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Problem 4.1

In this question we will analyze a dataset (“CMB.csv”) that concerns Cosmic
Microwave Background (CMB). The first column is the wavenumber (the x
variable), while the second column is the spectrum (the y variable).

In the following you should carefully explain how you fit the models, for
example, in (b) and (c) what smoothing parameters did you use (for a gaus-
sian kernel)?

(a) Fit a penalized cubic regression spline with 30 evenly spaced knots
using the mgcv package.

(b) Fit a Nadaraya-Watson locally constant model.

(i) Set the relative bandwidth to 0.01. Plot the fitted curve.
Hint: The function locfit(..., deg=0, alpha= specified bandwidth)

from the locfit package in R might be helpful.

(ii) Set the relative bandwidth to 0.99. Plot the fitted curve.

(iii) Set the relative bandwidth from 0.01 to 0.99 by a 0.01 difference.
What is the optimal bandwidth that minimizes GCV score? Plot
the fitted curve with the optimal bandwidth.

Hint: The functions gcvplot(..., deg=0, alpha= a vector of the

specified bandwidths ) from the locfit package in R might be
helpful.

(c) Fit a locally linear polynomial model. Repeat the steps (i)-(iii) in part
(b).
Hint: The function locfit(..., deg=1) from the locfit package in
R might be helpful.
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(d) Make a scatter plot of the data points, superimposed with fitted curves
by (a)-(c). To see the patterns better, truncate y axis limits to (-1500,
8000). Which of the three models appears to give the best fit just by
visual inspection? Also, compare the two GCV-optimal curves from the
local linear and local constant fits. Name two key differences between
the curves.

Problem 4.2

In this question, we will use a toy example (“toy.csv”) with 7 data points. The
column “x” includes the covariate values, and the column “y” the observed
outcomes. We want to estimate the outcome y by an unknown function f(x).

A Gaussian process (GP) provides a distribution over functions. In this
problem, we consider a GP defined as f ∼ GP (0, κ), where κ(x, x′) =
exp

(
− 1
σ2 (x− x′)2

)
and σ2 = 2, 10.

(a) For σ2 = 2, draw 100 random samples of f from its prior and plot
them.

(b) For σ2 = 2, draw 100 random samples of f from its posterior and plot
them.

(c) For σ2 = 10, draw 100 random samples of f from its prior and plot
them.

(d) For σ2 = 10, draw 100 random samples of f from its posterior and plot
them.

(e) Interpret your plots from part (a)-(d). Why are there regions of low
variability and regions of high variability (in the posterior plots)? What
does changing σ2 do to the prior/posterior plots? What does this imply
about how the choice of σ2 can affect your posterior samples of your
function f?

(f) For σ2 = 2, construct the predictive distributions for x = 1 and x =
−2.8 and plot the resulting 1D predictive distributions. What are the
fully-specified forms of these distributions? Why are the variances so
different (use the posterior plot to help you)?
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Problem 4.3

In this question you will use a finite Dirichlet mixture of Gaussians to do
density estimation for eruption duration of the Old Faithful Geyser (in “Old-
Faithful.csv”).
Specifically, we consider the following model specification:

π ∼ Dir
( α
K
, . . . ,

α

K

)
(1)

µk | σ2
k ∼ N(0, γσ2

k) σ2
k ∼ IG

(
ν0
2
,
ν0S0

2

)
k = 1, . . . , K (2)

zi | π ∼ π i = 1, . . . , n (3)

yi | zi, {µk, σ2
k} ∼ N(µzi , σ

2
zi

) i = 1, . . . , n. (4)

Here, IG denotes the inverse gamma distribution and Dir the finite Dirichlet
with K components in this case. Fit the densities using the first 242 obser-
vations, leave the last 30 observations for testing.

Set α = 1, γ = 5, ν0 = 0.1 and S0 = 1.

(a) Using K = {2, 10}, show the estimated densities from 5000 MCMC
iterations by using the averaged density estimates from the last 500
iterations and plot the resulting densities ontop of the histogram of the
data.
Hint: You may find the “bayesmix” package in R helpful.

(b) Using K = {2, 10}, show the estimated densities using the EM al-
gorithm (for Maximum Likelihood) estimates as the final {π̂, µ̂k, σ̂2

k}
estimates and plot the resulting densities ontop of the histogram of the
data.
Hint: You may find the “mclust” package in R helpful.

(c) What do you think is an appropriate number of clusters, 2 or 10? (Hint:
think about how many you’d need to adequately fit the data). Are there
any systematic differences between the density estimates from part A
and B? If there are, do you think one method is better than the other
in this situation?
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(d) Calculate the log-likelihood of the test data for all 4 scenarios. In the
Bayesian setting, the predictive likelihood is estimated as:

P (Y ∗|Y ) =
∫
P (Y ∗|θ)P (θ|Y )dθ ≈ 1

500

∑500
i=1 P (Y ∗|θ(i))

for observed data Y and test data Y ∗, where θ(i) is a draw of the model
parameters from the i’th MCMC iteration. Use iterations [4501:5000].

For the EM approach, we just compute the test likelihood using our
plug-in estimator:

P (Y ∗|X∗, θ̂) =
∑K

i=1 π̂i × [N(X∗ | µ̂i, σ̂2
i )]

Draw a boxplot of these 500 log(P (Y ∗|θ(i))) values for K = 2, 10, and
super-impose lines for the log(P (Y ∗|Y )) averaged estimate and the EM
test log-likelihood log(P (Y ∗|X∗, θ̂)), where θ̂ is our final EM model pa-
rameter estimates.
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