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Abstract

Regularization in linear regression and classi�cation is viewed as a two�stage process.
First a set of candidate models is de�ned by a path through the space of joint parameter
values, and then a point on this path is chosen to be the �nal model. Various path�nding
strategies for the �rst stage of this process are examined, based on the notion of generalized
gradient descent. Several of these strategies are seen to produce paths that closely corre-
spond to those induced by commonly used penalization methods. Others give rise to new
regularization techniques that are shown to be advantageous in some situations. In all cases,
the gradient descent path�nding paradigm can be readily generalized to include the use of
a wide variety of loss criteria, leading to robust methods for regression and classi�cation, as
well as to apply user de�ned constraints on the parameter values.

Key words and phrases : linear models, regularization, regression, classi�cation, gradient
descent, robustness, constrained estimation, lasso, ridge�regression, least�angle regression
LARS, partial least squares PLS, linear support vector machines SVM.

1 Introduction

Linear structural models are among the most popular for data �tting. One is given N observa-
tions of the form

fyi;xigN1 = fyi; xi1; � � �; xingN1 (1)

considered to be a random sample from some joint (population) distribution with probability
density p(x; y). The random variable y is the �outcome�or �response�and x = fx1; � � �; xng are
the predictor variables. These predictors may be the original measured variables and/or selected
functions constructed from them as with learning ensembles (Friedman and Popescu 2003). The
goal is to estimate the parameters a = fa0; a1; � � �; ang of the linear model

F (x;a) =a0 +
nX
j=1

ajxj (2)

for predicting y given x, that minimize the expected loss (�risk�)

R(a) = Ex;yL(y; F (x;a)) (3)

over future predictions x; y v p(x; y). Here L(y; F (x;a)) is a loss criterion that speci�es the cost
of predicting a response value y by the value of F (x;a) (2). The optimal parameter values are
thereby de�ned to be

a� = argmin
a
Ex;yL

0@y; a0 + nX
j=1

ajxj

1A : (4)
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Since the population probability density is unknown, a common practice is to substitute an
empirical estimate of the expected value in (4) based on the available data (1) yielding

â =argmin
a

1

N

NX
i=1

L

0@yi; a0 + nX
j=1

ajxij

1A (5)

as an estimate for a�.

1.1 Penalization

It is well known that â (5) often provides poor estimates of a�; that is R(â) >> R(a�). This is
especially the case when the sample size N is not large compared to the number of parameters
(n+1). This is caused by the high variability of the estimates (5) when based on di¤erent random
samples drawn from the population distribution. A common remedy is to modify (�regularize�)
(5) in order to stabilize the estimates by adding a penalty � � P (a) to the empirical risk

â(�) = argmin
a

1

N

NX
i=1

L

0@yi; a0 + nX
j=1

ajxij

1A+ � � P (a): (6)

For a given set of parameter values a, the penalty function P (a) returns a (deterministic) value
that is independent of the particular random sample drawn from the population distribution. It
thereby provides a stabilizing in�uence on the criterion being minimized (6) which in turn sta-
bilizes the corresponding estimates â(�). The penalty multiplier � (� 0) is a �meta��parameter
of the procedure that controls the degree of stabilization; larger values provide increased regu-
larization producing more stable estimates. For � = 0 one obtains the least stable estimates (5),
whereas for � = 1 the estimates are completely deterministic (provided the minimum of P (a)
is unique), being independent of the particular sample (1) drawn from the population.
Commonly employed penalty functions include

P2(a) =
nX
j=1

j aj j2 (7)

(�ridge regression�Horel and Kannard 1970, �support vector machines�Vapnik 1996), and more
recently

P1(a) =
nX
j=1

j aj j (8)

(�lasso�Tibshirani 1996 and �Sure Shrink�Donoho and Johnstone 1993). Both of these functions
increasingly penalize (in a di¤erent manner) larger absolute values for the coe¢ cients multiplying
the corresponding predictor variables fxjgn1 in the linear model (2). Note that these penalties
do not involve the intercept parameter a0 which is not generally subjected to regularization.
Use of the penalty P2(a) produces solutions that are equivariant under rotations but not to
transformations involving scale change. Solutions using the penalty P1(a) are not equivariant
under either rotations or scale change. Often the input variables are standardized fvar(xj) = 1gn1
so that they have equal a priori in�uence as predictors.
For a given penalty function P (a), the procedure represented by (6) produces a family of

estimates, in which each member of the family is indexed by a particular value for the strength
parameter �. This family thus lies on a one�dimensional path of �nite length in the (n + 1)�
dimensional space of all joint parameter values. At one end of this path is the point â (5)
corresponding to � = 0. For the penalties (7) (8), the other end (� =1) is given by

a0 = argmin
a

NX
i=1

L(yi; a); faj = 0gn1 : (9)
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1.2 Model selection

The optimal parameter values a� (4) also represent a point in the parameter space. For a given
path, the goal is to �nd a point on that path â(��) that is closest to a�, where distance is
characterized by the prediction risk (3)

D(a;a�) = R(a)�R(a�): (10)

This is a classic model selection problem where one attempts to obtain an estimate �̂, for the
optimal value of the strength parameter

�� = arg min
0���1

D(â(�);a�): (11)

There are a wide variety of model selection procedures depending on the choice of loss criterion
(3) and penalty P (a). Among the most general, applicable to any loss and/or penalty, is cross�
validation. The data are randomly partitioned into two subsets (learning and test). The path
is constructed using only the learning sample. The test sample is then used as an empirical
surrogate for the population density p(x; y) to compute the corresponding (estimated) risks in
(3) (10). These estimates are then used in (11) to obtain the estimate �̂. Sometimes the risk used
in (11) is estimated by averaging over several (K) such partitions (�K�fold�cross�validation).

1.3 Path Selection

Given a model selection procedure, the goal is to construct a path â(�) in parameter space
such that some of the points on that path are close to the point a� (4) representing the optimal
solution. If no points on the path come close to a� then no model selection procedure can produce
accurate estimates â(�̂). Since the path produced by (6) depends on the data, di¤erent randomly
drawn training data sets T (1) will produce di¤erent paths for the same penalty. Thus, the paths
are themselves random. Each value of the strength parameter � produces a joint distribution
p�(â) for its parameter values â(�) induced by the data distribution T v p(x; y). Therefore, the
goal becomes one of selecting a procedure (penalty) that produces a distribution of paths whose
average closest distance (10) from a� (4) is small.
These concepts are most easily illustrated for squared�error loss

L(y; F (x;a)) = (y � F (x;a))2=2: (12)

In this case, the average distance (10) between â(�) and a� can be expressed as

ETD(â(�);a
�) = D(�a(�);a�) + ExvarT [F (x; â(�))]: (13)

Here �a(�) is the mean value of â from p�(â) for the given value of �. In the second term, the
expected value is over the marginal distribution p(x) of the predictor variables, the variance is
over the distribution p�(â) induced by the random nature of the training data T , and F (x;a) is
given by (2).
The �rst term on the right side of (13) (�bias�squared�) involves the (deterministic) average

path �a(�) through the parameter space induced by the chosen penalty P (a). For penalties (7)
(8), one end point �a(1) is the expected value of (9). The other end point �a(0) is given by a�
(4). The interior points (1 > � > 0) are determined by the particular penalty employed.
The second term on the right side of (13) (�variance�) re�ects the stochastic nature of the

path â(�) due to its dependence on the random training data. This variance is smallest for
� = 1 and increases as the value of � decreases owing to the increasing relative in�uence of
the stochastic component in (6). In order to produce paths that on average come close to a�

one must choose a penalty that causes its average path �a(�) to come close to a� (�rst term),
at locations for which the variability (second term) is small. This means that �a(�) should come
close to a� as early as possible (larger values of �) in its trajectory from �a(1) to �a(0).
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Figure 1: Paths in parameter space generated by the lasso (blue), ridge�regression (green),
gradient descent (red), and PLS (black), bottom to top respectively. The top three paths are
quite similar and discourage diversity of the coe¢ cient values, whereas the lasso path is quite
di¤erent, encouraging such diversity.

