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Kernel Smoothers: An Overview of Curve
Estimators for the First Graduate Course
in Nonparametric Statistics
William R. Schucany

Abstract. An introduction to nonparametric regression is accomplished
with selected real data sets, statistical graphics and simulations from known
functions. It is pedagogically effective for many to have some initial intu-
ition about what the techniques are and why they work. Visual displays of
small examples along with the plots of several types of smoothers are a good
beginning. Some students benefit from a brief historical development of the
topic, provided that they are familiar with other methodology, such as linear
regression. Ultimately, one must engage the formulas for some of the linear
curve estimators. These mathematical expressions for local smoothers are
more easily understood after the student has seen a graph and a description
of what the procedure is actually doing. In this article there are several such
figures. These are mostly scatterplots of a single response against one pre-
dictor. Kernel smoothers have series expansions for bias and variance. The
leading terms of those expansions yield approximate expressions for asymp-
totic mean squared error. In turn these provide one criterion for selection of
the bandwidth. This choice of a smoothing parameter is done a rich variety
of ways in practice. The final sections cover alternative approaches and ex-
tensions. The survey is supplemented with citations to some excellent books
and articles. These provide the student with an entry into the literature, which
is rapidly developing in traditional print media as well as on line.

Key words and phrases: Local polynomial regression, AIC, variable band-
widths, cross validation, windows.

1. INTRODUCTION

Nonparametric curve estimators are valuable tools
in statistical practice. There is a rich variety of such
curves and surfaces. A very basic curve estimator is
one for a continuous density function. Histograms are
widely used rough estimates of probability density
functions (p.d.f.). These blocky displays have a ven-
erable history. They also have some deficiencies rela-
tive to estimators that have the same continuity as an
assumed model p.d.f.f (x); see Sheather (2005).
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The dynamic graphics that are available on line
(http://www.stat.sc.edu/rsrch/gasp/ ) provide a nice in-
troduction to the issue of bin size for histograms. The
Java script by Webster West demonstrates the effect
of user-controlled continuous variation of bin widths
for the Old Faithful data (see Figure 1). The 107
times between eruptions of the geyser in Yellowstone
Park are evidently bimodal. The student can visual-
ize a smoothly changing array of bin sizes from large
enough to hide the two modes to small enough to pro-
duce spikes at each of the data points. These graph-
ics for the distributions of univariate observations have
been extended to higher dimensions. These topics are
covered well by Scott (1992). Next we change to
curves for patterns of association.

The same tensions exist for a curve that models the
association between a responseY and a predictorX.
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FIG. 1. Histogram of eruption time intervals.

One may visualize the relationship in scatterplots of
theyi against thexi . When there is no sound reason to
force a simple straight line, then we may let the data
speak for themselves. Figure 2 displays some real data
in which a nonlinear association is obvious. The scat-
terplot is Figure 1.1 in Wand and Jones (1995) of data
from Ullah (1985). Chu and Marron (1991) used this
same example in their introduction to kernel regres-
sion. The validity of a feature such as the dip in the
forties is a challenge to curve estimation methodology.

(As always, one must be wary of selection bias in any
cross-sectional study.)

There are several alternatives for producing a smooth
curve to model some characteristic of the distribution
of Y given each value ofx. Typically we are interested
in theregression function

m(x) = E[Y |X = x].
In addition we may be willing to impose some smooth-
ness constraints on this unknownm(·) and an additive
error model for then pairs,

Yi = m(xi) + εi, i = 1, . . . , n.(1)

The conventional approach is to treat theεi as inde-
pendent and identically distributed. The assumption of
constant variance can be relaxed to allow a variance
functionσ(xi). See Ruppert, Wand and Carroll (2003)
for more on heteroscedastic models and extensions to
mixed models.

