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Module 2: Splines and Kernel Methods 

Backtrack a bit… 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)
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Piecewise Polynomial Fits 
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n  Again, assume x univariate 

n  Polynomial fits are often good locally, but not globally 
¨  Adjusting coefficients to fit one region can make the function go wild in 

other regions 

n  Consider piecewise polynomial fits 
¨  Local behavior can often be well approximated by low-order polynomials 

Cubic Spline Basis and Fit 

©Emily Fox 2013 4 

5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+,
h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

2012 Jon Wakefield, Stat/Biostat 527

Figure 22: Basis functions for a piecewise cubic spline model, with

two knots at ξ1 and ξ2. Panel (a) shows the bases 1, x, x2, x3, and

panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+.

160
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For K knots we write the cubic spline function as

f(x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

bk(x − ξk)3+, (43)

so that we have K + 4 coefficients.

We simply have a linear model, f(x) = E[Y | c] = cγ, where

c =

2

6666664

1 x1 x2
1 x3

1 (x1 − ξ1)3+ ... (x1 − ξK)3+

1 x2 x2
2 x3

2 (x2 − ξ1)3+ ... (x2 − ξK)3+
...

...
...

...
...

. . .
...

1 xn x2
n x3

n (xn − ξ1)3+ ... (xn − ξK)3+

3

7777775
, γ =

2

666666666666664

β0

β1

β2

β3

b1

...

bK

3

777777777777775

.

Estimator: bγ = (cTc)−1cTY . Linear smoother: bY = SY , S = c(cTc)−1cT.

161

n  Cubic spline function with K knots: 

 
f(x) = �0 + �1x+ �2x

2 + �3x
3 +

KX

k=1

bk(x� ⇠k)
3
+
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B-Splines 
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n  Alternative basis for representing polynomial splines 
n  Computationally attractive…Non-zero over limited range 
n  As before: 

¨  Knots  
¨  Domain  
¨  Number of basis functions =  

n  Step 1: Add knots 

n  Step 2: Define auxiliary knots  ⌧j

⌧1  ⌧2  · · ·  ⌧M  ⇠0

⌧j+M = ⇠j

⇠K+1  ⌧K+M+1  · · ·  ⌧K+2M

B-Splines 
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n  For 1st order B-spline 

188 5. Basis Expansions and Regularization

B-splines of Order 1
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

From Hastie, 
Tibshirani, Friedman 

book 
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188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B-Splines 

©Emily Fox 2013 7 

n  For 2nd order B-spline 

n  Modify 1st order basis: 

n  Convention: If divide by 0, set basis element to 0 

From Hastie, 
Tibshirani, Friedman 

book 

n  For mth order B-spline, m=1,…, M 

n  Modify (m-1)th order basis: 

 

¨  B-spline bases are non-zero over domain spanned by at most M+1 knots 
¨  Only subset      are needed for 

basis of order M with knots  

B-Splines 

©Emily Fox 2013 8 

188 5. Basis Expansions and Regularization
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FIGURE 5.20. The sequence of B-splines up to order four with ten knots evenly
spaced from 0 to 1. The B-splines have local support; they are nonzero on an
interval spanned by M + 1 knots.

B

m
j (x) =

x� ⌧j

⌧j+m�1 � ⌧j
B

m�1
j +

⌧j+m � x

⌧j+m � ⌧j+1
B

m�1
j+1

{Bm
i | i = M �m+ 1, . . . ,M +K}

⇠

From Hastie, 
Tibshirani, Friedman 

book 
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Cubic Splines as Linear Smoothers 
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n  Cubic spline function with K knots: 

 
n  Simply a linear model 

n  Estimator: 

n  Linear smoother: 

f(x) = �0 + �1x+ �2x
2 + �3x

3 +
KX

k=1

bk(x� ⇠k)
3
+

Cubic B-Splines 
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n  Cubic B-spline with K knots has basis expansion: 

 
n  Simply a linear model 

n  Computational gain: 
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Return to Smoothing Splines 
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n  Objective: 

 
n  Solution: 

