

Approx 1: Training Data Only
• Goal: Minimize average MSE
$$\max_{\substack{m,n \\ m \\ n}} E\left[\frac{1}{n}\sum_{i=1}^{n}(f(x_{i}) - \hat{f}_{n}^{\lambda}(x_{i}))^{2}\right]$$

• Solution: Use training error
 $\min_{\substack{n \\ m \\ n}} \frac{1}{n}\sum_{i=1}^{n}(f(x_{i}) - \hat{f}_{n}^{\lambda}(x_{i}))^{2}$ training error = RSS
min $\frac{1}{n}\sum_{i=1}^{n}(f(x_{i}) - \hat{f}_{n}^{\lambda}(x_{i}))^{2}$ training error = RSS
BAD biased down wards + leads to overfitting
(undersmoothing)
Data was used twice \mathcal{P} est. for \mathcal{L} tried to min
 \mathcal{L} so underest. risk
So underest. risk

Approx 3: Generalized CV

$$GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}_n^{\lambda}(x_i)}{1 - \frac{\nu_{\lambda}}{n} \Re} \right)^2$$
• One motivation: Invariance to orthonormal transformations

$$\begin{array}{c} \gamma_i \times & \longrightarrow & 0 \\ \gamma_i \times & 0 \\ \gamma$$

Approx 3: Generalized CV

$$GCV(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \hat{f}_n^{\lambda}(x_i)}{1 - \frac{\nu_{\Delta}}{n}} \right)^2$$
• Using $(1 - x)^{-2} \approx 1 + 2x$
 $(cv(\lambda)) \approx \frac{1}{n} \sum (y_i - \hat{f}_n^{\lambda}(x_i))^2 + 2y_i \frac{1}{n^2} \sum (y_i - \hat{f}_n^{\lambda}(x_i))^2$
 $= Mallow's Cp stat$
 $(not exactly the right $\hat{\sigma}^2$)$

Г

Approx 4: Mallows
$$C_p$$
 Statistic
• Goal: Minimize average MSE

$$\min_{\lambda} E\left[\frac{1}{n}\sum_{i=1}^{n}(f(x_i) - \hat{f}_n^{\lambda}(x_i))^2\right]$$
• Solution: Approximate directly
avg. MSE = $\frac{1}{n}E\left[(f - \hat{f}_n^{\lambda})^T(f - \hat{f}_n^{\lambda})\right] = \frac{1}{n}E\left[(Y - e - L^{\lambda}Y)(Y - e - L^{\lambda}Y)\right]$

$$= \frac{1}{n}E\left[(Y - L^{\lambda}Y)^T(Y - \hat{C}Y)\right] - \sigma^2 + \frac{1}{n}\sqrt{n}\sigma^2$$

$$uses EE E^T L^{\lambda}E = E[tr(e^T L^{\lambda}E)] = E[tr(L^{\lambda}ET)]$$

$$= \frac{1}{n}Y(L^{T} \sigma^{\lambda}) = \sigma^2 N_{\lambda}$$

