Module 1: Nonparametric Preliminaries

STAT/BIOSTAT 527, University of Washington Emily Fox
April 11 ${ }^{\text {th }}, 2013$

Smoothing Parameter

- In both ridge and lasso regression, we saw that the parameter λ controlled the solution
\square Often, can straightforwardly equate with effective degrees of freedom
- Which $\lambda(\rightarrow$ estimator $)$ should we choose???
Want good predictions

Linear smoothers $V_{\lambda}=t\left(L_{\lambda}\right)$ "hat matrix"

Two Goals

-(1)Model Selection: estimating the performance of models in order to
select the best one
\square E.g., choosing λ
2 Model Assessment: having chosen a final model, estimate its prediction error (generalization error) on new data

- Ideally, divide data into 3 parts

Focus on Model Selection

- Which estimator/smoothing parameter should we choose?

```
TRAIN VALIDATION
```

- Recall metrics for assessing the performance of an estimator...

Measuring Predictive Performance

- Assume estimate $\hat{f}_{n}(\cdot)$ based on training data y_{1}, \ldots, y_{n}
- The generalization error provides a measure of predictive performance

$$
G E\left(\hat{f}_{n}\right)=E_{Y, X}\left[L\left(Y, \hat{f}_{n}(X)\right)\right]
$$

Measuring Predictive Performance

- Assume L_{2} loss $\quad Y=f(x)+\epsilon \quad \$ \quad E[\epsilon]=0 \quad \operatorname{Var}(\epsilon)=\delta^{2}$
- Averaging over repeat training sets $Y_{n}=Y_{1, \ldots}, Y_{n}$ we get the predictive risk at x^{*}
$E_{Y^{*}, \mathbf{Y}_{n}}\left[\left(Y^{*}-\hat{f}_{n}\left(x^{*}\right)\right)^{2}\right]=E_{Y^{*}, Y_{n}}\left[\left(Y_{Y^{*}}-f\left(x^{*}\right)+f\left(x^{*}\right)-\hat{f}_{n}\left(x^{*}\right)\right)^{2}\right]$

- Recall $M S E\left[\hat{f}_{n}(x)\right]=\operatorname{bias}\left(\hat{f}_{n}(x)\right)^{2}+\operatorname{var}\left(\hat{f}_{n}(x)\right)$

Measuring Predictive Performance

- Finally, let's average over covariates x
- Integrated MSE $\quad \int \operatorname{MSE}\left(\begin{array}{r}\left.\hat{f}_{n}(x)\right) p(x) d x \\ \text { summary over all inputs }\end{array}\right.$
\square Average MSE

$$
\frac{1}{n} \sum_{i=1}^{n} \operatorname{MSE}\left(\hat{f}_{n}\left(x_{i}\right)\right) \quad \text { Monte Carlo } \quad x_{i} \sim p
$$

- Note: avg. pred. risk $=\sigma^{2}+$ avg. MSE

$$
\begin{aligned}
& {\left[\frac{1}{n} \sum_{i=1}^{n} E_{Y_{n}, Y_{n}^{*}}\left[\left(Y_{i}^{*}-\hat{f}\left(X_{i}\right)\right)^{2}\right]\right.} \\
& \underset{\text { training }}{\lambda_{\text {efnivex } 2013}} \sum_{\text {new }} \text { obs. } Y_{n}^{*}=Y_{1}^{*}, \ldots, Y_{n}^{*}
\end{aligned}
$$

Bias-Variance Tradeoff

- Minimizing risk $=$ balancing bias and variance

- Note: $f(x)$ is unknown, so cannot actually compute MSE

Focus on Model Selection

- Which estimator/smoothing parameter should we choose?

TRAIN	VALIDATION	index λ
n	m	sire ${ }^{n}$

- We saw that minimizing (average) prediction error can be equated with minimizing (average) MSE
- With a validation set, we can/estimate the prediction error

$$
\begin{gathered}
\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}^{*}-\hat{f}_{n}^{\lambda}\left(x_{i}^{*}\right)\right)^{2} \\
L_{\text {obs. in validat }} \\
\text { size } m
\end{gathered}
$$

Data Scarce Approximations

- Often, we do not have enough data to form suitably sized training and validation sets
\square What is a good training/test split? Sensitivity?
\square Typically want to use as much data for training as possible
- Rely on other approximations

