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Module 2: Splines and Kernel Methods 

Backtrack a bit… 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)
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Piecewise Polynomial Fits 
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n  Again, assume x univariate 

n  Polynomial fits are often good locally, but not globally 
¨  Adjusting coefficients to fit one region can make the function go wild in 

other regions 

n  Consider piecewise polynomial fits 
¨  Local behavior can often be well approximated by low-order polynomials 

Cubic Spline Basis and Fit 
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5.2 Piecewise Polynomials and Splines 143
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Piecewise Cubic Polynomials
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

2012 Jon Wakefield, Stat/Biostat 527

Figure 22: Basis functions for a piecewise cubic spline model, with

two knots at ξ1 and ξ2. Panel (a) shows the bases 1, x, x2, x3, and

panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+.
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For K knots we write the cubic spline function as

f(x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

bk(x − ξk)3+, (43)

so that we have K + 4 coefficients.

We simply have a linear model, f(x) = E[Y | c] = cγ, where

c =

2

6666664

1 x1 x2
1 x3

1 (x1 − ξ1)3+ ... (x1 − ξK)3+

1 x2 x2
2 x3

2 (x2 − ξ1)3+ ... (x2 − ξK)3+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3+ ... (xn − ξK)3+

3

7777775
, γ =

2

666666666666664

β0

β1

β2

β3

b1

...

bK

3

777777777777775

.

Estimator: bγ = (cTc)−1cTY . Linear smoother: bY = SY , S = c(cTc)−1cT.

161

n  Cubic spline function with K knots: 

 
f(x) = �0 + �1x+ �2x

2 + �3x
3 +

KX

k=1

bk(x� ⇠k)
3
+
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B-Splines 
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n  Alternative basis for representing polynomial splines 
n  Computationally attractive…Non-zero over limited range 
n  As before: 

¨  Knots  
¨  Domain  
¨  Number of basis functions =  

n  Step 1: Add knots 

n  Step 2: Define auxiliary knots  ⌧j

⌧1  ⌧2  · · ·  ⌧M  ⇠0

⌧j+M = ⇠j

⇠K+1  ⌧K+M+1  · · ·  ⌧K+2M

B-Splines 
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n  For 1st order B-spline 

188 5. Basis Expansions and Regularization

B-splines of Order 1
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

From Hastie, 
Tibshirani, Friedman 

book 
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188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B-Splines 
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n  For 2nd order B-spline 

n  Modify 1st order basis: 

n  Convention: If divide by 0, set basis element to 0 

From Hastie, 
Tibshirani, Friedman 

book 

n  For mth order B-spline, m=1,…, M 

n  Modify (m-1)th order basis: 

 

¨  B-spline bases are non-zero over domain spanned by at most M+1 knots 
¨  Only subset      are needed for 

basis of order M with knots  

B-Splines 
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188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B

m
j (x) =

x� ⌧j

⌧j+m�1 � ⌧j
B

m�1
j +

⌧j+m � x

⌧j+m � ⌧j+1
B

m�1
j+1

{Bm
i | i = M �m+ 1, . . . ,M +K}

⇠

From Hastie, 
Tibshirani, Friedman 

book 
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Cubic Splines as Linear Smoothers 
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n  Cubic spline function with K knots: 

 
n  Simply a linear model 

n  Estimator: 

n  Linear smoother: 

f(x) = �0 + �1x+ �2x
2 + �3x

3 +
KX

k=1

bk(x� ⇠k)
3
+

Cubic B-Splines 
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n  Cubic B-spline with K knots has basis expansion: 

 
n  Simply a linear model 

n  Computational gain: 
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Return to Smoothing Splines 
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n  Objective: 

 
n  Solution: 

¨  Natural cubic spline 
¨  Place knots at every observation location xi 

n  Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook 

n  Notes: 
¨  Would seem to overfit, but penalty term shrinks spline coefficients 

toward linear fit 
¨  Will not typically interpolate data, and smoothness is determined by λ 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

Smoothing Splines 
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n  Model is of the form: 

n  Rewrite objective: 

n  Solution: 

n  Linear smoother: 

f(x) =
nX

j=1

Nj(x)�j

(y �N�)T (y �N�) + ��T⌦N�
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Smoothing Splines 
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n  Model is of the form: 

n  Using B-spline basis instead: 
 
n  Solution: 

n  Penalty implicitly leads to natural splines 
¨  Objective gives infinite weight to non-zero derivatives beyond boundary 

f(x) =
nX

j=1

Nj(x)�j

�̂ = (BTB + �⌦B)
�1BT y

Smoothing Splines   
n  Knots at data points xi 
n  Natural cubic spline 
n  O(n) parameters 