¨  Natural cubic spline 
¨  Place knots at every observation location xi 

n  Proof: See Green and Silverman (1994, Chapter 2) or Wakefield textbook 

n  Notes: 
¨  Would seem to overfit, but penalty term shrinks spline coefficients 

toward linear fit 
¨  Will not typically interpolate data, and smoothness is determined by λ 

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

Smoothing Splines 
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n  Model is of the form: 

n  Rewrite objective: 

n  Solution: 

n  Linear smoother: 

f(x) =
nX

j=1

Nj(x)�j

(y �N�)T (y �N�) + ��T⌦N�
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Smoothing Splines 
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n  Model is of the form: 

n  Using B-spline basis instead: 
 
n  Solution: 

n  Penalty implicitly leads to natural splines 
¨  Objective gives infinite weight to non-zero derivatives beyond boundary 

f(x) =
nX

j=1

Nj(x)�j

�̂ = (BTB + �⌦B)
�1BT y

Smoothing Splines   
n  Knots at data points xi 
n  Natural cubic spline 
n  O(n) parameters 

¨  Shrunk towards subspace 
of smoother functions 

Regression Splines 
n  K < n  knots chosen 
n  Mth order spline = piecewise 

M-1 degree polynomial with M-2 
continuous derivatives at knots 

©Emily Fox 2013 14 

Spline Overview (so far) 

n  Linear smoothers, for example using natural cubic spline basis: 
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Penalized Regression Splines 
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n  Alternative approach: 
¨  Use K < n knots 
¨  How to choose K and knot locations? 

n  Option #1:  
¨  Place knots at n unique observation locations xi and do stepwise 
¨  Issue?? 

 
n  Option #2:  

¨  Place many knots for flexibility 
¨  Penalize parameters associated with knots 

 
n  Note: Smoothing splines penalize complexity in terms of 

roughness.  Penalized reg. splines shrink coefficients of knots. 

Penalized Regression Splines 

©Emily Fox 2013 16 

n  General spline model 
 
n  Definition: A penalized regression spline is               with  
 
 

n  Form of resulting spline depends on choice of 
¨  Basis  
¨  Penalty matrix 
¨  Penalty strength 

n  Still need to K and associated locations…RoT (Ruppert et al 2003): 

�̂

T
h(x)

K = min(
1

4
⇥ # unique xi, 35) ⇠k at

k + 1

K + 2

th points of xi



9 

PRS Example #1 
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n  B-spline basis + penalty 

n  For this penalty, the matrix D is given by 

n  Leads to 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�

PRS Example #2 

©Emily Fox 2013 18 

n  B-spline basis + penalty 

n  For this penalty, the matrix D is given by 

n  Leads to 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�
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PRS Example #3 
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n  Cubic spline using truncated power basis  
 
 
+ penalty on truncated power coefficients 

n  For this penalty, the matrix D is given by 

nX

i=1

(yi � �

T
h(xi))

2 + ��

T
D�

A Brief Spline Summary 
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n  Smoothing spline – contains n knots 

n  Cubic smoothing spline – piecewise cubic 

n  Natural spline – linear beyond boundary knots 

n  Regression spline – spline with K < n knots chosen 

n  Penalized regression spline – imposes penalty (various 
choices) on coefficients associated with piecewise polynomial 

n  The # of basis functions depends on 
¨  # of knots 
¨  Degree of polynomial 
¨  A reduced number if a natural spline is considered (add constraints) 
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Intro to Kernels, 
Local Polynomial Reg., 
Kernel Density Estimation 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 16th, 2013 
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Module 2: Splines and Kernel Methods 

Motivating Kernel Methods 

©Emily Fox 2013 22 

n  Recall original goal from Lecture 1: 
¨  We don’t actually know the data-generating mechanism 
¨  Need an estimator            based on a random sample  

Y1,…, Yn , also known as training data 

n  Proposed a simple model as estimator of E [ Y | X ]  

f̂n(·)
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Choice 1: k Nearest Neighbors 