Approx 1: Training Data Only

- Goal: Minimize average MSE unknown

$$
\min _{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\hat{f}_{n}^{\lambda}\left(x_{i}\right)\right)^{2}\right]
$$

- Solution: Use training error

$$
\text { ion: Use training error } \quad \hat{m}^{\text {in }} \frac{1}{n} \sum_{n=1}\left(y_{i}-\hat{S}_{n}^{\lambda}\left(x_{i}\right)\right)^{2} \quad \text { training error }=\frac{\text { RS }}{n}
$$

BAD biased downwards \& leads to overfitting $\begin{gathered}\text { cunbersmoothing) }\end{gathered}$

$$
\text { Data was used twice } \lambda \text { est. fan } \leftarrow \text { tried to min }
$$

Approx 2: Cross Validation

- Goal: Minimize average MSE

$$
\min _{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\hat{f}_{n}^{\lambda}\left(x_{i}\right)\right)^{2}\right]
$$

- Solution: Mimic heldout data using *training* data
- Leave-one-out (LOO) cross validation (CV) algorithm:
\square Estimate fit using all but $i^{\text {th }}$ data point $f_{-i}^{\lambda} \leftarrow$ no dos. y_{i}
\square Predict $i^{\text {th }}$ observation
\square Repeat for all i

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}_{-i}^{\lambda}\left(x_{i}\right)\right)^{2}
$$

Repeat for all values of λ

Approx 2: Cross Validation

$\quad \begin{aligned} & \text { Reasoning } \\ & \quad C V=E\left[\left(y_{i}-\hat{f}_{-i}^{\lambda}\left(x_{i}\right)\right)^{2}\right]=E\left[\left(Y_{i}-f\left(x_{i}\right)+f\left(x_{i}\right)-\hat{f}_{-i}^{\lambda}\left(x_{i}\right)\right)^{2}\right]\end{aligned}$ $=\sigma^{2}+E\left[\left(f\left(x_{i}\right)-\hat{F_{-1}^{3}}\left(x_{i}\right)\right)^{2}\right]$ $=\sigma^{2}+E\left[\left(f\left(x_{i}\right)-\hat{f}_{\hat{z}}^{\lambda}\left(x_{i}\right)\right)^{2}\right]$

- Warning: Curves can be very flat...Don't just choose and use without thinking. Some rules of thumb (see Elements of Statistical Learning)

Approx 2: Cross Validation

- K-fold cross validation

typically $k=5,10$

1. Fit model using data with $k^{\text {th }}$ fraction removed
2. Using fitted model, compute

$$
\begin{gathered}
\mathrm{CV}_{k}^{(\lambda)}=\frac{1}{n_{k}} \sum_{i \in J(k)}\left(y_{i}\right. \\
\mathrm{CV} \stackrel{(\lambda)}{=} \frac{1}{K} \sum_{k=1}^{K} \mathrm{CV}_{k}
\end{gathered}
$$

4. Repeat for each value of λ using same split of the data

Approx 3: Generalized CV

- Recall LOO ordinary CV for linear smoothers

$$
C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{f}_{n}^{\lambda}\left(x_{i}\right)}{1-\underline{\underline{L_{i i}}}}\right)^{2}
$$

- Instead of $L_{i i}^{\lambda}$, use $\frac{1}{n} \sum_{i=1}^{n} L_{i i}^{\lambda}=\frac{1}{n} \operatorname{tr}\left(L^{\lambda}\right)=\frac{V_{\lambda}}{n}$

$$
G C V(\lambda)=\frac{1}{n} \sum\left(\frac{y_{i}-\hat{f}_{n}^{\lambda}\left(x_{i}\right)}{1-\frac{V_{\lambda}}{n}}\right)^{2}
$$

- Often very close to OCV solution

Approx 3: Generalized CV

$$
G C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{f}_{n}^{\lambda}\left(x_{i}\right)}{1-\frac{\nu_{\lambda}}{n} \mathbb{P}}\right)^{2}
$$

- One motivation: Invariance to orthonormal transformations

$$
\left.\begin{array}{c}
y_{1} x \rightarrow Q_{y}, Q_{x} \quad Q^{\top} Q=Q Q^{\top}=I \\
\min (y-x B)^{\top}(y-x B)+\lambda B^{\top} B \\
\min ^{\Uparrow}\left(Q_{y}-Q x B\right)^{\top}\left((X y-Q X B)+\lambda B^{\top} B\right.
\end{array}\right\} \begin{aligned}
& \text { but not } \\
& \text { the same } \\
& O C V \text { sore }
\end{aligned}
$$