An accessible introduction to the basic ideas of non-
parametric regression can be found in Altman (1992).
The introductory sections of books that I recommend
to beginning students are Chapter 1 of Eubank (1999);
Sections 2.1–2.3 of Hart (1997) and Sections 5.1–5.6
of Wand and Jones (1995). The book by Fan and
Gijbels (1996) is a thorough treatment of kernel meth-
ods for local polynomials from one perspective. Loader
(1999) provided another perspective on several basic

FIG. 2. Scatterplot of log (income) versus age for 205 Canadian workers. The ordinary least-squares line is dashed. The solid curve is a
local-linear fit with the biweight kernel (dotted and arbitrarily centered at 33),whose bandwidth h = 7.14 is optimal in a sense explained in
Section 6.
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issues. These two perspectives come into focus herein
in Sections 2.1 and 2.2. Extensions beyond the univari-
ate case and others are briefly described in Section 6.

A great deal of understanding may be gleaned from
simply reading books and articles. Many students ab-
sorb quite a lot in the passive comprehension of text,
formulas and graphs. Even so, more is added by an
activity that involves running the computer routines.
In my experience such statistical procedures are more
completely grasped by actually doing them. Instructors
and students have greater insight into nonparametric
regression after getting a real set of data, plotting the
pairs, using one of the available smoothers and adding
the resulting curve to the scatterplot. For the data in
Figure 2 one may examine a rich variety of optional
fits. In the present introduction there is a brief treat-
ment of what, who, when and why.

1.1 What

The essential idea islocal averaging. Thus it is sen-
sible to restrict our attention to linear combinations of
the responses. The parallel linear filters in engineering
and physics provide some support for this approach.
The size of the local neighborhood is called theband-
width. We consider broader classes of local models in
subsequent sections, as well as relaxing the view that
neighborhoods are finite windows.

1.2 Elementary Illustration

The data in Figure 3 are simulated from (1) with
the mean functionm3(x) = 4.26[e−9.75x − 4e−19.5x +

3e−29.25x] evaluated on an equally spaced grid of
100 x ’s. Such a linear combination of three exponen-
tials asm3(·) has been used to simulate a function with
changing curvature since Wahba and Wold (1975). It
resembles the familiar “motorcycle data” used by Fan
and Gijbels (1996) to motivate the challenge of local
modeling. To simplify the task of understanding ana-
lytical properties, we consider the Priestley and Chao
(1972) (PC) estimator in detail in Section 2.1. There
are two distinctly different versions of this elemen-
tary scatterplot smoother, known as Nadaraya–Watson
(Watson, 1964; Nadaraya, 1965) and Gasser–Müller
(GM; 1979). All three are asymptotically equivalent.
The Nadaraya–Watson (NW) estimator is the special
case of fitting a constant locally at anyx0. Here we
assume without loss of generality that thex ’s are con-
fined to the unit intervalx ∈ [0,1]. The NW estimate
of m(x0) based onn pairs,(x1, y1), . . . , (xn, yn), is

m̂(x0) =
∑

|xi−x0|<h(xi)
yiw(xi − x0)∑

|xi−x0|<h(xi)
w(xi − x0)

,(2)

wherew(xi −x0) = (1/h(xi))K((xi −x0)/h(xi)). The
details of thekernels K , thebandwidths h and thede-
sign {xi} are developed in Section 2. This is clearly
a linear combination of theyi . All of the smoothers
in this paper have the form

∑n
i=1 liyi . The weightsli

are determined in several ways in practice. Figure 3
displays a specific evaluation of the weighted average
in (2) at x0 = 2/3 using thebiweight kernel K(z) ∝
(1− z2)2 and bandwidthh = 0.1.

FIG. 3. Fitting a local constant with NW in (2). Data from m3 plus normal noise (σ = 0.065), n = 100,x0 = 2/3, bandwidth h = 0.1 and
a biweight kernel (shaded ).
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1.3 Two Kinds of Windows

The kernel weightsK are calculated under two dis-
tinct approaches: (1) a fixed window width as in Fig-
ure 3 and (2) a fixed fraction of the data. In the first ap-
proach the bandwidth is typically denoted byh. When
the generic kernel has compact support [e.g., uniform
on (−1,1), triangular, quadratic or biweight], the esti-
mator depends only on those pairs whosexi are in the
interval(x0 − h,x0 + h). In this formulation the band-
width (or smoothing parameter) is a scale parameter.
When the kernel is a p.d.f. such as the standard nor-
mal,h is the standard deviation.

