Module 2: Splines and Kernel Methods

B-Splines, Penalized Regression Splines

STAT/BIOSTAT 527, University of Washington Emily Fox
April $16^{\text {th }}, 2013$

Backtrack a bit...

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
. Linear basis expansions maintain linear form in terms of
these transformations

$$
f(x)=\sum_{m=1}^{M} \beta_{n} h_{m}(x) \text { trans. }
$$

- What transformations should we use?
$h_{m}(x)=x_{m} \rightarrow$ linear model
$\square h_{m}(x)=x_{j}^{2}, \quad h_{m}(x)=x_{j} x_{k} \rightarrow$ polynomial reg.
$\square h_{m}(x)=I\left(L_{m} \leq x_{k} \leq U_{m}\right) \rightarrow$ pilcewise constant

Piecewise Polynomial Fits

- Again, assume xunivariate mult. x later in course
- Polynomial fits are ofter good locally, but not globalis
\square Adjusting coefficients to fit one region can make the function go wild in other regions
- Consider piecewise polynomial fits
\square Local behavior can often be well approximated by low-order polynomials

Cubic Spline Basis and Fit

- Cubic spline function with K knots:

$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} \bar{x}_{3}^{2} x^{3}+\sum^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3} \quad \boldsymbol{M}=4$ b basis on $(0,1)$

 $f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1} b_{k}\left(x-\xi_{k}\right)_{+}^{3} \quad \begin{gathered}M=4 \\ M-1 \\ M-2\end{gathered}$

B-Splines

- Alternative basis for representing polynomial splines
- Computationally attractive...Non-zero over limited range
- As before:

\square Number of basis functions $=M+K$
- Step 1: Add knots $f_{0}=a \quad f_{k+1}=b$
- Step 2: Define auxiliary knots τ_{j} needed to construct basis

B-Splines

- For $1^{\text {st }}$ order B-spline

$$
B_{j}^{\prime}(x)=\left\{\begin{array}{llr}
1 & \tau_{j} \leq x \leq \tau_{j+1} & \text { Haar basis } \\
0 & \text { ow } & \text { function }
\end{array}\right.
$$

Can form any piecewise constant fan

B-Splines

- For $2^{\text {nd }}$ order B-spline \rightarrow piecewise linear fen $+\underset{k_{\text {not }}}{ }$ cont. e

From Hastie, Tibshirani, Friedman book

- Modify $1^{\text {st }}$ order basis:

$$
B_{j}^{2}(x)=\left\{\begin{array}{l}
\frac{x-\tau_{j}}{\tau_{j+1}-\tau_{j}} B_{j}^{\prime}(x)+\frac{\tau_{j+2}-x}{\tau_{j+2}-\tau_{j+1}} B_{n \text { eg. }}^{\prime} B_{j+1}(x) \\
\text { pos. slope } \\
\text { slope }
\end{array}\right.
$$

- Convention: If divide by 0 , set basis element to 0 If $\tau_{j}=\tau_{j+1}$

B-Splines

- For $m^{\text {th }}$ order B-spline, $m=1, \ldots, M$

From Hastie, Tibshirani, Friedman
 book

- Modify ($\mathrm{m}-1)^{\text {th }}$ order basis:

$$
B_{j}^{m}(x)=\frac{x-\tau_{j}}{\tau_{j+m}} B_{j}^{m-1}+\frac{\tau_{j+m}-x}{\tau_{j}-\tau_{j}} B_{j+1}^{m-1}
$$

$\square \mathrm{B}$-spline bases $\boldsymbol{\tau}^{+}$are
\square Only subset are needed for basis of order $\left\{\begin{array}{l}M \text { withhnots } \\ B_{i}^{m} \mid i=M-m+1, \ldots, M+K\end{array}\right.$ () For $m=M \rightarrow M+K$ basis fens

Cubic Splines as Linear Smoothers

Cubic spline function with K knots:
$f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}$

- Simply a linear model $f(x)=E[Y \mid c]=c \gamma$
$C=\left[\begin{array}{cccccc}1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \left(x_{1}-q_{1}\right)_{+}^{3} & \left(x_{1}-q_{k}\right)^{3}+ \\ \vdots & & & \\ 1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \left(x_{n}-q_{1}\right)^{3}+\cdots & \left(x_{n}-q_{k}\right)^{3}\end{array}\right] \$ \gamma \quad \gamma=\left[\begin{array}{c}B_{0} \\ B_{1} \\ B_{2} \\ B_{3} \\ b_{1} \\ \vdots \\ b_{k}\end{array}\right]$

$$
\hat{\gamma}=\left(c^{\top} c\right)^{-1} c^{\top} y
$$

- Linear smoother: $\hat{f}=\underbrace{C\left(C^{\top} C\right)^{-1} C^{\top} y})^{L}$

