 1 Z v,

4. Repeat for each value of )\ using same split of the data
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Approx 3: Generalized CV
* JEE—
m Recall LOO ordinary CV for linear §moothers
n o 3\ T 2
vy =Y (—1"11 A ”)

=1

—
—

Vs
m Instead of L“ use —ZL“ = \ C/(L%) = -

et 2 V,f;" )

m Often very close to OCV solution
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Approx 3: Generalized CV
" JEE
n i=1 1-2F
m  One motivation: Invariance to orthonormal transformations
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Approx 3: Generalized CV
"

GCV(N) = %i ( _JM(:EZ)>

3
Q—

m Using (1—2)?~1+2x
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Approx 4: Mallows C, Statistic
"

= Goal: Minimize average MSE (o Linear qmaothe’s

n

min B 1Z(f(371) F(@)?

1=1
m Solution: Approximate directly

o MSE= LB (6= pyT(p- ] = BT (v ~LY (e
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Approx 4: Mallows C Statistic
" JEE
avg. MSE = %E (Y - LAY)T(Y - LY)] —0® + %Wﬂ

m EW
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':' x
m Note: Arises fromb—coﬁsidering L, loss. Log-likelihood loss
leads to AIC. For BIC, consider Bayesian model selection
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Bayesian Model Selection
" JEE—
m Assume some M possible models

Model M,, m=1,...,M has parameters Qm and prior p(@m | Mm)
Prior over models p(M,,,)

m Model posterio
(M, | Z) o< p(Mp)p(Z | M)

x p(My) / P(Z | O My )p(Br | My)

m Compare models:

AN p(Mm ’ Z) _ p(Mm)
(’%55 p(Me|Z) p(Me)J

res/\V 3
—_

e 23
pfken; u;‘f;( B <o
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Bayesian Model Selection

* JE
¢ - )
m For Bayes factor, approximate I’M)\’“ “ ':,_ $ o Gret e
~ VUm
logp(Z ’ Mm) ~ 1ng<Z ‘ emaMm> T Ty 10gn + 0(1)
) e est.
m Iflossis —2logp(Z | 0,,, My,), then equivalent to BIC
Minimizing BIC = maximizing approximated posterior

e

m However, in addition to being able to select the best model, in
Bayesian framework we also get the relative merit of each

o—3BIC,,
=y VY
Z@:]_ e 2:B:[Cg

m BIC is asymptotically consistent, but AIC is not
m For finite samples, BIC tends to choose too simple models
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Module 2: Splines and Kernel Methods

Spline Model Overview,

Regression Splines,
Smoothing Splines

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 11th, 2013
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Moving Beyond Linearity
* JE
m So far we have assumed stangard linear models
wmin Y- XA l)'b — £ By
IS

m In the case of many predictors relative to number of observations,

we considered penalized regression to avoid overfitting

rin lly. Xell, # 28]
A

m Often a convenient form, and necessary to assume simple
structure to avoid overfitting in data-scarce regimes, but linear
assumption rarely holds in practice
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Moving Beyond Linearity
" S

m Consider generic functional forms (univariate x for now)

m‘é;f\ “ \// C(x) “1

If constrained to linear forms > LS S'o('\
If arbitrary > iy\‘kuPo(a,icg/. .. o\u/f'.-lck['/\
m As before, penalize complexity. Here, in terms of roughness.

min [y-¢ (LY + 3 5 ¢" (o dx

FA>0, interpolator W
TA> = 15 sola (Goe) no ¥ 42
m Remarkable result: Explicit, finite-dimensional minimizer

8% natredd cakic spliee w/ lknoks at data ©F5
—_— I
d Smoo{flnims splimz
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Backtrack a bit...

* JEE
m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of

these transformations M roans.
@) = 3 ()
m=1

m What transformations should V\ge l\Jse?
hn(z) = 2y 2 linear Mpde e
. 2 \ éq -

hin(x) =23, hm(z) =220 > Po\xfnom a\ V€4

hon(x) = I(Lin < 2 < Up) > Piteewion constant
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Piecewise Polynomial Fits
" JEE——
m Again, assume x univaE'!ate

m Polynomial fits are often good locally, but not globally

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials
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Piecewise Polynomial Fits
" S
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Wakefield
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Piecewise Constant/Linear Fits
= JEEE

m Example 1: Piecewise constant, with 3 basis functions

hl(x)

=Tlhef)

I
I knok

ha(e) = T(f,e ¥4 o)

hg (CIS)

=T (f£¥%)

3

m Resulting model: f(z) = > Bmhm(x)
m=1

m Fit: Take mean of data in each region

" -,
on > \\/m

m Example 2: Piecewise linear
m Add three basis functions:

himts = hpm(x)x

0\5(/}’ B
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Piecewise Constant
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From Hastie, Tibshirani,
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Regression Splines — Linear

m Resulting piecewise linear model:

f(@) = I(x < &) (Br + Baw) + (61 S < &) (B2 + P5w) + I(€2 < 2) (B3 + fo)

# of params? 6

m Typically prefer continuity...