Since the true coe¢ cient values a� are unknown, path (penalty) selection should re�ect
whatever is known about the nature of a�. This is illustrated in Fig. 1 for â1 = 2; â2 = 1 (5) and
squared�error loss (12), with E(x) = E(y) = 0; var(x1) = var(x2) = 1; and cov(x1; x2) = 0:9.
The lower (blue) curve shows the estimated path (â1(�); â2(�)),1 � � � 0, for the lasso penalty
(8). The middle (green) curve is the corresponding ridge regression (7) path. (The other paths
in Fig. 1 are discussed in Section 2.) For � > 0 both paths represent a sequence of shrunken
estimates jj â(�) jj2 < jj â(0) jj2, with the degree of shrinkage increasing with the value of �
(more regularization). However the actual paths are quite di¤erent. For the lasso, the dispersion
(coe¢ cient of variation) of the absolute values of the individual coe¢ cients fâ1(�); â2(�)g is
larger than that of â(0) and increases as � increases until â2(�) = 0. For the ridge path this
dispersion is always smaller than that of â(0) and decreases with increasing �.
As the value of � increases the variance of the data induced paths â(�) about the expected

path �a(�) decreases. Thus ridge regression tends to produce paths â(�) for which the absolute
coe¢ cients of highly correlated variables are shrunk to a common value whereas the lasso pro-
duces an opposite e¤ect. Although illustrated here in only two dimensions, these respective
characteristics are well known to extend to higher dimensional settings as well (Frank and Fried-
man 1993, Donoho, et. al 1995, Tibshirani 1996). Thus, if one suspected that the components of
a� had highly disparate (absolute) values the lasso would likely produce paths in the parameter
space that come closer to a�, whereas if the components of a� had roughly equal (absolute)
values ridge regression might produce closer paths. If one had no prior suspicions concerning the
nature of a�, a model selection technique (such as cross�validation) might be used in an attempt
to determine which of the estimated closest points on the respective paths is actually closer to
a�.
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2 Gradient directed paths

The upper two paths in Fig. 1 are not constructed from a penalty. They are paths â(�) directly
constructed in the parameter space in a sequential manner, starting at the point given by (9)
and ending at â (5). The lower of these two (red) is the gradient descent (GD) path. Each
successive point on this path â(� +��) is derived from the previous point â(�) by

â(� +��) = â(�) + �� � g(�); (14)

where �� > 0 is an in�nitesimal increment and g(�) is the negative gradient of the empirical
risk evaluated at â(�)

g(�) = � d
da

1

N

NX
i=1

L(yi; F (xi;a))

,
a=â(�)

; (15)

here (Fig. 1) for squared�error loss (12).
The upper (black) curve is constructed from the ordered sequence (k = 0; 1; ���; n) of conjugate

gradient steps with exact line search (Gill, Murray, and Wright 1981):

âk+1 = âk + �k � sk (16)

with sk given by

sk = gk �
gtkgk

gtk�1gk�1
sk�1;

with s0 de�ned to be the zero vector, and gk is the negative gradient (15) evaluated at a = âk.
The step size �k is given by a line search along the direction sk:

�k = argmin
�

1

N

NX
i=1

L(yi; F (xi; âk + � � sk)):

For squared error loss (12), this conjugate gradient procedure is called partial least squares
(PLS) regression (Wold, Ruhe, Wold, and Dunn 1984), and k is referred to as the �number
of components� associated with the point âk. Usually with PLS only the points fâkgn0 are
examined for model selection, but it can be easily generalized to the continuous path generated
by connecting successive points by straight lines, as in Fig. 1.
From Fig. 1 one sees that the paths produced by ridge regression (RR green), GD (red),

and PLS (black) are very similar. Over most of their range they yield nearly identical coe¢ cient
values. Only near the upper end point (less regularization) do they diverge a little. The GD
path is seen to exaggerate the ridge tendency to shrink the coe¢ cients of correlated variables
toward a common absolute value; PLS does this to an even greater degree.
These tendencies persist in higher dimensional settings as well. RR, GD, and PLS are all

equivariant under rotations of the predictor variables. It is therefore su¢ cient to examine their
properties in the coordinate system in which the corresponding rotated (and centered) variables
fzjgn1 are orthogonal and uncorrelated (�principal axes�). In this coordinate system (for squared�
error loss (12)) the RR, GD, and PLS solutions for the coe¢ cient �̂j of zj can all be expressed
as

�̂j(RR:GD:PLS) = fj(RR:GD:PLS) � �̂j(0): (17)

Here �̂j(0) is the unregularized least�squares solution

�̂j(0) =
1

N

NX
i=1

yizij=v
2
j ; (18)
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where fv2j gn1 are the respective variances of the rotated variables fzjgn1

v2j =
1

N

NX
i=1

z2ij : (19)

The factors fj(RR:GD:PLS) each scale the respective �̂j(0) by di¤erent amounts depending on
the method (RR, GD, PLS).
For RR these scale factors are given by

fj(RR) =
v2j

v2j + �
; (20)

where � is the regularization strength parameter (6) (7). For GD the corresponding scale factors
are given by

fj(GD) = 1� (1��� � v2j )t (21)

(Bishop 1995) where �� is the step size in (14) and t is the number of steps (of size ��) along
the GD path starting at the point given by (9). Note that both RR and GD are linear estimation
methods; their scale factors (20) (21) do not involve the data response values fyigN1 so that from
(17) (18) their corresponding estimates are linear functions of the responses.
The scale factors ffj(PLS)gn1 for PLS are not simple functions but they can be computed

(see Frank and Friedman 1993). They involve fv2j gn1 and the relative values of the least�squares
coe¢ cients f�̂j(0)gn1 (18). Thus, PLS is not strictly a linear method. However, the dependence
on the least�squares coe¢ cients is not strong, especially in collinear settings.
Figure 2 illustrates the similarity of the shrinking patterns of RR, GD, and PLS. It shows

a comparison of the scale factors fj(RR) (blue), fj(GD) (black) and fj(PLS) (red), in three
collinearity settings, for selected variables zj (numbered in decreasing order of their values of vj
(19)), as indicated in the respective frame titles. The three settings are characterized by high
collinearity, fvj = (10 � j)2g101 , moderate collinearity fvj = (10 � j)g101 , and low collinearity
fvj = (10� j)1=2g101 of the original variables x. The lower right frame in Fig. 2 displays fvjg101
for each of these settings. The scale factors are plotted along a common abscissa as a function
of their overall norm jj â jj2 of the corresponding coe¢ cient vectors

jj â jj2 =

24 nX
j=1

(fj � �̂j(0))2
351=2 :

The unregularized solutions were taken to be f�̂j(0) = 1gn1 .
The similarity of RR, GD, and PLS indicated in Fig. 1 is re�ected in the results presented

in the �rst three frames of Fig. 2. For increasing levels of regularization (decreasing jj â jj2)
they all shrink the unregularized coe¢ cients �̂j(0) corresponding to smaller values of vj to a
greater extent than those with larger values of vj . Especially for higher regularization levels,
their respective shrinkage patterns are strikingly similar. For almost all levels, PLS provides the
most extreme e¤ect with RR being the least extreme. As in Fig. 1, GD lies in between the two
extremes. Thus, GD can be considered as a compromise between PLS and RR.
The strong similarity of PLS and RR was reported in Frank and Friedman 1993 where the two

methods were shown to have nearly identical performance characteristics. The results presented
in Fig. 1 and Fig. 2 suggest that GD, being a compromise between these two methods, should also
produce quite similar characteristics. Least angle regression (LARS) (Efron, Hastie, Johnstone,
and Tibshirani 2003) is a non gradient (least�squares) method for sequentially inducing paths
in parameter space that closely correspond to those produced by the lasso (8). All of these
methods therefore divide into two groups at opposite extremes in terms of the characteristics of
their corresponding generated paths in parameter space; RR, GD, and PLS produce paths that
in a very similar manner, discourage dispersion among the (absolute) coe¢ cient values, whereas
LARS and the lasso produce paths that encourage such dispersion, again in a very similar way.
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Figure 2: Shrinkage patterns of selected principal component regression coe¢ cients as indicated
in the plot titles, for ridge�regression (blue), gradient descent (black), and PLS (red), for high
(upper left), moderate (upper right), and low (lower left) collinearity of the original predictor
variables. The square�roots of the eigenvalues of the corresponding predictor variable covariance
matricies are shown in the lower right panel, bottom to top respectively. The shrinkage patterns
for these three methods are all quite similar, especially for higher collinearity.
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With gradient descent based procedures, the updating step (14) (16) can be restricted to
apply only to the coe¢ cients fâj(�)gn1 ; the intercept â0(�) is set to the value that minimizes
(5), given the current coe¢ cient values fâj(�)gn1 . This has the e¤ect of removing the intercept
from the regularization process in analogy with the penalties (7) (8). For squared�error loss
(12) centering the predictor variables fmean(xj) = 0gn1 automatically produces this e¤ect since
g0(�) = 0 everywhere along the path. For other loss criteria considered below this centering
approximately produces the same e¤ect, so that including the intercept in the updating (14)
(16) subjects it to a correspondingly small degree of regularization that tends to decreasingly
penalize its absolute di¤erence from the initial value (9) as the path is traversed.

