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Backtrack a bit...
" JEE
m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

-f(l_inear basis expansions maintain linear form in terms of

these transformations M rons.
R
m=1

m \What transformations should we use?
hon(2) = Ty > Vinesr mode
hn (@) =27, him(z) = 25780 > PD\V"’M L
b () = I(Lpy < 2 < Um) > f(’-u-"?”— Constan

Lal /26
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Piecewise Polynomial Fits

_ L b fse_
m Again, assume x univariate malk. X laker o con
/,/:__>

m Polynomial fits are oftem"good locally, but not globa

Adjusting coefficients to fit one region can make the function go wild in
other regions

m Consider piecewise polynomial fits
Local behavior can often be well approximated by low-order polynomials
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Cubic Spline Basis and Fit
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B-Splines
* JEE—

Alternative basis for representing polynomial splines
«ﬁ.‘ .
Computationally attractive...Non-zero over limited range
e ——
As before:

1 Knots £|4 e L ZK KANJ. oF ?aly"\'\

0 Domain  (p, b)Y
' Number of basis functions = M+ ¥

Step 1: Add knots ﬁa: a g;@ 1=b c
A & conS 7
Step 2: Define auxiliary knots 7; et dod 0 I*'S

| |
z = 3 =
/}77'1§7'2§“‘§7'M§§0
cheice Tivm =&
i< arh. Er+1 S TR4M+1 < - S TR4oMm

- - -
- = -
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B-Splines
* JEEE——

m For 1st order B-spline

B-splines of Order 1

From Hastie,
Tibshirani, Friedman
book

o. 06 08 1.0

o 1 s b
) O ow .Cu\nc,’f'\oq

Con Cor M ar\y P"CCtuu:%Q— constont Fen

©Emily Fox 2013 6




/\/\/\/\

B-Splines

nd —> piecewise [ineor fene cont. £
m For2 “?.fjirB sgll‘ge - koS
Llll""‘ [ 6 b B‘spns h)rder 2

““""‘ Tibshirani, Friedman
book
= Modify 1t order basis:

()‘) % ( ) + +| (")
e o

= Convention: If divide by 0, set basis elementto 0 I = Tj+1

\QGA

00 04 08 12

©Emily Fox 2013 7

B-Splines
o

m For m order B-spline, m=1,..., M

o 0 o T From Hastie,
B-splines of Order 4 Tibshirani, Friedman
book
m  Modify (m- 1)th order basis:
T — Titm — T _
Bm( ) — B;n 1+ J+m B7'7-L|—11
0 B-spline basdsdrs T n%n zer over domain s7p‘5m‘|ed by731]most M+1 knots
1 Only subset are needed for
basis of ordef M with-knots—
= {Bi =M —mI T L Mt K)

§) For W MK pasis fens
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Cubic Splines as Linear Smoothers

* JEEE—
m Cubic spline function with K knots:

f(x) = Bo + Brz + Baa® + Bz +Zbkx—£k)

k=1

m Simply a linear model F(K): E(ch'); -~ .
L X, o (e 4 (- '2»
. . [ % Z:
| v vt (a-f)e (xn—f,i l,)'

m Estimator: 7 ok |

= (CTC )“\ C-l \l

m Linear smoother: E s C (CTC )J CT\{ -

Cubic B-Splines s Lina- Smasders
" JEEE
m Cubic B-spline with K knots has basis expansion:

£lx) 5;" 8/(A,

Z\
m Simply a linear mode?

Y 9
B:‘fx,) Bm. 4 0) ) .
B; g ~ N K :
|
%‘\‘(KA\ .- %WM{K‘) (62‘\"4
A aTRAIAT
= Computational gain: [N (6 BY ® 7’

f\’((K-’cNB mokv X % has many o's B
~) Cower MV\M-‘?‘LS (SP;\IS‘C wv
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Return to Smoothing Splines

= Objective: S oo pokhreS”

mmz fz)? + A / f"(x)%dx W‘ky

m Solution /
1 Natural cubic spline

[ Place knots at G‘Wmmw

B Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook

m Notes:

1 Would seem to overfit, but penalty term shrinks spline coefficients
toward linear fit

1 Will not typically interpolate data, and smoothness is determined by A
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Smoothing Splines _# "

m Model is of the form: f(x) =

N;(z)B; L pline
Jj=1 ey, s N
m Rewrite objective: & “MM}__%WS
(y — JXﬁ)T(y — NB)+ A8 Qnp
ﬂXdﬁ\ [N-) . . ° N (Xﬁ) &Kﬂ"’) ({)szcq

m Solution: A
(N N+ )\.Doﬂ) N Y as in "\Jg

m Linear smoother: T . thin
-
RSP OO A e
Lr %=t
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Smoothing Splines
- F o3
' ey

m Model is gf’the form: f(2) = ZNJ KK’“ Jor

Now j=1 Y & (Qo’ L\L
m Usiné B-spline basis instead: (() = Z B (x)gl 2 ?’W )
F K J J

= Solution: 3= (BTB+ AQp)~ 1BT 0
/ ’\_,,__/ (as WY (0¥ /.
e ,\/\/\/
{ower Y ban LA = oMb ze‘: { |
m Penalty implicitly leads to natural splines % l?,q

Objective gives infinite weight to non-zero derivatives beyond boundary
Qo rees coln Lo lon_ \mzar be \/OhA \oovtnrJNy ?tS
— (\A{’\*/‘d SY\lhes
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Spline Overview (so far)
"

Smoothing Splines Regression Splines
m Knots at data points x; m K <n knots chosen
m Natural cubic spline m M" order spline = piecewise

M-1 degree polynomial with M-2

u O(n) parameters continuous derivatives at knots

Shrunk towards subspace ;
of smoother functions B ne rey, but many g‘;’:“mg

m Linear smoothers, for example using r@t&r@&lme basis:
[ N(NTNE > ST N ove L= NINTNYTNT

T

! U‘“\:” TK et A4

e ey ¥ " ondt
r Y+ K-

Y ?.;/MS-
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Penalized Regression Splines
" JEE

m Alternative approach: )
Use K < n knots few porams rtloxive %0 ¥ as JLS.