©Emily Fox 2013 23 

n  Define nbhd of each data point xi by the k nearest neighbors 
¨  Search for k closest observations and average these 

n  Discontinuity is unappealing 

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, Tibshirani, Friedman book 

Choice #2: Local Averages 

©Emily Fox 2013 24 

n  A simpler choice examines a fixed distance h around each xi 
¨  Define set:  
¨  # of xi in set:  

n  Results in a linear smoother 

n  For example, with xi=     and h=  

B

x

= {i : |x
i

� x|  h}
n
x

L =
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More General Forms 

©Emily Fox 2013 25 

n  Instead of weighting all points equally, slowly add some in and 
let others gradually die off 

n  Nadaraya-Watson kernel weighted average 

n  But what is a kernel ??? 

Kernels 

©Emily Fox 2013 26 

n  Could spend an entire quarter (or more!) just on kernels 
n  Will see them again in the Bayesian nonparametrics portion 

n  For now, the following definition suffices 
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Example Kernels 

©Emily Fox 2013 27 

n  Gaussian 
 
n  Epanechnikov 
 
n  Tricube 

n  Boxcar 

K(x) =
1

2⇡
e

� x

2

K(x) =
3

4
(1� x)2I(x)

K(x) =
70

81
(1� |x|3)3I(x)

K(x) =
1

2
I(x)

2012 Jon Wakefield, Stat/Biostat 527

The Epanechnikov kernel has the form

K(x) =
3

4
(1 − x)2I(x), (67)

while the Tricube kernel is

K(x) =
70

81

(
1 − |x|3

)3
I(x). (68)

Finally, the Boxcar kernel is

K(x) =
1

2
I(x). (69)

All four kernels are displayed in Figure 31.

The simplest use of kernel methods in nonparametric regression is

based on direct kernel density estimation.

226

2012 Jon Wakefield, Stat/Biostat 527

Figure 31: Pictorial representation of four commonly-used kernels.

227

Nadaraya-Watson Estimator 

©Emily Fox 2013 28 

n  Return to Nadaraya-Watson kernel weighted average 

n  Linear smoother: 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)
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Nadaraya-Watson Estimator 

©Emily Fox 2013 29 

n  Example: 
¨  Boxcar kernel à  
¨  Epanechnikov 
¨  Gaussian 

n  Often, choice of kernel matters much less than choice of λ 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)

192 6. Kernel Smoothing Methods

Nearest-Neighbor Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous
f̂(x).

This discontinuity is ugly and unnecessary. Rather than give all the
points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

From Hastie, 
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n  Locally weighted averages can be badly biased at the 
boundaries because of asymmetries in the kernel 

n  Reinterpretation: 

n  Equivalent to the Nadaraya-Watson estimator 
n  Locally constant estimator obtained from weighted least squares 
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the
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n  Consider locally weighted linear regression instead 
n  Local linear model around fixed target x0 :  

n  Minimize: 

n  Return: 
 

n  Fit a new local polynomial for every target x0  

Local Linear Regression 
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n  Equivalently, minimize 
 

n  Solution: 

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� �0x0 � �1x0(xi

� x0))
2
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n  Bias calculation: 

n  Bias            only depends 
on quadratic and higher order terms 

n  Local linear regression corrects bias 
exactly to 1st order  

6.1 One-Dimensional Kernel Smoothers 195
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order.

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0)− β(x0)xi]
2 . (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BTW(x0)B)−1BTW(x0)y (6.8)

=
N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the
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n  Local linear regression is biased in regions of curvature 
¨  “Trimming the hills” and “filling the valleys” 

n  Local quadratics tend to eliminate this bias, but at the cost of 
increased variance 6.1 One-Dimensional Kernel Smoothers 197

Local Linear in Interior

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O
OO

OO

O

O

O

O

O

O

OO

O

O

OO

O

O

O

O
O

O

O

O

O
O

O
O
O

O

O
O

O

O

O

O

OO

O

O
O

O

O

O

O
O
O O

O

O

OO
O
O

O

O

O

O

O
O

O

O
O
O

O
O

O

O

OO
O

OO

OO

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

O

O

O
O

O

O

O

O
O

O
O
O

O

O
O

O

O

O

O

OO

O

O
O

O

O

O

O
O
O O

O

O

OO
O
O

O

•
f̂(x0)