3 Path�nding by generalized gradient descent

If the optimal parameter values a� (4) have highly diverse absolute values then LARS or the
lasso (8) would likely provide paths in the parameter space that come close to a�. At the other
extreme, if the components of a� all have quite similar absolute values, then paths produced by
RR, GD, or PLS would come close to the point a�. However, for situations in between these
extremes in which the optimal coe¢ cient vector a� is characterized by moderately diverse/similar
values, none of these methods may produce appropriate paths in the parameter space. It may
therefore be pro�table to consider alternative techniques that provide paths appropriate for such
situations.
One way to de�ne a path is to specify a starting and an ending point for the path, and given

any point on the path â(�) a prescription de�ning the next point â(� +��). For example,

â(� +��) = â(�) + �� � h(�): (22)

Here h(�) represents a direction in the parameter space tangent to the path at â(�). This (22) is
the prescription used by GD (14) where h(�) is the negative gradient g(�) (15) and�� represents
in�nitesimal steps. This is also the strategy used by PLS (16) and LARS (Efron et al 2003), but
where each �� � h(�) represents a non in�nitesimal increment in a �nite sequence of steps.
A very large number of potential paths with highly varying properties can be de�ned by

di¤erent starting and ending points, as well as di¤erent prescriptions for computing �� � h(�)
along the path. The paths induced by RR, GD, PLS, LARS and lasso all start at the point
de�ned by (9). This represents the most heavily regularized solution, using the data only to
estimate the intercept a0. The path end points for all of these methods are also the same,
namely the completely unregularized solution â (5). Although by no means necessary, it seems
reasonable to use these same points (9) (5) to respectively start and end alternatively de�ned
paths as well.
Although they use the same starting and ending points, the paths produced by RR, GD,

PLS, LARS and lasso di¤er in how they de�ne the interior points along their respective paths.
However, they all share a monotonicity property: starting at (9) each successive point on the
path produces lower empirical risk on the training data. That is

R̂(â(� +��)) < R̂(â(�)); (23)

where

R̂(a) =
1

N

NX
i=1

L(yi; F (xi;a)) (24)

and F (x;a) is given by (2). This means that for all of these methods the corresponding tangent
vector h(�) (22) at each step represents a descent direction; that is it projects positively on the
negative gradient (15), ht(�)g(�) > 0. Again, although not necessary, it seems reasonable to
impose this restriction on the alternatively de�ned paths to be considered below. Namely we will
consider �generalized�gradient descent paths generated by (22) using a small (v in�nitesimal)
constant value for ��, and with tangent direction

h(�) = fhj(�)gn0 = ffj(�) � gj(�)gn0 ; (25)
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where fgj(�)gn0 are the components of the negative gradient (15), and ffj(�) � 0gn0 are non
negative factors scaling their respective gradient components. Although not necessary, the form
(25) with the non negative constraint on the factors, is su¢ cient to insure a descent direction at
every step.

3.1 Threshold gradient descent

Setting all of the factors ffj(�)gn0 in (25) to the same positive value at each step yields the GD
strategy (14) (15). As shown in Section 2 this produces paths in parameter space on which the
coe¢ cients fâj(�)gn1 tend to have similar absolute values. One way to direct the path towards
parameter points with more diverse component values is to increase the diversity of the factor
values used in (25). In particular, we take

fj(�) = I [j gj(�) j � � � max
0�k�n

j gk(�) j] (26)

where I[�] is an indicator function of the truth of its argument, and 0 � � � 1 is a threshold
parameter that regulates the diversity of the values of ffj(�)gn0 ; larger values of � lead to more
diversity.
Setting � = 0 produces the standard GD procedure that encourages equal coe¢ cient values

for points â(�) on its path. At the opposite extreme, setting � = 1 encourages the most diver-
sity among the parameter values by causing only the single component âj�(�) whose absolute
derivative is largest,

j�(�) = arg max
0�j�n

j gj(�) j (27)

to be incremented (22) (25) (26) at each step. For squared�error loss (12) this is called the
�incremental� forward stagewise strategy in Hastie, Tibshirani, and Friedman 2001 (see also
Efron et al 2003) where it is shown that the resulting path very closely corresponds to that
produced by the lasso (8) (and LARS). As discussed in these references and in Section 2, such
paths emphasize highly diverse parameter values. Values of � in between these two extremes
(0 < � < 1) create paths that involve more diverse coe¢ cient absolute values than PLS, GD,
or RR but less than LARS or the lasso. Smaller values of � create paths closer to the former
whereas larger values produce paths closer to LARS and the lasso.
Figure 3 illustrates paths in parameter space generated by increasing gradient threshold

values (top to bottom) 0 � � � 1 (26) for the situation shown in Fig. 1. As can be seen,
di¤erent values of � produce corresponding paths that encourage or discourage dispersion in the
absolute coe¢ cient values to varying degrees. Note that the next to highest path is close to that
produced by ridge�regression (6) (7).

4 Illustration: latent variable model

We illustrate these concepts in the context of a speci�c problem. Data are simulated from a
model (Frank and Friedman 1993) in which a small number L of independent unknown intrinsic
processes are responsible for the systematic variation of both the response y and the predictors
x. These processes are represented by unobserved latent variables flkgL1 , and the model is

y =
LX
k=1

ak lk + "; (28)

where fakgL1 are coe¢ cients relating the respective latent variables to y, and " is a random
error representing the variation in y not related to the latent variables. The predictor variables
x = fxjgn1 are similarly related to the intrinsic latent variables by

xj =
LX
k=1

bjk lk + �j ; 1 � j � n: (29)

9



Figure 3: Paths in parameter space generated by threshold gradient descent using various thresh-
old values 0 � � � 1, for the example depicted in Fig. 1. A wide variety of paths with varying
properties intermediate between full gradient descent (top) and the lasso (bottom) can be ob-
tained.

In this example each random latent variable has a standard normal distribution. The noise
terms ", f�jgn1 are also normally distributed with the variance of each set to produce a two to
one signal to noise ratio: var(") = var(y)=5 in (28), and fvar(�j) = var(xj)=5gn1 in (29). The
coe¢ cient values fakgL1 (28) are taken to be

ak = L� k + 1; 1 � k � L (30)

to produce some dispersion in the relative in�uences of the respective latent variables on the
response y.
A subset of size ns of the n predictor variables were partitioned into L groups of the same

size (ns=L), and the respective coe¢ cients in (29) for those variables (1 � j � ns) were taken
to be

bjk =

�
1 if j 2 kth group
0 otherwise.

(31)

That is, each predictor variable in the same group is an independent noisy measurement of the
(same) latent variable associated with that group. Thus, the predictor variable covariance matrix
has a block structure with variables in the same group being highly correlated with each other,
while between group correlations are small. The remaining n� ns predictor variables have zero
valued coe¢ cients for all latent variables, fbjk = 0gnj=ns+1, (1 � k � L). Thus these are pure
noise variables unrelated to the intrinsic processes, and thereby unrelated to the response.
Samples of N = 150 observations were generated according to the above prescription with

L = 5 latent variables and ns = 100 active predictor variables (20 in each latent group). Three
situations are considered in terms of the total number of predictor variables: n = 100, n = 1000,
n = 10000. The �rst case involves only the ns = 100 active variables; there are no pure noise
variables. The second and third cases involve respectively n � ns = 900 and 9900 pure noise
variables unrelated to the response y.
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Performance is evaluated in terms of the scaled average absolute error

sae =
Ex jF (x;a�)� F (x; â) j

Ex jF (x;a�)�medianxF (x;a�) j
(32)

where F (x;a�) is the optimal model (2) based on the true parameter values derived from (30)
(31), and F (x; â) represents the corresponding function using the estimated parameter values â.
All estimates were obtained from (15) (22) (25) (26) using squared error loss (12). Three�fold
cross validation was used for model selection (Section 1.2) to estimate the optimal point â(��)
(10) (11) along each estimated path. The criterion (32) was evaluated using an independently
generated data sample of size 10000. A total of 100 data sets of size N = 150 were generated
for each situation (n = 100; 1000; 10000) and the resulting average of (32) over these 100 trials
is reported.