Cubic B-Splines as Linear Smoothers

- Cubic B-spline with K knots has basis expansion:

$$
f(x)=\sum_{j=1}^{K+4} B_{j}^{4}(x) \beta_{j}
$$

- Simply a linear model ${ }^{\text {F }}$

$$
B=\left[\begin{array}{ccc}
B_{1}^{4}\left(x_{1}\right) & \cdots & B_{k+4}^{4}\left(x_{1}\right) \\
\vdots & \ddots & \vdots \\
B_{1}^{4}\left(x_{n}\right) & \cdots & B_{k+4}^{4}\left(x_{n}\right)
\end{array}\right]
$$

$$
\gamma=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{k+4}
\end{array}\right]
$$

- Computational gain:

$$
\hat{\gamma}=\left(B^{\top} B\right)^{-1} B^{\top} y
$$

$$
n \times(K+M) \text { matrix } B \text { has many } O^{\prime} s
$$

\rightarrow Fewer multiplies (sparse inv.)

Return to Smoothing Splines

- Objective:

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \underline{\int f^{\prime \prime}(x)^{2} d x} \begin{gathered}
\text { Smoothness } \\
\text { Penalty }
\end{gathered}
$$

- Solution:

Natural cubic splinePlace knots at every observation location x_{i}

- Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook
- Notes:
\square Would seem to overfit, but penalty term shrinks spline coefficients toward linear fit
\square Will not typically interpolate data, and smoothness is determined by λ

Smoothing Splines

- Model is of the form: $f(x)=\sum_{j=1}^{n} N_{j}(x) \beta_{j}$
- Rewrite objective:
$(y-N \beta)^{T}(y-N \beta)+\lambda \beta^{T} \Omega_{N} \beta$

- Linear smoother:

Smoothing Splines

$$
f(x)=\sum_{j=1} B_{j}(x) B_{j}
$$

- Solution: $\hat{\beta}=\left(B^{T} B+\lambda \Omega_{B}\right)^{-1} B^{T} y$

- Penalty implicitly leads to natural splines
\square Objective gives infinite weight to non-zero derivatives beyond boundary
forces soln to be linear beyond boundary pts \rightarrow natural splines

Spline Overview (so far)

Smoothing Splines

- Knots at data points x_{i}
- Natural cubic spline
- On) parameters
\square Shrunk towards subspace of smoother functions

Regression Splines

- $K<n$ knots chosen
- $\mathrm{M}^{\text {th }}$ order spline $=$ piecewise M-1 degree polynomial with $M-2$ continuous derivatives at knots
- no reg, but many fewer params
- Linear smoothers, for example using natural cubic spline basis:

Penalized Regression Splines

- Alternative approach:
\square Use $K<n$ knots few params relative to \# of obs.
\square How to choose K and knot locations? ??
- Option \#1:
\square Place knots at n unique observation locations x_{i} and do stepwise
\square Issue?? 2^{n} models!
- Option \#2:
\square Place many knots for flexibility
\square Penalize parameters associated with knots just like ridge/lasso
- Note: Smoothing splines penalize complexity in terms of roughness. Penalized reg. splines shrink coefficients of knots.

Penalized Regression Splines

- General spline model $f(x)=\sum_{j=1}^{J} h_{j}(x) B_{j}$ some spline basis
- Definition: A penalized regression spline is $\hat{\beta}^{T} h(x)$ with

$$
\hat{\beta}=\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\top} D \beta
$$

- Form of resulting spline depends on choice of
\square Basis $\left\{h_{j}(x)\right\}$
\square Penalty matrix
\square Penalty strength λ
- Still need to K and associated locations...RoT (Rupert et al 2003):

$$
K=\min \left(\frac{1}{4} \times \# \text { unique } x_{i}, 35\right) \quad \xi_{k} \text { at } \frac{k+1}{K+2} \text { th points of } x_{i}
$$

PRS Example \#1 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{\tau} D \beta$

- B-spline basis + penalty

$$
\lambda \int\left(\sum_{j=1}^{k+4} B_{j}^{4}(x)^{4} B_{j}\right)^{2} d x
$$

$B=\left[\begin{array}{l}B_{1} \\ \vdots \\ B_{k+4}\end{array}\right]$

- For this penalty, the matrix D is given by

$$
D_{j k}=\int B_{j}^{4}(x)^{\prime \prime} B_{k}^{4}(x)^{\prime \prime} d x
$$

- Leads to "O'Sullivan Splines"
when $K=n$, exactly equivalent to
+@ $\underset{X_{i}}{\text { unique }}$ smoothing spline

PRS Example \#2 $\sum_{==1}^{n}\left(u-\beta^{r} \beta_{h(x, t))^{2}+\lambda \beta^{T} D_{\beta} \beta}\right.$

- B-spline basis + penalty $\lambda \sum_{j=1}^{J-1}\left(B_{j+1}-\beta_{j}\right)^{2}$
- For this penalty, the matrix D is given by
- Leads to $\left[\begin{array}{ccccc}0 & -1 & 2 & -1 & 0\end{array}\right]$
"p-Splines" penalizes large changes fens.
$\underset{\sim}{\rightarrow}$ integrated squared derivative etmirfox20013 penalty of o'Sullivansplines