The second approach uses thek nearest neighbors
to x0. That is, the pairs withxi closest tox0 influ-
ence the estimate regardless of how distantxi may
be from x0. These two distinct avenues yield either
(1) a random number ofxi within the fixed widthh

or (2) a fixed numberk within an interval of random
width. For equally spacedx ’s these two are equivalent.
When the spacings between thex ’s are not constant,
the estimates and their properties differ. The symbolK

for kernel functions is not to be confused with the in-
tegerk for the number of nearest neighbors. For loess,
an alternative implementation of local-linear smooth-
ing in S-Plus, the definition of span is the fractionk/n.
Even though the default value(span= 2/3) may seem
rather large, one may find that the results forn = 100
bivariate normals withρ = 0.6 can be surprisingly non-
linear. The remainder of this paper focuses only on the
first approach with a bandwidthh.

1.4 History

Loader (1999) gave a thorough coverage of the ori-
gins of local fitting, tracing it to the late 19th and early
20th century. Notably, the early contributions in actu-
arial science were extensive and were in widespread
use. A data set and a linear smoother from Spencer
(1904) addressed what was then known as the problem
of graduation.

Early contributors to the kernel density estimation
alternatives to histograms were Rosenblatt (1956) and
Parzen (1962). For a scatterplot the parallel to the
histogram is a set of piecewise constants over inter-
vals of equal length called a regressogram by Tukey
(1961). See Schlee (1988) for a brief introduction. Fig-
ures 1.3–1.5 in Eubank (1999) illustrate a regresso-
gram fit to simulated data using a partition with seven
bins. Tukey’s title phrase “Curves as parameters. . . ”
anticipates the point of view that is essential to func-
tional data analysis introduced by Ramsay and Silver-
man (1997).

The monograph by Wand and Jones (1995) is a
comprehensive coverage of both kernel density esti-
mation and kernel regression. They treat the entire
class of kernel-type estimators of a regression function
known as local polynomial kernel estimators. These es-
timate m(x0) by fitting a polynomial of degreep by
weighted least squares. The class was introduced by
Stone (1977) and studied by Cleveland (1979), and
many of the properties were established by Müller
(1987) and Fan (1992). The importance of the special
casep = 1, or local-linear kernel regression, is due in
part to its simplicity. Local-linear kernel regression has
better properties than NW at the boundaries and as-
ymptotically. Such large-sample bias comparisons are
deferred to the next section.

Local-linear smoothers, derived in Section 2.2, share
the advantage of being local with estimators such as
NW. In Section 2 one may get some insight into the
properties that makep = 1 the recommended polyno-
mial degree. It may be easy to overlook the fact that
one is fitting a different straight line at every point. The
curve estimatorm̂(x0) is a continuous function ofx0.
One of the elementary concepts in differential calculus
asks a student to think of the smoothly progressing se-
quence of tangent lines. Here the smooth transition of
lines fit atx0 is for a different purpose, but the analogy
may help some.

This smooth curve goes well beyond the illustration
in Figure 4, which displays the smaller collection of
m̂(x1), m̂(x2), . . . , m̂(xn). The simulation is an illustra-
tion patterned on a 30/70 mixture of two normal p.d.f’s
with scales that differ by a factor of 2. Specifically,
m2(x) = 0.3exp{−64(x−0.25)2}+0.7exp{−256(x−
0.75)2}I(0,1)(x). Again there are a grid of 100 equally
spacedx ’s and additive normal noise withσ ∼= 0.04=
5% (range ofm2).