Figure 4: Expected scaled absolute error as a function of gradient threshold � for the latent
variable regression problem, for n = 100 (lower green), 1000 (middle blue), and 10000 (upper red)
total predictor variables. The asterisks at the left nearly hidden by the � = 0 points, represent
the corresponding results for PLS. The optimal threshold value is seen here to increase with the
number of (irrelevant) predictor variables. Larger values of � provide increased resistance to
more irrelevant variables.

4.1 Threshold parameter value

Figure 4 shows the resulting average scaled absolute error (32) for the three situations (n =
100; 1000; 10000), each for eleven values of the gradient threshold parameter � (26) in the range
� 2 [0; 1]. The lower (green) points (connected by straight lines) correspond to n = 100 predictor
variables, the middle (blue) points correspond to n = 1000, and the upper (red) to n = 10000.
The points at the left represented by asterisks (nearly hidden by the � = 0 points) are the
corresponding results for PLS.
From Fig. 4 one sees that the best threshold parameter value is di¤erent for these three

situations. For n = 100 (no pure noise variables) � = 0 appears optimal. For n = 1000 (900 pure
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noise variables) � ' 0:5 produces the smallest error, whereas for n = 10000 (9900 pure noise
variables) the average error is minimized between 0:6 < � < 0:7. Also, PLS and GD (� = 0) are
seen to produce nearly identical results in accordance with the discussion in Section 2. Increasing
the number of pure noise variables severely degrades performance for smaller values of � (and
PLS), whereas using larger values of � produces more tolerance to many such irrelevant variables.
For n = 100, one sees that values � . 0:4 all provide comparable results to the optimal value
� = 0, but for larger values performance degrades rapidly approaching 60% increased error for
� = 1. For n = 1000, resulting error is more sensitive to the value of � , increasing in both
directions from � = 0:5 to about a 50% increase at both extremes (� = 0; 1). For n = 10000,
using � = 1 results in an increase of 30% over the error at � = 0:6 and a 260% increase at � = 0.

Figure 5: First 200 estimated coe¢ cient values for the latent variable regression problem with
n = 10000 predictor variables, for gradient threshold values � = 0 (upper), � = 0:6 (middle),
and � = 1 (lower) panels. The �rst 100 variables (blue) have non zero population optimal values,
decreasing from left to right, whereas the other 100 (red) along with the remaining 9800 (not
shown) have optimal values of zero. Note the di¤erent vertical scales. Higher threshold values
are seen to produce more diversity in the estimates of the absolute coe¢ cient values.

Figure 5 shows the �rst 200 coe¢ cient estimates for the �rst data set (out of the 100 data
sets) generated with n = 10000 predictor variables. The �rst 100 (blue) are the coe¢ cients of
the ns = 100 active variables, the next 100 (red) are those for the �rst 100 pure noise variables.
(The distribution of the coe¢ cient values for the other 9800 pure noise variables is similar the the
�rst 100 shown here.) Three sets of estimates are displayed corresponding to gradient threshold
values � 2 f0:0; 0:6; 1:0g. Note that the vertical scales of these plots are very di¤erent, each
increasing roughly by a factor of �ve from the previous one (top to bottom).
As seen in Fig. 5 the dispersion in absolute values of the coe¢ cient estimates increases (fairly
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dramatically) with increasing values of the gradient threshold. For � = 0, the coe¢ cients of the
active variables are heavily shrunk and most of the pure noise variables have absolute coe¢ cient
values comparable in size to the active ones. The ratio of the absolute average coe¢ cient value
for the 9900 pure noise variables to that of the active ones is 0:254. The optimal threshold value
for this situation, � = 0:6, produces larger coe¢ cients for the active variables with somewhat
larger dispersion, and estimates most of the pure noise variable coe¢ cients to be zero. The
corresponding ratio of average pure noise to active variable absolute coe¢ cient values is 0:015.
For � = 1, the coe¢ cient estimates of the 100 active variables have highly diverse values with
only 29 of them being non zero. As with � = 0:6, the vast majority of pure noise variables have
estimated coe¢ cient values of zero, the ratio of average pure noise to active absolute coe¢ cient
values being 0:014.
The coe¢ cient estimates for the three values of gradient threshold � shown in Fig. 5 re�ect

the properties discussed in Section 3. Small values (� w 0) tend to produce coe¢ cient estimates
that have similar absolute values, whereas large values (� w 1) tend to produce sparse highly
diverse estimates. Moderate values of � produce estimates in between these extremes. The
results in Fig. 4 show that there are situations for which such moderate gradient threshold
values can produce results superior to either extreme. This suggests (Sections 2 and 3) that
for some problems, threshold gradient descent with intermediate threshold parameter values
(0 < � < 1) might give rise to more accurate predictive models than RR, GD, PLS at the one
extreme, or LARS and the lasso at the other.

4.2 Total model selection

In the simulated examples above the true underlying parameter values a� (4) were known so that
performance for various gradient threshold values could be computed. Model selection (here three
fold cross�validation) was used only to estimate the optimal predicting point along each of the
respective paths. In actual practice, the true underlying parameter values are not known, and
it is the purpose of the exercise to attempt to estimate them. Thus, model selection must be
used to jointly estimate a good value for the gradient threshold � as well as a corresponding
predicting point along its path. This introduces additional variability into the problem that
degrades the quality of the parameter estimates from that obtained using the corresponding
(unknown) optimal value, thereby reducing (or possibly eliminating) the advantage of gradient
descent with adjustable threshold.
Figure 6 repeats Fig. 4, but with the addition of horizontal lines representing the average

(over the corresponding 100 data sets) of the scaled absolute error (32), using the estimated
threshold (0 � � � 1) for each individual data set, in each of the three situations: n = 100
(green), n = 1000 (blue), and n = 10000 (red). In all situations the uncertainty associated
with estimating the threshold parameter is seen to increase average error over that of using the
optimal threshold value by around 5%. Thus, at least for this illustration, the increased error
associated with total model selection is rather modest and the advantage of gradient descent
with adjustable threshold is maintained.

5 Robust threshold gradient descent

It is well known that using squared�error loss (12) produces parameter estimates â that can be
heavily in�uenced by a small number of unusually extreme observations (�outliers�) for which
the response values yi do not follow the dominant linear trend of most of the data. The presence
of such outliers can often severely degrade the predictive accuracy of the resulting linear model
F (x; â) (2). The use of appropriate alternative loss criteria can mitigate this outlier e¤ect, while
maintaining accuracy comparable to that of least�squares in outlier free situations. One such
popularly used loss is the Huber 1964 criterion

L(y; F (x;a)) =

�
(y � F (x;a))2=2 j y � F (x;a) j < �
�(j y � F (x;a) j � �=2) j y � F (x;a) j � �: (33)
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Figure 6: Repeat of Fig. 3 with the addition of horizontal lines representing the scaled absolute
error averaged over the 100 trials, using the separately estimated optimal threshold value for
each trial. The estimation is seen to increase error from the (here known) optimal threshold
value by about 5% in all three n = 100 (green), 1000 (blue), and 10000 (red) situations.

This is a compromise between squared�error loss (12) and least absolute deviation loss L(y; F (x;a)) =
j y � F (x;a) j. The value of the �transition�point � di¤erentiates the residuals that are treated
as outliers being subject to absolute loss, from the other residuals subject to squared�error loss.
From (15) (33) the components of the negative gradient vector g(�) evaluated on the training

data set (1) are

gk(�) =
1

N

NX
i=1

max(��;min(�; ri(�))) � xik (34)

with
fri(�) = yi � F (xi; â(�)gN1 (35)

being the current residuals at point � along the path. This can be used directly with (15) (22)
(25) (26) in a straight forward implementation of threshold gradient descent based on the Huber
loss criterion (33).
In order to use the Huber loss criterion (33) one must specify the value of the transition

point �. In the present implementation, its value was taken to be the �th quantile of the current
absolute residuals (35) at each point along the path

�(�) = quantile�fj ri(�) jgN1 . (36)

Here 1 � � is a speci�ed fraction of the observations that are treated as outliers, subject to
absolute loss, for each solution â(�).
Figure 7 illustrates the robustness properties of threshold gradient descent based on Huber

loss (33). The data set is generated from the latent variable model (Section 4) with N = 150
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Figure 7: Expected scaled absolute error as a function of the fraction of added outliers, for three
values of the Huber loss parameter � = 1 (red), � = 0:8 (blue), and and � = 0:6 (green), in
the latent variable regression problem with n = 10000 predictor variables. With no outliers,
� = 1 (squared�error loss) provides the best accuracy with smaller values of � showing slight
degradation. Smaller � values provide more robustness with their errors increasing less rapidly
with increasing numbers of outliers in the data.