If L^{λ} is linear smoother for original data, $L_{Q}^{\lambda}=Q L^{\lambda} Q^{\top}$ is for trans. data

$$
\operatorname{tr}\left(L_{Q}^{\lambda}\right)=\operatorname{tr}\left(Q L^{\lambda} Q^{\top}\right)=\operatorname{tr}\left(L^{\lambda}\right)
$$

Approx 3: Generalized CV

$$
G C V(\lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\hat{f}_{n}^{\lambda}\left(x_{i}\right)}{1-\frac{\nu_{\lambda}}{n}}\right)^{2}
$$

- Using $(1-x)^{-2} \approx 1+2 x$

$$
\begin{aligned}
& G C V(\lambda) \approx \frac{1}{n} \sum\left(y_{i}-\hat{f}_{n}^{\lambda}\left(x_{i}\right)\right)^{2}+\frac{2 \nu_{\lambda}\left(\sigma^{2}\right.}{n} \prec_{\frac{1}{n}} \sum\left(y_{i}-\hat{-}_{n}^{\lambda}\left(x_{i}\right)\right)^{2} \\
& \approx \text { Mallow's } C_{p} \text { stat }
\end{aligned}
$$

(not exactly the right $\hat{\sigma}_{\ldots}^{2}$)

Approx 4: Mallows C_{p} Statistic

- Goal: Minimize average MSE

$$
\min _{\lambda} E\left[\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\hat{f}_{n}^{\lambda}\left(x_{i}\right)\right)^{2}\right]
$$

$$
\begin{aligned}
& \text { - Solution: Approximate directly } \\
& \text { avg. MSE }=\frac{1}{n} E\left[\left(f-\hat{f}_{n}^{\lambda}\right)^{T}\left(f-\hat{f}_{n}^{\lambda}\right)\right]=\frac{1}{n} E\left[\left(\underset{\sim}{\underline{Y}-6-\underline{L}^{\lambda} Y}\right)^{\tau}\left(Y-\ell-L^{\lambda} Y\right)\right] \\
& =\frac{1}{n} E\left[\left(Y-L^{\lambda} Y\right)^{\top}\left(Y-L^{\lambda} Y\right)\right]-\sigma^{2}+\frac{2}{n} V_{>} \sigma^{2} \\
& \text { uses } E\left[\epsilon^{\top} L^{\lambda} \epsilon\right]=E\left[\operatorname{tr}\left(e^{\top} L^{\lambda} \epsilon\right)\right]=E\left[\operatorname{tr}\left(L^{\lambda} \in \epsilon^{\top}\right)\right] \\
& =\operatorname{xr}\left(L^{\lambda} I \sigma^{2}\right)=\sigma^{2} V_{\lambda}
\end{aligned}
$$

Approx 4: Mallows C_{p} Statistic

avg. $\mathrm{MSE}=\frac{1}{n} E\left[\left(Y-L^{\lambda} Y\right)^{T}\left(Y-L^{\lambda} Y\right)\right]-\sigma^{2}+\frac{2}{n} \nu_{\lambda} \sigma^{2}$

- Estimate as

IT

$$
\begin{aligned}
& \text { min Mallow's CP } \\
& \frac{\text { SSS }^{k}}{\hat{\sigma}^{2}}-\left(n-R \nu_{\lambda}\right)
\end{aligned}
$$

- Note: Arises from considering L_{2} loss. Log-likelihood loss leads to AIC. For BIC, consider Bayesian model selection

Bayesian Model Selection

- Assume some M possible models
\square Model $M_{m} m=1, \ldots, M$ has parameters θ_{m} and prior $p\left(\theta_{m} \mid M_{m}\right)$
\square Prior over models $p\left(M_{m}\right)$
- Model posterior training data

$$
\begin{aligned}
p\left(M_{m} \mid Z\right) & \propto p\left(M_{m}\right) p\left(Z \mid M_{m}\right) \\
& \propto p\left(M_{m}\right) \int p\left(Z \mid \theta_{m}, M_{m}\right) p\left(\theta_{m} \mid M_{m}\right) d \theta_{m}
\end{aligned}
$$

- Compare models:

Bayesian Model Selection

- For Bayes factor, approximate Laplace t. of free params $\log p\left(Z \mid M_{m}\right) \approx \log p\left(Z \mid \hat{\theta}_{m}, M_{m}\right)-\frac{\nu_{m}}{2} \log n+O(1)$