Local Quadratic in Interior

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O

O

O

O

O
OO

OO

O

O

O

O

O

O

OO

O

O

OO

O

O

O

O
O

O

O

O

O
O

O
O
O

O

O
O

O

O

O

O

OO

O

O
O

O

O

O

O
O
O O

O

O

OO
O
O

O

O

O

O

O
O

O

O
O
O

O
O

O

O

OO
O

OO

OO

O

O

O

O

O

O

O

O

O

O

O
O

O

O

O

O

O

O

O

O

OO

O

O

OO

O

O

O

O
O

O

O

O

O
O

O
O
O

O

O
O

O

O

O

O

OO

O

O
O

O

O

O

O
O
O O

O

O

OO
O
O

O

•
f̂(x0)

FIGURE 6.5. Local linear fits exhibit bias in regions of curvature of the true
function. Local quadratic fits tend to eliminate this bias.

shown (Exercise 6.2) that for local linear regression,
∑N

i=1 li(x0) = 1 and∑N
i=1(xi − x0)li(x0) = 0. Hence the middle term equals f(x0), and since

the bias is Ef̂(x0) − f(x0), we see that it depends only on quadratic and
higher–order terms in the expansion of f .

6.1.2 Local Polynomial Regression

Why stop at local linear fits? We can fit local polynomial fits of any de-
gree d,

min
α(x0),βj(x0), j=1,...,d

N∑

i=1

Kλ(x0, xi)



yi − α(x0)−
d∑

j=1

βj(x0)x
j
i




2

(6.11)

with solution f̂(x0) = α̂(x0)+
∑d

j=1 β̂j(x0)x
j
0. In fact, an expansion such as

(6.10) will tell us that the bias will only have components of degree d+1 and
higher (Exercise 6.2). Figure 6.5 illustrates local quadratic regression. Local
linear fits tend to be biased in regions of curvature of the true function, a
phenomenon referred to as trimming the hills and filling the valleys. Local
quadratic regression is generally able to correct this bias.

There is of course a price to be paid for this bias reduction, and that is
increased variance. The fit in the right panel of Figure 6.5 is slightly more
wiggly, especially in the tails. Assuming the model yi = f(xi) + εi, with
εi independent and identically distributed with mean zero and variance
σ2, Var(f̂(x0)) = σ2||l(x0)||2, where l(x0) is the vector of equivalent kernel
weights at x0. It can be shown (Exercise 6.3) that ||l(x0)|| increases with d,
and so there is a bias–variance tradeoff in selecting the polynomial degree.
Figure 6.6 illustrates these variance curves for degree zero, one and two
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n  Consider local polynomial of degree d centered about x0 

 
n  Minimize: 
 
n  Equivalently: 

n  Return: 
n  Bias only has components of degree d+1 and higher 

P

x0(x;�x0) =

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2

Local Polynomial Regression 
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n  Rules of thumb: 
¨  Local linear fit helps at boundaries with minimum increase in variance 
¨  Local quadratic fit doesn’t help at boundaries and increases variance 
¨  Local quadratic fit helps most for capturing curvature in the interior 
¨  Asymptotic analysis à 

local polynomials of odd degree dominate those of even degree 
(MSE dominated by boundary effects) 

¨  Recommended default choice: local linear regression 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 

Kernel Density Estimation 
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n  Popular choice = Gaussian kernel  à Gaussian KDE 

n  Asymptotically unbiased estimator…See Wakefield book. 

208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)
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n  Recall task: 

n  Estimate joint density p(x,y) with product kernel 

n  Estimate margin p(y) by 

f(x) = E[Y | x] =
Z

yp(y | x)dy

p̂

�
x

,�
y (x, y) =

p̂

�
x(x) =

Connecting KDE and N-W Est. 

©Emily Fox 2013 40 

n  Then, 

n  Equivalent to Naradaya-Watson weighted average estimator 

f̂(x) =