observations and n = 10000 predictor variables. Added to these data are N0 observations
generated in the same way except that the standard deviation of the additive noise term "
in (28) was increased by a factor of ten. Thus, each of these added observations has a high
probability of being an outlier. The respective number of added outliers shown in Fig. 7 are
N0 2 f0; 7; 15; 30; 50g plotted along the abscissa as a fraction of the 150 non outliers. The three
sets of points connected by straight lines are the corresponding values of scaled average absolute
error (32) (averaged over 100 replications) for three values of � 2 f1:0 (red), 0:8 (blue), 0:6
(green)g (36) identi�ed in ascending order of their respective values of (32) at N0 = 0.
From Fig. 7 one sees that decreasing the value of � produces a small loss of accuracy

with respect to squared�error loss (� = 1:0) for outlier free data (N0 = 0) with homoskedastic
Gaussian distributed errors. The fractional increase in average error for � = 0:8; 0:6 is 7% and
12% respectively. However, in the presence of increasing numbers of outliers performance using
squared�error loss degrades very rapidly with average error more than doubling for 10% added
outliers (N0 = 15). The performance of the robust competitors degrade much more gracefully,
with increased average error at N0 = 15 of 15% (� = 0:8) and 9% (� = 0:6) from their outlier
free values (N0 = 0). As would be expected, smaller values of � produce more robustness to
increasing number of outliers among the training data, at the price of slightly lower e¢ ciency
(higher error) for less corrupted data.
Therefore, one�s choice of a value for � re�ects (prior) suspicions concerning the fraction

of outliers that might be present in the training data (1). Smaller values of � provide more
insurance against very bad situations (many outliers), at a modest increased cost of slightly
larger expected error if there are only a few or no outliers.

15



6 Binary classi�cation: squared�error ramp

In the binary classi�cation problem, the response variable realizes two values, e.g. y 2 f�1; 1g.
The goal is to produce a linear model F (x;a) (2) that represents a score re�ecting con�dence
that y = 1, given a set of joint values for the predictor variables x. This score can then be used
in a decision rule to obtain a corresponding prediction

ŷ(x;a) =

�
1 if F (x;a) > t�

�1 otherwise.
(37)

Here t� is a threshold whose value is chosen to minimize misclassi�cation risk

t� = arg min
�1�t�1

Eyx[(1 + y) l+ I(F (x;a) � t)] + (1� y) l�I(F (x;a) > t)]=2 (38)

where l� is is the cost of misclassifying an observation with actual value y = �1 respectively. In
many applications it is the scoring function F (x;a) itself that is of primary interest.
Ideally, one would like to use misclassi�cation risk (38) to directly construct a corresponding

loss criterion L(y; F (x;a)) for obtaining path estimates â(�) from the training data (1). As is well
known, this strategy is generally unsuccessful because misclassi�cation risk is not a continuous
function of the parameter values; for example the corresponding gradient g(�) (15) does not
exist. One must therefore use a smooth criterion as a surrogate for misclassi�cation risk.
A wide variety of such surrogates have been proposed (see for example Hastie et al 2001).

Here we propose the squared�error �ramp�loss criterion

L(y; F (x;a)) = (y �H(F (x;a))2 (39)

where
H(F ) = max(�1;min(1; F )) (40)

is a linear �ramp�function truncated at �1 and 1. This loss can alternatively be expressed as

L(y; F (x;a)) = min(4; [1� y F (x;a)]2+) (41)

so that the least�squares ramp (39) (40) can be viewed as a �capped�version of the square of
the hinge loss

L(y; F (x;a)) = [1� y F (x;a)]+ (42)

used with support vector machines (Vapnik 1996). The population minimizer of the correspond-
ing risk using (39) (40) is

F �(x) = arg min
F (x)

EyxL(y; F (x)) = 2 � Pr(y = 1 jx)� 1 (43)

which being monotone in Pr(y = 1 jx) represents an optimal scoring function. Capping this loss
(41) at the value four when y F (x;a) < �1 provides robustness against �outliers�by diminishing
the in�uence of misclassi�ed observations far from the decision boundary. This is especially
important for linear models (2), since the presence of these outliers can often badly distort the
resulting parameter estimates â(�), thereby degrading classi�cation accuracy. Such outliers, for
example, could be introduced by mislabeling among some of the training observations.
From (15) (39) (40) the components of the negative gradient vector g(�) evaluated on the

training data set (1) are

gk(�) =
2

N

NX
i=1

ri(�) I( jF (xi; â(�) j < 1)xik (44)

with ri(�) given by (35). This can be used directly with (15) (22) (25) (26) in a straight forward
implementation of threshold gradient descent based on the squared�error ramp loss (39) (40).
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We illustrate application of this threshold gradient descent algorithm based on squared�error
ramp loss (39) (40) (41) in a binary classi�cation problem. The data are generated using the
latent variable model (Section 4), but with response values taken to be

f~yi = sign(yi � �y)gN1 : (45)

Here �y is the response mean. Performance is measured in terms of misclassi�cation risk using
l� = 1 (38) (error rate). The corresponding Bayes optimal error rate for this problem is 0:15.

Figure 8: Results analogous to Fig. 5, here for the latent variable classi�cation problem. The
error rate of threshold gradient descent based on the ramp loss criterion is plotted as a function
of gradient threshold value for n = 100 (green), 1000 (blue), and 10000 (red) predictor vari-
ables. The asterisks at the left represent the corresponding results for a linear kernel support
vector machine. The horizontal lines are the corresponding results from estimating the optimal
threshold value. The overall results seen here are qualitatively similar to those of the regression
problem. Quantitatively, there is less dependence of error rate on the speci�cs of the estimated
model, or on the number of irrelevant variables.

Figure 8 shows results for this classi�cation problem analogous to those shown in Fig. 6
for regression. Error rate (averaged over 100 replications) is plotted as a function of threshold
parameter value � (26) for three situations corresponding to n = 100 (green), 1000 (blue), 10000
(red) total predictor variables (0, 900, 9900 pure noise variables respectively). The horizontal
lines represent the the corresponding error rates using total model selection (Section 4.2). The
points on the left represented by asterisks represent the corresponding error rates for a linear
kernel support vector machine (SVMlight Joachims 1999 using the supplied default procedure
parameter values). Note that the origin of the vertical scale is 0:15 representing the Bayes
optimal error rate. Thus, the results shown in Fig. 8 re�ect reducible error in analogy with Figs.
4 and 6.
The results presented in Fig. 8 for classi�cation qualitatively re�ect those for the regression

problem shown in Fig. 6. The distinguishing characteristic of the classi�cation results is consid-
erably less sensitivity of error rates to the values used for the gradient threshold � (26). They
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are also less sensitive to the presence of increasing numbers of pure noise variables. This is to
be expected since misclassi�cation risk depends only on the sign(F (x; â)� t�) (37), whereas ab-
solute loss (32) depends on the actual value of F (x; â). Thus, less accurate parameter estimates
â tend to produce less degradation in misclassi�cation risk.
Support vector machines use the ridge penalty (7) as a basis for regularization. As discussed

in Section 2 this should produce results similar to that of full gradient descent regularization
(14) (15). This is re�ected in Fig. 8 where the results for SVMlight are seen to be fairly similar
to those for zero gradient threshold value (� = 0 (26)).

Figure 9: Error rate as a function of number of added classi�cation outliers for threshold gradient
descent based on ramp loss (left panel) and a linear kernel support vector machine (right panel),
for the latent variable classi�cation problem with n = 100 (green), 1000 (blue), and 10000 (red)
predictor variables. Both methods are fairly resistant, with ramp loss providing more robustness
in the presence of large numbers of outliers.