- If loss is $-2 \log p\left(Z \mid \hat{\theta}_{m}, M_{m}\right)$, then equivalent to BIC
\square Minimizing BIC $=$ maximizing approximated posterior
- However, in addition to being able to select the best model, in Bayesian framework we also get the relative merit of each

$$
\approx \frac{e^{-\frac{1}{2} \mathrm{BIC}_{m}}}{\sum_{\ell=1}^{M} e^{-\frac{1}{2} \mathrm{BIC}_{\ell}}}
$$

- BIC is asymptotically consistent, but AIC is not
- For finite samples, BIC tends to choose too simple models

Module 2: Splines and Kernel Methods

Spline Model Overview, Regression Splines, Smoothing Splines

Moving Beyond Linearity

- So far we have assumed standard linear models

$$
\min _{\beta}\|y-X \beta\|_{2}^{2} \longleftarrow f(x)=\beta^{\top} x
$$

- In the case of many predictors relative to number of observations, we considered penalized regression to avoid overfitting

$$
\min _{\beta}\left\|y-x_{\beta}\right\|_{2}^{2}+\lambda\|\beta\|
$$

- Often a convenient form, and necessary to assume simple structure to avoid overfitting in data-scarce regimes, but linear assumption rarely holds in practice

Moving Beyond Linearity

- Consider generic functional forms (univariate x for now)

$$
\min _{f}\|y-f(x)\|_{2}^{2}
$$

\square If constrained to linear forms \rightarrow LS sol
If arbitrary \rightarrow interpolator... overfitting

- As before, penalize complexity. Here, in terms of roughness.

$$
\begin{aligned}
& \min ^{f}\|y-f(x)\|_{2}^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x \\
& \text { If } \lambda \rightarrow 0 \text {, interpolator } \\
& \text { If } \lambda \rightarrow \infty \text {, Ls soln (line) ... no } 2^{\text {nd }} \text { der. }
\end{aligned}
$$

- Remarkable result: Explicit, finite-dimensional minimizer

TBD natural cubic spline w/ knots at data pts "Smoothing spline"

Backtrack a bit...

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
- Linear basis expansions maintain linear form in terms of these transformations

$$
f(x)=\sum_{m=1}^{M} \beta_{n} h_{m}(x) \text { trans. }
$$

- What transformations should we use?
$h_{m}(x)=x_{m} \rightarrow$ linear model
$h_{m}(x)=x_{j}^{2}, \quad h_{m}(x)=x_{j} x_{k} \rightarrow$ polynomial reg.
$\square h_{m}(x)=I\left(L_{m} \leq x_{k} \leq U_{m}\right) \rightarrow$ pilcewise constant...

Piecewise Polynomial Fits

- Again, assume x univariate
- Polynomial fits are often good locally, but not globally
\square Adjusting coefficients to fit one region can make the function go wild in other regions
- Consider piecewise polynomial fits
\square Local behavior can often be well approximated by low-order polynomials

Piecewise Polynomial Fits

LIDAR Data Example

(a)

(c)

(b)

(d)

Piecewise Constant/Linear Fits

- Example 1: Piecewise constant, with 3 basis functions
$h_{1}(x)=I\left(x \in q_{1}\right) \quad " k \cap$ t"
$h_{2}(x)=I\left(q_{1} \leq x \leq q_{2}\right)$
$h_{3}(x)=I\left(y_{2} \leqslant x\right)$
- Resulting model: $f(x)=\sum_{m=1}^{3} \beta_{m} h_{m}(x)$

- Fit: Take mean of data in each region
- Example 2: Piecewise linear
- Add three basis functions:

$$
h_{m+3}=h_{m}(x) x \quad m=1,2,3
$$

From Hastie, Tibshirani, Friedman book Friedman book

Regression Splines - Linear

- Resulting piecewise linear model:

$$
\begin{aligned}
& f(x)= I\left(x<\xi_{1}\right)\left(\beta_{1}+\beta_{4} x\right)+I\left(\xi_{1} \leq x<\xi_{2}\right)\left(\beta_{2}+\beta_{5} x\right)+I\left(\xi_{2} \leq x\right) \\
& \\
& \square \text { \# of params? } 6
\end{aligned}
$$