¨  Shrunk towards subspace 
of smoother functions 

Regression Splines 
n  K < n  knots chosen 
n  Mth order spline = piecewise 

M-1 degree polynomial with M-2 
continuous derivatives at knots 

©Emily Fox 2013 14 

Spline Overview (so far) 

n  Linear smoothers, for example using natural cubic spline basis: 
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Penalized Regression Splines 
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n  Alternative approach: 
¨  Use K < n knots 
¨  How to choose K and knot locations? 

n  Option #1:  
¨  Place knots at n unique observation locations xi and do stepwise 
¨  Issue?? 

 
n  Option #2:  

¨  Place many knots for flexibility 
¨  Penalize parameters associated with knots 

 
n  Note: Smoothing splines penalize complexity in terms of 

roughness.  Penalized reg. splines shrink coefficients of knots. 

Penalized Regression Splines 
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n  General spline model 
 
n  Definition: A penalized regression spline is               with  
 
 

n  Form of resulting spline depends on choice of 
¨  Basis  
¨  Penalty matrix 
¨  Penalty strength 

n  Still need to K and associated locations…RoT (Ruppert et al 2003): 

�̂

T
h(x)

K = min(
1

4
⇥ # unique xi, 35) ⇠k at

k + 1

K + 2

th points of xi
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PRS Example #1 
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n  B-spline basis + penalty 

n  For this penalty, the matrix D is given by 

n  Leads to 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�

PRS Example #2 
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n  B-spline basis + penalty 

n  For this penalty, the matrix D is given by 

n  Leads to 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�
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PRS Example #3 
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n  Cubic spline using truncated power basis  
 
 
+ penalty on truncated power coefficients 

n  For this penalty, the matrix D is given by 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�

A Brief Spline Summary 
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n  Smoothing spline – contains n knots 

n  Cubic smoothing spline – piecewise cubic 

n  Natural spline – linear beyond boundary knots 

n  Regression spline – spline with K < n knots chosen 

n  Penalized regression spline – imposes penalty (various 
choices) on coefficients associated with piecewise polynomial 

n  The # of basis functions depends on 
¨  # of knots 
¨  Degree of polynomial 
¨  A reduced number if a natural spline is considered (add constraints) 
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Intro to Kernels, 
Local Polynomial Reg., 
Kernel Density Estimation 
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Module 2: Splines and Kernel Methods 

Motivating Kernel Methods 
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n  Recall original goal from Lecture 1: 
¨  We don’t actually know the data-generating mechanism 
¨  Need an estimator            based on a random sample  

Y1,…, Yn , also known as training data 

n  Proposed a simple model as estimator of E [ Y | X ]  

f̂n(·)
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Choice 1: k Nearest Neighbors 
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n  Define nbhd of each data point xi by the k nearest neighbors 
¨  Search for k closest observations and average these 

n  Discontinuity is unappealing 

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, Tibshirani, Friedman book 

Choice #2: Local Averages 
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n  A simpler choice examines a fixed distance h around each xi 
¨  Define set:  
¨  # of xi in set:  

n  Results in a linear smoother 

n  For example, with xi=     and h=  

B

x

= {i : |x
i

� x|  h}
n
x

L =
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More General Forms 
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n  Instead of weighting all points equally, slowly add some in and 
let others gradually die off 

n  Nadaraya-Watson kernel weighted average 

n  But what is a kernel ??? 

Kernels 
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n  Could spend an entire quarter (or more!) just on kernels 
n  Will see them again in the Bayesian nonparametrics portion 

n  For now, the following definition suffices 
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Example Kernels 
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n  Gaussian 
 
n  Epanechnikov 
 
n  Tricube 

n  Boxcar 

K(x) =
1

2⇡
e

� x

2

K(x) =
3

4
(1� x)2I(x)

K(x) =
70

81
(1� |x|3)3I(x)

K(x) =
1

2
I(x)

2012 Jon Wakefield, Stat/Biostat 527

The Epanechnikov kernel has the form

K(x) =
3

4
(1 − x)2I(x), (67)

while the Tricube kernel is

K(x) =
70

81

(
1 − |x|3

)3
I(x). (68)

Finally, the Boxcar kernel is

K(x) =
1

2
I(x). (69)

All four kernels are displayed in Figure 31.

The simplest use of kernel methods in nonparametric regression is

based on direct kernel density estimation.

226

2012 Jon Wakefield, Stat/Biostat 527

Figure 31: Pictorial representation of four commonly-used kernels.
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