6.1 Classi�cation robustness

Robustness to the presence of mislabeled training data (outliers) is studied in Fig. 9. Here
the data are generated as in the classi�cation example above, except that a speci�ed number
N0 of the observations (yi;xi) with the smallest Pr(yi = 1 jxi) are labeled as yi = 1. These
N0 observations thus represent extreme outliers for the classi�cation problem. Additionally,
the standard deviation of the additive noise in (28) was reduced so as to produce a ten�to�one
signal�to�noise ratio. After thresholding (45), the Bayes optimal error rate is thereby reduced
to 0.033 so that the e¤ect of the outliers present in the training data is more apparent.
Figure 9 shows the error rate (averaged over 100 replications) as a function of the number

of added extreme outliers N0 2 f0; 10; 20; 30g for the three situations corresponding to n = 100

18



(green), 1000 (blue), and 10000 (red) total predictor variables. The left panel shows results for
threshold gradient descent (TGD) with total model selection, and the right panel for SVMlight.
Support vector machines are based on the hinge loss (42). Among convex loss criteria it is the

least a¤ected by the presence of classi�cation outliers yiF (xi;a) < �1, especially when compared
with squared�error loss (12), squared�hinge loss L(y; F (x;a)) = [1� y F (x;a)]2+ (Zhang 2004),
or exponential loss L(y; F (x;a)) = exp(�yF (x;a)) used with AdaBoost (Freund and Schapire
1996). This is re�ected in the results presented in Fig.9 (right panel). Depending on the total
number of predictor variables n, SVMlight is fairly resistant to the presence of extreme outliers,
seriously breaking down only when there are a large number of them. Threshold gradient descent
based on squared�error ramp loss (39-41) is seen (left panel) to have similar robustness properties
to support vector machines for smaller numbers of added extreme outliers, and somewhat more
resistance when larger numbers are added.

7 Constrained threshold gradient descent

Sometimes domain knowledge is available concerning the nature of the optimal parameter val-
ues a�(4). This information often takes the form of constraints on the allowed values of the
corresponding components fa�jgn1 . To the extent that this information is correct, forcing the cor-
responding solution coe¢ cients fâjgn1 to respect these constraints has the potential to produce
more accurate estimates by reducing variance and thereby better prediction. In the context
of threshold gradient descent, imposing many types of user speci�ed constraints is especially
straight forward. In this section we illustrate how the path�nding algorithms can be modi�ed to
respect two such types of constraints: smoothness of the coe¢ cient values fâjgn1 on the variable
index j, and non negativity of the solution values âj � 0 on selected coe¢ cients.

7.1 Smooth threshold gradient descent

For the problems considered above, the predictor variables fxjgn1 are taken to be measurements of
attributes with no special a priori relationship. In particular the index j that labels the respective
attributes is presumed to realize unorderable categorical values, and solutions to the prediction
problem are required to be equivariant under all possible labelings. That is, modi�cations to the
variable labels produce equivalent solutions. In some problems this is not the case. Variables
with particular joint label values have special relationships.
A common application of this is when some or all the variables represent functions f(t), such

as analog signals, to be used to predict the value of an outcome or response variable y using the
linear model

y = a0 +

Z
a(t) f(t) dt: (46)

The predictor variables fxjgn1 represent measurements of the function value at various discretiza-
tion points ftjgn1 (time, frequency, location, etc.). If all signals are measured at the same set
of discretization points then the corresponding function values fxj = f(tj)gn1 can be regarded
as predictor variables in the standard learning (regression/classi�cation) framework, treating
the respective function measurements fxjgn1 as being categorically labeled in the linear model
(2). This approach assumes nothing concerning the relative values of the coe¢ cient (�contrast�)
function a(t) as a function of t.
In many applications it is known (or presumed) that the true (population) contrast function

a�(t) is a smooth function of its argument. That is, a�(t) w a�(t0) for t w t0. If successive
discretization points are not to widely separated one might expect a similar relation to hold for
them

a�(tj) w a�(tj0); j j � j0 j < j0; (47)

or at least that there be a smooth relationship among fa�(tj)g with close index values j. Here a�
is given by (4) and j0 << n is a relatively small integer. To the extent this presumption holds,
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constraining the solution coe¢ cients fâjgn1 to respect this smoothness property may improve
performance.
The central ingredient in all threshold gradient descent algorithms is the negative gradient

g(�) (15) of the empirical risk, evaluated at the current parameter estimates â(�) at each suc-
cessive point � along the path. Its individual components fgj(�)gn1 determine the respective
updates to the corresponding parameter values fâj(� +��)gn1 through (22) (25) (26). The only
aspect of these algorithms that explicitly involves the predictor variable index j is in labeling the
individual components of the gradient gj(�) connecting them to their corresponding coe¢ cient
âj(�).
As motivated in Section 1.3, the paths created by threshold gradient descent in this setting

should be encouraged to visit points â(�) for which there is a smooth relationship among its
components fâj(�)gn1 as a function of the index j. This is directly accomplished by imposing
such a relationship on the components of the negative gradient fgj(�)gn1 at each point � along the
path. Speci�cally, the empirical negative gradient (15) is replaced by a corresponding quantity
~g(�) that is as close as possible to it under a smoothness constraint. That is

f~gj(�)gn1 = S
(fgj(�)gn1 ) (48)

where S
(f�jgn1 ) (�smoother�) represents an operator that produces a smoothed version of the
values f�jgn1 as a function of j, and 
 is a parameter whose value regulates the degree of smooth-
ness imposed. If the predictor variable index j is univariate j 2 R1 (�signal�) then a standard
univariate smoother can be used. For a bivariate index j 2 R2 (�image�) a corresponding
two�dimensional smoother is appropriate. All other aspects of the threshold gradient descent
procedure remain unchanged.
For a speci�ed degree of smoothness the details of the particular smoother employed are not

likely to be very important, especially since in most applications the successive discretization
points ftjgn1 are equidistant realizing values on a regular grid. Also, as noted in Section 1.3,
all that is required is that the corresponding paths induced by gradient threshold values (26)
� 2 [0; 1] cover the space in a similar manner.
As in any smoothing problem the degree of smoothness, regulated by the parameter 
, is

likely to be important. A good value will depend on the smoothness properties of the optimal
coe¢ cients a�(tj), namely the value of j0 in (47). To the extent such smoothness properties are
known a reasonable value for 
 can be chosen. If there is no such knowledge, 
 can be regarded
as an additional regularization parameter of the procedure whose value is estimated through a
model selection procedure such as cross�validation. The threshold gradient descent algorithms
are generally fast enough to permit this with feasible computation. In any case, imposing even
a small degree of smoothness in these situations is likely to produce improvement over none at
all.
In the context of smoothed threshold gradient descent the smoothness properties of the path

solutions â(�) will also be somewhat dependent on the value of the gradient threshold parameter
� (26), especially for large values � w 1. A smoothness constraint on the solution coe¢ cients
fâjgn1 inherently implies a reduction in the diversity of their values. As discussed in Section 3.1,
larger values of � encourage increased diversity thereby favoring rougher solutions for a given
gradient smoother (48) with a speci�ed degree of smoothness 
. Thus, if smooth solutions are
to be encouraged, larger values of � are less appropriate.

7.1.1 Illustrations

These concepts are �rst illustrated in the context of a simple problem. Data were simulated
from the model

y =
nX
j=1

a�jxj + " (49)

20



with a�j being a smooth function of j

a�j = exp[�
1

2
((j � 50)=20)2]: (50)

There are n = 1000 predictor variables fxjg10001 , generated from a standard normal distribution.
The additive error " was normally distributed with variance chosen to produce a 2=1 signal
to noise ratio, var(") = var(y)=5. N = 150 observations were generated according to this
prescription for each of 100 replications.
Smoothed threshold gradient descent (48) based on squared�error loss (12) was applied to

each of the 100 data sets using a simple local linear smoother. The smoothed version ~gj(�) of
each gradient component gj(�) is obtained by its predicted value from a linear least�squares �t of
the fgk(�)g on k, using the K nearest discretization points to j. Thus, the degree of smoothness
imposed is regulated by the size K of the corresponding neighborhoods (�smoother span�).

Figure 10: Expected scaled absoute error as a joint function of gradient threshold � and smoother
span K, used with smooth threshold gradient descent, for the smooth coe¢ cient regression
problem with non smooth predictor variables. Here a smoothness constraint on the parameter
estimates is seen to dramatically improve accuracy over no smoothing (K = 1), for joint values
0:2 � � � 0:8 and 5 � K � 60, with optimal values � = 0:5 and K = 40.