PRS Example \#3 $\sum_{i=1}^{n}\left(y_{i}-\beta^{T} h\left(x_{i}\right)\right)^{2}+\lambda \beta^{T} D \beta$

- Cubic spline using truncated power basis K

$$
f(x)=\beta_{0}+\beta_{1} x+\cdots+\beta_{y} x^{3}+\sum_{k=1}^{k} b_{k}\left(x-q_{k}\right)_{+}^{3}
$$

+ penalty on truncated power coefficients

$$
\lambda \sum_{k} b_{k}^{2} \quad \Leftrightarrow \lambda\|\underline{b}\|_{2}^{2} \beta_{j}^{\prime} s
$$

- For this penalty, the matrix D is given by

A Brief Spline Summary

- Smoothing spline - contains n knots @ X_{i}
- Cubic smoothing spline - piecewise cubic
- Natural spline - linear beyond boundary knots
- Regression spline - spline with $K<n$ knots chosen
- Penalized regression spline - imposes penalty (various choices) on coefficients associated with piecewise polynomial
- The \# of basis functions depends on
\square \# of knots K
Degree of polynomial
\square A reduced number if a natural spline is considered (add constraints)

Module 2: Splines and Kernel Methods

Intro to Kernels, Local Polynomial Reg., Kernel Density Estimation

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 16 ${ }^{\text {th }}, 2013$

Motivating Kernel Methods

- Recall original goal from Lecture 1 :
\square We don't actually know the data-generating mechanism
\square Need an estimator $\hat{f}_{n}(\cdot)$ based on a random sample $Y_{1, \ldots}, Y_{n}$, also known as training data
- Proposed a simple model as estimator of $E[Y \mid X]$

$$
\begin{aligned}
& \hat{f}(x)=\operatorname{Avg}\left(y_{i} \mid x_{i} \in \underline{\operatorname{Nbhd}(x)}\right) \\
& \begin{array}{l}
\text { use all obs. ai in } \\
\text { a neighborhood of }
\end{array} \\
& \begin{array}{l}
\text { a neighborhood } \\
\text { target } x
\end{array}
\end{aligned}
$$

Choice 1: k Nearest Neighbors

- Define nbhd of each data point x_{i} by the k nearest neighbors
\square Search for k closest observations and average these $\hat{f}(x)=A_{V}\left(y_{i} \mid x_{i} \in N_{k}(x)\right)$
- Discontinuity is unappealing
neighbors are either
in or out
From Hastie, Tibshirani, Friedman book \rightarrow disc.

Choice \#2: Local Averages

- A simpler choice examines a fixed distance h around each x_{i}
\square Define set: $B_{x}=\left\{i:\left|x_{i}-x\right| \leq \underline{h}\right\}$
\square \# of x_{i} in set: n_{x}

$$
\hat{f}(x)=\frac{1}{n_{x}} \sum_{i \in B_{x}} y_{i}
$$

arg. obs within
distance h

- Results in a linear smoother

$$
\hat{f}(x)=\sum_{i=1}^{\text {suIts in a linear smoother }} l_{i}(x) y_{i} \quad l_{i}(x)= \begin{cases}\frac{1}{n_{k}} & \text { if }\left|x_{i}-x\right| \leq h \\ 0 & \text { ow }\end{cases}
$$

- For example, with $x_{i}=\frac{i}{9}$ and $h=\frac{1}{9}$

$$
L=\left[\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & \cdots \\
1 / 3 & 1 / 3 & 1 / 3 & 0 & \cdots \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

More General Forms

- Instead of weighting all points equally, slowly add some in and let others gradually die off
- Nadaraya-Watson kernel weighted average

$$
\hat{f}\left(x_{0}\right)=\frac{\sum_{i=1}^{n} k_{\lambda}\left(x_{0}, x_{i}\right) y_{i}}{\sum_{i=1}^{n} k_{\lambda}\left(x_{0}, x_{i}\right)} \quad k_{\lambda}\left(x_{0}, x\right)=K\left(\frac{\left|x_{0}-x\right|}{\lambda}\right)
$$

- But what is a kernel ???

Kernels

- Could spend an entire quarter (or more!) just on kernels
- Will see them again in the Bayesian nonparametric portion
- For now, the following definition suffices

$$
\begin{aligned}
& K(\cdot) \text { is a kernel if } \\
& K(x) \geqslant 0 \quad \forall x \\
& \int K(u) d u=1 \quad \sigma_{k}^{2}=\int u^{2} k(u) d u<\infty \\
& \int u K(u) d u=0
\end{aligned}
$$

Example Kernels

- Gaussian $K(x)=\frac{1}{2 \pi} e^{-\frac{x}{2}}$
- Epanechnikov $\quad K(x)=\frac{3}{4}(1-x)^{2} I(x)$
- Tricube
$K(x)=\frac{70}{81}\left(1-|x|^{3}\right)^{3} I(x)$
- Boxcar
$K(x)=\frac{1}{2} I(x)$