Enforce 9({.’)'«4(2")
gy 0§
Which implies
ﬁl“'ﬁw’g.: ﬁ;*’gﬁ’z'
67“ S i’: lgs* 6(@"-

# params?
t-1-4
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Continuous Piecewise Linear
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From Hastie, Tibshirani,
Friedman book
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Regression Splines — Linear

hi(z) =1
ho(z) ==
hs(z) = (z — &)+
ha(z) = (z — &)+
m Resulting model:
CLx)z Byx B+ b, x- {‘>“
x /g3 (x- f*»)*

y
00 02 04 06 08 10

m More directly, we can use the truncated power basis 541
d
4

|

|

|

|

|

|

00 02 04 06 08 1.0

From Wakefield book

m Continuous at the knots because all prior basis functions are

contributing to the fit up to any single x
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Regression Splines — Cubic
* JEE
= Naively, extend as 0\0\%5!033’(-'
F(@) = Bo+ Bz + Bar® + Bs(x — &1) 4 + Balx — &) + Bs(x — &)y + Bo(x — )2

—— ——

m But, 15t derivate is discontinuous (check this)
m Drop the truncated linear basis:

1 1
fix)= By Bx 4 /5;X7 4 \3‘(’(’{1)* 4 \oz()(/é';)_\.

m Has continuous 15t derivative (check), but not 2nd

m Popular to consider cubic spline:
f(@) = Bo + 1@ + Box® + B3z® + b1 (z — &)3 + ba(z — Ez)i

m Has continuous 1st and 2" derivatives
m Typically people stop here «-: SMOOH\ «U‘ij'\
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Cubic Spline Basis and Fit

o
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Cubic Splines as Linear Smoothers

® JE—
m Cubic spline function with K knots:

f() = Bo + Bra + Baa® + Baa +Zbkx—£k)

k=1

m Simply a linear model {:({): E(ch') Y .
| X, (e 4 (- '20
. . [ % Zt
| v vt (a-f)e (Kn—f,i b

m Estimator: 7 ok |

; (CTC')"\ C'T\l

m Linear smoother: E Y C (CT(« y( (IT \{ L

Natural Cubic Splines
" J
m For polynomial regression, fit near boundaries is erratic.
Problem is worse for splines: each is fit locally so no global constraint

m Natural cubic splines enforce linearity beyond boundary knots

m Starting from a cubic spline basis, the natural cubic spline basis is

Ni(z) =1 No(x) =2  Niyo(z) =di(x) — dr—1(2)

(z—&)3 — (z—€x)3

di(w) = Ex — &k

m Derivation H\N %

©Emily Fox 2013 34

17



Regression Splines — Summary
* JEE—
m Definition:

An order-M spline with knots {1 < &5 < -+ < €k
is a piecewise M-1 degree polynomial with M-2
continuous derivatives as the knots

A spline that is linear beyond the boundary knots is
called a natural spline

m Choices: we o3
e P
Order of the spline o~
(e Q
Number of knots
Placement of knots
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Return to Smoothing Splines

mfin Z:Zl(yz — f(z))? + A / f"(x)*dx

m Solution: /
Natural cubic spline
Place knots at every observation location x; x

m Objective:

m Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines _« #**

m Modelis of the form:  f(z) = N;(x)B;

i X \'-n&
N AR
m Rewrite objective: oSt S

(y—NB)T(y— NB) + ABTQn B

m Solution: A » oy T
Bz (N N+ 2L Ny e "Joe
m Linear smoother:

LT thia
/\», N(NTN-' )ﬁN} N \/ (_«smx‘w\wjl
~

¢
L)\ '\')"" tf( LA)
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Splines — Summary
" S

m Regression splines:
Fewer number of knots and no regularization

m Smoothing splines:

Knots at every observation and regularization
(smoothness penalty) to avoid interpolators
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