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Problem 5.1

In this question you will use a Dirichlet process mixture of Gaussians to do
density estimation for the eruption duration of the Old Faithful Geyser (in
“OldFaithful.csv”).
Specifically, in the model below,
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Here, IG denotes the inverse gamma distribution and “Stick” the stick-
breaking process.

Set α = 1, γ = 1, ν0 = 1 and S0 = 1.

(a) Show the estimated density at the 1st, 10th, 100th and 1000th MCMC
iterations.
Hint: You may find the “DPpackage” in R helpful.

(b) Run the MCMC sampling with 1000 iterations. Generate a trace plot
of the number of clusters (the number of clusters at the t-th iteration
vs. t). Plot a histogram of the number of clusters over the 1000 itera-
tions.
Hint: You may find the “DPpackage” in R helpful.

(c) Bonus Part (worth 10 credits):
Write your own code for a Dirichlet process mixture of Gaussians col-
lapsed Gibbs sampler to do density estimation with the Old Faithful
Geyser data.
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(i) (5 credits) Reproduce the results in (a) and (b). You can initialize
the zi’s by assigning them to the same cluster, i.e. starting with
1 cluster. [Note: this is a simple, though not ideal initialization.
A more intricate initialization starts by assigning the first obser-
vation to cluster 1. Then assign the next observation as if it were
the last, conditioning on the assignment of the first observation.
That is, ignore all other data points. Continue this process until
all observations have been assigned.]

(ii) (5 credits) Evaluate the marginal likelihood at every iteration t:

P (y1:N |z1:N) =
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Generate a trace plot of the log-likelihood at iteration t vs. t.

Problem 5.2

Suppose that we specify linear splines with two truncated lines for each of
the two predictors X1 and X2, and therefor four basis in each dimension:

1, x1, (x1 − ξ11)+, (x1 − ξ12)+ (6)

1, x2, (x2 − ξ21)+, (x2 − ξ22)+ (7)

(a) How many basis functions does the tensor product splines model con-
tain? Write down the form of all basis in this model.

(b) Suppose X1 and X2 are from 0 to 1. Let ξ11 = ξ21 = 1/3 and ξ12 =
ξ22 = 2/3. Graphically display in 3-D all basis functions for a tensor
product splines model. Please include the name of basis with each plot.
Hint: You may find the function “persp()” helpful.

Problem 5.3

This problem considers daily air quality measurements in New York, from
May to September in 1973 (in “airQuality.csv”). There are 153 observations
on 6 variables: Ozone (ppb), Solar.R (solar radiation, measured in Langleys),
Wind (mph), Temperature (degrees F), Month (5−9), Day of month (1−31).
The response variable we are interested in is the cube root of ozone. (Note:
you need to transform the response variable yourself.)
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(a) Consider all 5 predictors. Fit a GAM model with a cubic regression
spline to Solar.R, a cubic regression spline to Wind, a two-dimensional
thin-plate regression spline to Time and Temperature and an effect for
Month (modeled as a factor or a categorical variable). Explain the
method by which you choose the smoothing parameter. Please briefly
describe the model fit, such as the number of degrees of freedom and
if any predictor does or doesn’t seem to have a strong association with
the response variable.
Hint: You may find the “gam()” function in “mgcv” package helpful.

(b) Plot the resulting 1-D smoothing curve on Solar.R and comment on its
relationship with the response variable. Repeat the same exercise to
Wind.

(c) Plot the fitted surface of the two-dimensional thin-plate regression
spline of Time and Temperature. Describe their relationship with the
response variable.

(d) Examine the adequacy of the GAM model you fit, using residual plots
of residuals vs. each predictor and the fitted value respectively.

Problem 5.4

In this problem we will do spam classification. Consider the email spam
dataset (in “spam.data”). This consists of 4601 email messages, from which
57 features (or covariates) have been extracted. These are as follows:

• 48 features, in [0, 100], giving the percentage of words in a given message
which match a given word on the list. The list contains words such as
“business”, “free”, “george”, etc.

• 6 features, in [0, 100], giving the percentage of characters in the email
that match a given character on the list. The characters are ; ( [ ! $ #

• Feature 55: The average length of an uninterrupted sequence of capital
letters

• Feature 56: The length of the longest uninterrupted sequence of capital
letters
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• Feature 57: The sum of the lengths of uninterrupted sequence of capital
letters

More detail about the data can be found in the file “spam.info”.

Load the data from “spam.data”, in which Columns 1-57 are the features
and Column 58 is our response variable, the indicator of spam emails (1 is
spam and 0 is non-spam). Divide the dataset into a training set (of size 3065)
and a test set (of size 1536) by the indicator in the file “spam.traintest” (1
is test set and 0 is training set).
Before analyzing the data, we need to standardize the covariates so that they
have mean 0 and unit variance.

(a) Write your own code to implement the gradient descent algorithm
to fit a logistic regression model with L2 regularization to all param-
eters including intercept. Use the test set to choose the penalization
parameter λ. For this exercise, you can set the step size in gradient
descent algorithm to 0.001 and tuning λ from 0 to 5 by a 0.1 difference.
Make binary predictions from the model with the chosen λ and report
the error rate on the training and test sets.

(b) (i) Fit a classification tree to the training set. Plot the fitted un-
pruned tree. Make binary predictions and report the error rate on
the training and test sets.

(ii) Prune the tree and select the optimal tuning parameter λ by min-
imizing the 10-fold cross validation error with the one standard
error rule (1-SE Rule). The 1-SE Rule means that we should
choose a simpler model if its penalized RSS is less than 1 SE
worse than the next complex model. Plot the fitted pruned tree.
Make binary predictions and report the error rate on the training
and test sets.

Hint: You may find the “rpart” package in R helpful. The examples in
the introduction below are also helpful.
http://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf

(c) Bonus part (worth 5 credits): Binarize the features using I(xij > 0)
for all covariates for all data points. Fit a naive Bayes model with the
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binarized covariates. Report the error rate on the training and test
sets.
Hint: You may find the “klaR” package in R helpful

5