How to choose K and knot locations? ’7"

m Option #1:

Place knots at n unique obseryation locations x; and do stepwise

/

Issue?? 9" made S 4

m Option #2:
Place many knots for flexibility
Penalize parameters associated with knots

ook e b flasse

m Note: Smoothing splines penalize complexity in terms of
roughness. Penalized reg. splines shrink coefficients of knots.
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Penalized Regression Splines
" JEE—
3 ‘
m General spline model (x)= Z L (x 8 S\,\;,\,p, basis
) J ’A\_)/V e

>

m Definition: A penalized regression spline is 37 h(z) with

A . n 2
f2 min Z (4 AThEG)Y « METDS
s~
. Vel
m Form of resulting spline depends on choice of makr X

Basis 7\ L\)(Y\

Penalty matrix D

Penalty strength X

m Still need to K and associated locations...RoT (Ruppert et al 2003):
+1

K+2
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K= min(z X # unique x;, 35) & at th points of z;




n

PRS Example #1 = > (- 5"+ 25705

i=1

ewbil . 4V T
m B-spline basis + penalty K g, 2 A
’/;‘”1? A (Z 5. (%) 65)&)( el
’ :
+4

)

0>
m For this penalty, the matrix D is given by

- LRty B 0" dx
D‘." SﬁJ (%) Bk[
m Leadsto wpq lliyan S?l; nes !

when Ken e_)(ao’c(y %M’tVAlﬂt 0

Jf@ V.v\'\q\ﬁf %MOOJC"“"ﬁ SP\U\L

A

PRS Example #2 2 (-5 w0 +a50s
= B-spline basis + penalty 3 i (8: “B'Y—

: TN

J:

m For this penalty, the matrix D is given by

-0 0. . -
b= 4 2-16-. -
p-lz2-10"
m Leadsto ’ - ()’\M <
u l 1} ?Lna,\'t%LS l“ﬂ . \oéfs(.\% gcr\S.
?._%?lf\és ‘" weﬂ:-




PRS Example #3 Z - () + A8TDB
o

m Cubic spline using truncated power basis A

3
Cigf Bk Bix+ . By’ > 2 b (x-4.),

ke
+ penalty on truncated power coefficients

VS b & bl

¢ B's
m For this penalty, the matrix D isW
i) N
et y | Pe 0

p= D= 4.0, ¢ LS
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A Brief Spline Summary
S

m Smoothing spline — contains n knots @ X;

m Cubic smoothing spline — piecewise cubic

m Natural spline — linear beyond boundary knots

m Regression spline — spline with K < n knots €hosen)

m Penalized regression spline — imposes penalty (various
choices) on coefficients associated with piecewise polynomial

m The # of basis functions depends on
# of knots
Degree of polynomial n-1
A reduced number if a natural spline is considered (add constraints)
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Module 2: Splines and Kernel Methods

Intro to Kernels,

Local Polynomial Reg.,
Kernel Density Estimation

STAT/BIOSTAT 527, University of Washington
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Motivating Kernel Methods
" JEE
m Recall original goal from Lecture 1:

We don’t actually know the data-generating mechanism

Need an estimator fn() based on a random sample
Y;.... Y,, also known as training data

m Proposed a simple model as estimator of E[ Y| X ]
Fio) = Ao (ya | xee NI GY)
N
A ok 4

ooooooooooooo
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Choice 1: k Nearest Neighbors
"
m Define nbhd of each data point x; by the k nearest neighbors
Search for k closest observations and average these b\,e’

?m: Avg (‘/Ll X< NK(!\>
Qv_,v\’eﬁ o

Lrue

m Discontinuity is unappealing
neigbloors are dtcher
N B buie

—y disc.

‘4 .‘I() o‘s
From Hastie, Tibshirani, Friedman book
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Choice #2: Local Averages
" JEEE—
m A simpler choice examines a fixed distance h around each x;
Define set: B, = {i: |z; — x| < h}
#of x;inset: N A
T |o$- w.-L(f\l’\
o). 0
(x) Z Y- Aiskance N

V\x By
m Resultsin a Ilfqear smoother

2 Lwy: Loy

azl

hy¢.

,_‘;_ fle \Y,;-X,fl\
0 ow

p 1
m For example, with x== and h=3-

1 (/1 0 g
L= |3 3\ |
(8 '/3 Il; 3
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More General Forms
" JEEE—

m Instead of weighting all points equally, slowly add some in and
let others gradually die off

[ Nadaraya-Waf\son kernel weighted average

§(3(D: %K)\b(o/)(k\y;. X,X\ K([Y \(‘)

%‘K)(Xo, X:) /‘ f

kerne |

\oan W\
m But what is a kernel ??7?
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Kernels
" JEEE

m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices

K(_) 'S a Kernel e
kix)z O ¥

(ktydo=| 5 ywk(u\duu
Su K(M)A"‘ = O
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Example Kernels

m Gaussian K(z) = —e % * ). on A0
2 L
m Epanechnikov 3 2 L/
K(z) = (1 —)*I(x)
m Tricube 70 3\3
K(z) = o7 (1 = |2[)"I(z)
1
m Boxcar K(z) = 5[(30)
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