Figure 10 shows scaled absolute error (32), averaged over the 100 replications, jointly as
a function of the smoother span K and gradient threshold � (26). Here gradient smoothing
is seen to dramatically increase accuracy for many joint (K; �) values. Coe¢ cient estimates
produced without smoothing (K = 1) have little predictive power beyond that of the overall
response median. For all values of K prediction error is minimized at gradient threshold values
0:3 . � . 0:4. Note that these minimizing values are similar to those for the latent variable
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model (n = 1000) shown in Fig. 4. The largest gradient threshold values � & 0:8 are seen to
provide increasingly poor performance, with � = 1 being slightly worse than no smoothing at
all. For all gradient threshold values prediction error is minimized at K w 40 nearest neighbors,
and is slowly increasing for larger smoother span values. This is consistent with the properties
of the optimal coe¢ cient values fa�jgn1 de�ned by (50).
This example illustrates that there are situations for which gradient smoothing (48) can sub-

stantially reduce prediction error in the context of threshold gradient descent when the optimal
coe¢ cients fa�jgn1 are smooth functions of the index j. However, this example is not repre-
sentative of many such applications. Often, the predictor variables fxjgn1 are also themselves
smooth functions of the index j. This is especially the case when they are measurements of
analog signals. As discussed in Frank and Friedman 1993 (rejoinder) this type of smoothness
in the predictor variables automatically induces a corresponding degree of smoothness on the
coe¢ cient estimates fâjgn1 in the presence of regularization that discourages diversity of their
absolute values.
In the context of threshold gradient descent regularization this e¤ect can be seen directly

from the expression for the components of the gradient

gj(�) =
1

N

NX
i=1

L0(yi; F (xi;a(�))) � xij (51)

with L0(y; F ) being the derivative of L(y; F ) with respect to its second argument. To the extent
that the measurements fxijgnj=1 are smooth functions of j for each observation i, the gradi-
ent components fgj(�)gn1 will be correspondingly smooth, and imposing an additional external
smoothing constraint can have little e¤ect. Only when the characteristic smoothness of the op-
timal coe¢ cients fa�jgn1 is much greater than that of the predictor variables fxijgnj=1 would one
expect substantial improvement from gradient smoothing.
This e¤ect is illustrated in the context of a somewhat more �realistic�example. Data (N =

150 observations, 100 replications) are generated from the model

y =
nX
j=1

a�jx
�
j + "

with a�j given by (50) and var(") = var(y)=5 (2/1 signal to noise ratio). Each of the n = 1000
predictor variables xj is taken to be a noisy measurement of a corresponding �true�signal x�j

xj = x
�
j + �j (52)

with the variance of the added (Gaussian) noise �j chosen to produce 2/1 signal to noise. The
true underlying signals are generated as

x�j =
LX
k=1

bjklk; (53)

with each (latent variable) lk generated from a standard normal distribution. Here the loading
coe¢ cients bjk for each variable xj are taken to be smooth functions of the index j

bjk = exp[�
1

2
((j �mk)=�)

2] (54)

with mk = 20 � k � 10 and � = 10. There are L = n=20 = 50 latent variables. By construction
(53) (54) the true underlying signals fx�jgn1 are smooth functions of the index j. As an example,
Fig. 11 displays the corresponding predictor variables fx1jgnj=1 for the �rst observation of the
�rst replication.
Figure 12 shows results analogous to those of Fig. 10 for this smooth predictor variable

problem. Note that plot orientation is di¤erent, and that results for 0:9 � � � 1:0 have been
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Figure 11: Predictor variable values for a typical observation in the smooth predictor variable
regression problem.

omitted, so that the minimizing region is visible. At all smoother span values K, prediction
error for 0:9 � � � 1:0 is considerably higher than that for smaller � values nearer the minimum.
Also note the di¤erence in vertical location and scale.
The qualitative aspects of the dependence of scaled absolute error (32) on smoother span

K and gradient threshold � are seen to be similar to that for the case of no predictor variable
smoothness (Fig. 10). For all values of � error is minimized at smoother span K w 40. For all
smoother span values the minimizing gradient threshold value is near � w 0:7, which is slightly
higher than that seen in Fig. 10. Combinations of high joint values for both parameters (� � 0:9,
K � 40, not shown) result in especially poor performance, as suggested above.
The major di¤erence between these two examples is quantitative; for each value of gradient

threshold � the improvement resulting from gradient smoothing is considerably less in the
presence of smoother predictor variables. Instead of reductions of over a factor of four as in the
non smooth case, reductions of around 10% to 20% are typical here. Although such improvements
are not negligible, they are far from dramatic with respect to the performance of threshold
gradient descent without smoothing. The results from these examples, as well as the discussion
above (51), suggest that imposing a smoothness constraint on the coe¢ cient estimates fâjgn1 is
likely to be highly bene�cial only in settings where the degree of smoothness of the predictor
variables is considerably less than that of the optimal coe¢ cients fa�jgn1 (4). This was the case
for the example shown in Fig. 10. For the present example (Fig. 12) the smoothness of the
predictor variables (52) (53) (54) is comparable to that of the optimal coe¢ cients (50) and
gradient smoothing (48) provides less improvement.
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Figure 12: Expected scaled absolute error as a joint function of (�;K), for the smooth coe¢ cient
regression problem with smooth predictor variables. Note the di¤erent orientation from Fig. 9,
and that the region 0:9 � � � 1:0 is not shown, to reveal the minimizing region. The qualitative
aspects are similar to those seen in Fig. 9, but quantitatively the bene�cial e¤ects of smoothing
(K > 1) are less dramatic here.

7.2 Non negative threshold gradient descent

In some applications one may know (or suspect) that the signs of certain coe¢ cients are non
negative a�j � 0. To the extent that this presumption holds, constraining the corresponding
solution coe¢ cients accordingly âj � 0 has the potential to improve prediction by reducing
variance. Note that this mechanism can also be used to constrain selected solution coe¢ cients
to be non positive âj � 0 by simply changing the signs of the corresponding predictor variables
xj  �xj .
As with the smoothness constraint (Section 7.1) imposing a non negative constraint on some

(or all) of the coe¢ cients is especially straight forward in the context of threshold gradient
descent. In this setting the produced paths should be encouraged to visit points â(�) that
observe the non negative constraints on the selected coe¢ cients. That is each step (22) should
be as close as possible to that produced by the unconstrained prescription (15) (25) (26) while
observing the speci�ed constraints.
Let Cj(aj) be a constraint indicator function for each coe¢ cient aj ,

Cj(aj) =

�
1 if aj � 0 or aj is to be unconstrained
0 otherwise.

(55)

De�ne an �eligible�set of indices H(�) at each point � along the path as

H(�) = fj : Cj(âj(�) + �� � gj(�)) = 1g: (56)

24



That is, H(�) labels the set of coe¢ cients for which the constraints are not violated by the next
gradient descent step. Allowing only these coe¢ cients fâj(�) : j 2 H(�)g to be updated, while
setting the values of those in the complement set to zero fâj(�) = 0 : j =2 H(�)g, produces
a steepest descent step at each point � along the path under the constraint restrictions. A
threshold gradient descent step is produced by applying the thresholding strategy (25) (26) to
this restricted set of variables. That is,

fj(�) = I [ j 2 H(�) & j gj(�) j � � � max
k2H(�)

j gk(�) j] (57)

replaces (26) in the threshold gradient descent strategy. All other aspects of the procedure
remain unaltered even including the smoothing strategy of Section 7.1.
This approach can be generalized to apply to other types of inequality constraints on the

coe¢ cient values as well. One de�nes the appropriate constraint indicators analogous to (55),
producing a corresponding set of eligible indices H(�) (56) to be used for thresholding and
updating (57) at each step. The coe¢ cients âj(�), j =2 H(�), are set to their closest corresponding
constraint boundary values.

7.2.1 Illustration

For the latent variable model described in Section 4 the optimal coe¢ cients (4) are all non
negative fa�j � 0gn1 . The �rst ns = 100 (active) predictor variables have positive coe¢ cients
while the remaining n � ns coe¢ cients have zero value. Figure 13 compares the results of
applying non negative threshold gradient descent, to those of the unconstrained algorithm (Fig.
4), for various gradient threshold values � 2 [0; 1] in the same three situations corresponding
to n = 100 (lower green), n = 1000 (middle blue), and n = 10000 (upper red) total predictor
variables. In Fig. 13 each situation is represented by two sets of points connected by straight
lines. The upper set for each one is the same as that of the unconstrained algorithm shown in
Fig. 4. The lower set of points represent the corresponding scaled average absolute error (32)
using non negative threshold gradient descent.
For n = 100 predictors (no pure noise variables) the results are seen to be nearly identical

at all gradient threshold values. The non negative constraint produces no improvement in this
setting where all optimal coe¢ cient values are not close to zero. In the presence of large numbers
of irrelevant noise variables with small (here zero) valued optimal coe¢ cients (n = 1000; 10000)
substantial improvement is seen. This improvement is greatest for smaller gradient threshold
values where the unconstrained procedure tends to produce non negligible negative coe¢ cient
estimates for more of the irrelevant variables, as seen for example in Fig. 5.