- Typically prefer continuity...
\square Enforce

$$
\begin{aligned}
& f\left(q_{1}^{-}\right)=f\left(q_{1}^{1}\right) \\
& f\left(q_{2}^{-}\right)=f\left(q_{2}^{+}\right)
\end{aligned}
$$

\square Which implies

$$
\begin{aligned}
& \beta_{1} \times \beta_{4} q_{1}=\beta_{2}+\beta_{5} q_{1} \\
& \beta_{2}+\beta_{5} q_{2}=\beta_{3} \times \beta_{6} q_{2} \\
& \# \text { params? }
\end{aligned}
$$

From Hastie, Tibshirani, Friedman book

Regression Splines - Linear

- More directly, we can use the truncated power basis
$h_{1}(x)=1$
$h_{2}(x)=x$
$h_{3}(x)=\left(x-\xi_{1}\right)_{+}$
$h_{4}(x)=\left(x-\xi_{2}\right)_{+}$
- Resulting model:

From Wakefield book

$$
\begin{aligned}
& \text { Resulting model: } \\
& \begin{array}{l}
f(x)=\beta_{0}+\beta_{1} x+\beta_{2}\left(x-q_{1}\right)+ \\
\\
\qquad \beta_{3}\left(x-q_{2}\right)+
\end{array}
\end{aligned}
$$

- Continuous at the knots because all prior basis functions are contributing to the fit up to any single x

Regression Splines - Cubic

- Naively, extend as quadratic
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3}\left(x-\xi_{1}\right)_{+}+\beta_{4}\left(x-\xi_{1}\right)_{+}^{2}+\beta_{5}\left(x-\xi_{2}\right)_{+}+\underline{\underline{\beta_{6}\left(x-\xi_{2}\right)_{+}^{2}}}$
- But, $1^{\text {st }}$ derivate is discontinuous (check this)

$$
\begin{aligned}
& \text { - Drop the truncated linear basis: } \\
& f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+b_{1}\left(x-q_{1}\right)_{+}^{2}+b_{2}\left(x-q_{2}\right)_{+}^{2}
\end{aligned}
$$

- Has continuous $1^{\text {st }}$ derivative (check), but not $2^{\text {nd }}$
- Popular to consider cubic spline:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+b_{1}\left(x-\xi_{2}\right)_{+}^{3}+b_{2}\left(x-\xi_{2}\right)_{+}^{3}$
- Has continuous $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives
- Typically people stop here ... smooth enough

Cubic Spline Basis and Fit

Cubic Splines as Linear Smoothers

- Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$
- Simply a linear model $f(x)=E[Y \mid c]=c \gamma$
- Estimator:

$$
\hat{\gamma}=\left(c^{\top} c\right)^{-1} c^{\top} y
$$

- Linear smoother:

Natural Cubic Splines

- For polynomial regression, fit near boundaries is erratic.
\square Problem is worse for splines: each is fit locally so no global constraint
- Natural cubic splines enforce linearity beyond boundary knots
- Starting from a cubic spline basis, the natural cubic spline basis is

$$
\begin{gathered}
N_{1}(x)=1 \quad N_{2}(x)=x \quad N_{k+2}(x)=d_{k}(x)-d_{K-1}(x) \\
d_{k}(x)=\frac{\left(x-\xi_{k}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{k}}
\end{gathered}
$$

- Derivation HW 3

Regression Splines - Summary

- Definition:

An order-M spline with knots $\xi_{1}<\xi_{2}<\cdots<\xi_{K}$ is a piecewise $M-1$ degree polynomial with $M-2$ continuous derivatives as the knots

A spline that is linear beyond the boundary knots is called a natural spline

- Choices:
\square Order of the splineNumber of knotsPlacement of knots

Return to Smoothing Splines

- Objective:

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Solution:

Natural cubic splinePlace knots at every observation location x_{i} \&

- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
\square Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
\square Will not typically interpolate data, and smoothness is determined by λ

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- Rewrite objective: basis

$$
(y-N \beta)^{T}(y-N \beta)+\lambda \beta^{T} \Omega_{N} \beta
$$

- Solution:

$$
\hat{\beta}=\left(N^{\top} N+\lambda \Omega_{N}\right)^{-1} N^{\top} y \text { as in ridge }
$$

- Linear smoother:

Splines - Summary

- Regression splines:

Fewer number of knots and no regularization

- Smoothing splines:

Knots at every observation and regularization (smoothness penalty) to avoid interpolator