8 Proteomics data

In this section we present the results of applying the threshold gradient descent path�nding
strategy to a data set from proteomics. These data consist of surfaced�enhanced laser desorp-
tion ionization time�of��ight (SELDI�TOF) mass spectra of microdissected prostate cells, ob-
tained from the NCI/CCR and FDA/CBER data bank, http://ncifdaproteomics.com/download-
prost.php (Petricoin et al 2002). Each observation (spectrum) is composed of peak amplitude
measurements at 15,154 points de�ned by a corresponding m=z value. The spectra are measured
on 259 samples taken from men with serum prostate�speci�c antigen (PSA) levels � 4ng/mL.
PSA level is commonly used to determine the need for prostate biopsy in asymptomatic men.
In this data set there are 69 samples that subsequent biopsies revealed to have prostate

cancer and 190 that revealed benign conditions. The goal is to use the recorded mass spectra to
di¤erentiate these conditions in the absence of biopsy information. From a statistical perspective
this can be viewed as a binary classi�cation problem in which the outcome (response) variable
y is the presence (y = 1) or absence (y = �1) of cancer, and the predictor variables x are the
amplitudes of the 15,154 spectral lines. Here threshold gradient descent is applied to these data
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Figure 13: Comparison of non negative to ordinary threshold gradient descent for the latent vari-
able regression problem with n = 100 (green), 1000 (blue), and 10000 (red) predictor variables.
The upper curve for each setting is the expected scaled absolute error of the unconstrained solu-
tions from Fig. 3. The respective lower curves are the corresponding results for the non negative
constrained solutions. Applying the non negative constraints is most bene�cial in the presence
of many irrelevant predictor variables with small population optimal coe¢ cient values.

to produce a linear model (2) representing a score re�ecting con�dence that y = 1, given the
measured amplitudes. This score is then thresholded (38) to produce a prediction (ŷ = �1),
with l+=l� = 3.
In order to guard against possible unusually extreme amplitude measurements (outliers) each

of the predictor variable values xij was �Winsorized�

xij  max(�
(�)
j ;min(�

(+)
j ; xij))

where �(�)j are the 1 � � and � quantiles respectively of the original measurements fxijg259i=1;
here � = 0:05. The observations were weighted so that each of the two classes had equal total
mass. Three�fold cross�validation was used for model selection (Sections 1.2 and 4.2). In order
to obtain unbiased estimates of the error rates an outer (double) ten�fold cross�validation was
applied to the whole process.
Table 1 shows for several gradient threshold � values (column 1), the estimated number of

errors of each type: benign classi�ed as cancer (column 2) and cancer classi�ed as benign (column
3). Column 4 shows the number of coe¢ cients estimated to be non zero at each threshold value.
The last row (�est�) and column (�times�) of Table 1 are discussed below.
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Table 1
Errors as a function of gradient threshold value � for the proteomics prostate cancer data.

� benign cancer coe¤s times
1:0 10 3 39 0
0:8 11 3 151 0
0:6 8 3 546 3
0:4 7 3 4347 5
0:2 13 4 9372 2
0:0 13 6 15154 0
est 10 3

Although with such small sample sizes (and error rates) statistically signi�cant di¤erences
are di¢ cult to obtain, the pattern re�ected in Table 1 is similar to that shown in Fig. 8. The
lowest numbers of errors are obtained for threshold values 0:4 � � � 0:6 with benign errors
increasing for larger values and both types of errors increasing for smaller values. As expected,
larger values of � give rise to fewer non zero coe¢ cient values, with only 39 out of the 15,154
spectral lines having any in�uence for � = 1:0.
Choosing the minimum error result (� = 0:4) as re�ecting that of the procedure is somewhat

over optimistic since this implicitly optimizes over the (outer) ten�fold cross�validation results.
A more honest estimate is obtained by performing total model selection (Section 4.2) to estimate
a threshold value within each of the ten outer cross�validation trials, thereby re�ecting the actual
application of the procedure. The corresponding results are shown on the last row in Table 1.
One sees a slight increase in the number of benign errors over that of the � = 0:4 result, again
in similarity with the horizontal lines shown in Fig. 8. The last column of Table 1 shows the
number of times each respective threshold value was chosen over the ten outer cross�validation
trials. These are see to concentrate in the interval 0:4 � � � 0:6.
Figure 14 shows plots of the solution coe¢ cients for several gradient threshold values as a

function of variable (spectral line) number. All solutions put substantial absolute coe¢ cient
values in similar regions, with higher values of � selecting fewer variables within each such
region. Note the di¤erent vertical scales on each plot. As fewer variables have in�uence, the
respective contributions of those that do correspondingly increase. Although the respective
solutions involve quite di¤erent numbers of in�uential spectral lines, the resulting error rates are
surprisingly similar. As discussed in Section 6, this may re�ect the insensitivity of error rate to
the speci�cs of the estimated model.
The results obtained here suggest that these mass spectra contain considerable information

concerning the cancerous state of the corresponding samples that can be extracted using sta-
tistical classi�cation procedures. The simple linear model (2) estimated by threshold gradient
descent has both estimated sensitivity and speci�city of around 95%, although these estimates
are fairly uncertain owing to the small numbers of counts involved. It is possible (but not cer-
tain) that more complex procedures involving nonlinear structural models might produce even
better results. In any case, such statistical classi�cation methods may prove valuable as potential
secondary screens for men with elevated PSA levels.

9 Discussion

The �rst example of regularization by direct path generation appears to be PLS (Wold 1975).
Although it was originally motivated and derived from a very di¤erent perspective, its equivalence
to conjugate gradient descent with squared�error loss was established by Wold et al 1984. Its
similarity to ridge�regression was discussed in Frank and Friedman 1993. Regularization by direct
gradient descent with early stopping is a commonly used technique in neural network training
(see Bishop 1995). Ramsey 2002 suggests applying direct gradient descent regularization to a
variety of estimation problems. The generalizations discussed in this paper can be applied in
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Figure 14: Coe¢ cient values obtained for the proteomics data using threshold gradient descent
with threshold values � = 0 (upper left), � = 0:4 (upper right), � = 0:6 (lower left), and � = 1
(lower right). All solutions produce relatively large absolute coe¢ cient values in similar regions
of spectral line location, with larger values of � selecting fewer non zero values within each one.
The estimated optimal solution is for � = 0:4.
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those settings as well. The similarity of the incremental stagewise approach (threshold gradient
descent with � = 1) to the lasso was �rst suggested by Hastie, Tibshirani and Friedman 2001.
This was more rigorously established in Efron et al 2003.
Penalization methods with squared�error loss for applying smoothness constraints to the so-

lution coe¢ cient values have been studied by many authors (see for example Hastie and Mallows
1993). The one with the goal closest to that of the threshold gradient descent technique is the
�fused lasso� (Tibshirani, Saunders, Rosset and Zhu 2003) based on squared�error loss, where
the penalty is taken to be a convex combination of the lasso penalty and one that penalizes
successive di¤erences in the coe¢ cient values. Zou and Hastie 2003 describe a squared�error loss
procedure using a convex combination of the ridge and lasso penalties.
The distinguishing characteristics of the threshold gradient descent approach are generality,

robustness and speed. The straight forward implementation can be used with any di¤erentiable
loss criterion and represents a fast algorithm for n >> N and/or smaller values of � . Friedman
and Popescu 2004 develop fast algorithms for squared�error (12), Huber (33), and ramp (39) (40)
losses that are appropriate for N & n and/or larger values of � . Together these algorithms permit
applications to large problems for which there are hundreds of variables and tens of thousands of
observations on the one hand (see Friedman and Popescu 2003), and those that involve tens of
thousands of predictor variables and hundreds of observations at the other extreme. For example,
the proteomics problem in Section 8 (n = 15154; N = 259), using 19 cross�validation runs of
the procedure for total model selection, took a total of 2.5 minutes to execute on an Athlon 64
2.2 Ghz computer. The algorithms are numerically stable as well requiring no manipulations of
matrix inverses, or in fact no linear algebra at all beyond the evaluation of simple inner products.
Further generality is achieved by the ease of applying user speci�ed constraints on the so-

lution coe¢ cient values, as described in Section 7. Such constraints can improve estimation
and prediction accuracy in the presence of appropriate domain knowledge. Application of these
constraints involves little additional computation beyond that required by the unconstrained
threshold gradient descent algorithms.
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