1.5 Motives

A natural question in the minds of many is why
do we do nonparametric regression? There are sev-
eral good reasons for producing such curves. One is
as adescriptive statistic. In other words, a data an-
alyst can accomplish something by graphing an esti-
mate of the unknownm on the scatterplot. Another
more valuable reason is for testing a simple paramet-
ric model, such as the dashed straight line in Figure 2.
The comparison of the fits under the two models al-
lows us to considerlack-of-fit tests, which is a com-
pelling reason for those who appreciate George Box’s
saying, “All models are wrong, but some are useful.”
A third application is the flexible adjustment for co-
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FIG. 4. Data from m2(x) on a grid of n = 100with local-linear estimates of m(x1), . . . ,m(xn) at those x ’s.

variates. This process of inference about the parame-
ters of a model in the face of a nonparametric nuisance
is known assemiparametric. An elementary example
might involve a one-way layout of subjects’ responses,
Yij = µ + βj + m(xij ) + εij , in which the effect of
agex could be controlled without imposing a linear-
ity condition.

2. MEANS AND VARIANCES FOR
LOCAL SMOOTHERS

As with kernel density estimators (see Silverman,
1986), we can produce approximations for the mean
and variance ofm̂(x0). A Taylor series expansion of
the unknown mean function is the classic approach to
an analytical approximation of the large-sample prop-
erties. The leading terms of these expansions yield as-
ymptotic expressions for the bias and the variance of
kernel estimators,̂m(x0). The role ofK as a symmet-
ric p.d.f. is apparent in the expansion (5).

2.1 Weighted Average

The more intuitive local average by PC aids our
understanding of these properties, which were more
rigorously demonstrated by Benedetti (1977). Assume
here without loss of generality that 0≤ x1 ≤ x2 ≤ x3 ≤
· · · ≤ xn ≤ 1, known as afixed design. The PC estima-
tor is

m̂PC(x0) =
n∑

i=1

Yi

xi − xi−1

h
K

(
x0 − xi

h

)
,(3)

where K is a kernel constrained to be a unimodal
p.d.f. supported on(−1,1) and symmetric about zero.
Approximating sums by integrals may make it more
apparent that these estimators are convolvingK(·)
with m(·). The estimator in (3) is asymptotically nor-
mal and the convolution is consistent, provided that the
scale parameterh becomes vanishingly small.

The equation that follows derives from an elemen-
tary application of the expectation of theYi from
model (1). For these approximations to hold requires
an infinitesimalh asn gets large, technicallyhn → 0
as n → ∞, which also brings thexi closer together.
Approximating the sum overi by an integral with re-
spect tox,

E[m̂PC(x0)] =
n∑

i=1

E[Yi]xi − xi−1

h
K

(
x0 − xi

h

)

=
∫ 1

0
m(u)

1

h
K

(
x0 − u

h

)
du + O(n−1).

A change of variablez = (x0 − u)/h so thatu = x0 −
zh yields

E[m̂PC(x0)]
(4)

=
∫ x0/h

−(1−x0)/h
m(x0 − zh)K(z) dz + O(n−1).

Using a Taylor series expansion ofm(·) aboutx0, the
integral in (4) is approximately∫ 1

−1

[
m(x0) − zhm′(x0) + 1

2z2h2m′′(x0) − · · ·]K(z)dz
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for sufficiently smallh. For the normal kernel the inte-
gral is over(−∞,∞). Thus formally

E[m̂PC(x0)]
= m(x0)

∫
K(z)dz − hm′(x0)

∫
zK(z) dz(5)

+ (h2/2)m′′(x0)

∫
z2K(z)dz − · · · .

SinceK is a p.d.f. which is symmetric about zero, the
leading term of the bias expansion is

h2

2
m′′(x0)µ2(K) + o(h2) + O(n−1)(6)

with the obvious notation for the second moment. Sim-
ilar approximations for smallh lead to

Var[m̂PC(x0)] = σ 2 ∫
K2(z) dz

nh
+ o

(
1

nh

)
.(7)

See Fan and Gijbels (1996, Section 3.7) for a derivation
of such asymptotic bias and variance expressions for
more general designs and a larger class of estimators.

Optimal bandwidths. Notice that the bias in (6) is
small for smallh and the variance in (7) is small for
largeh, so a proper choice ofh involves the usual bias–
variance trade-off. A reasonably standard way to ac-
complish this trade-off is to minimize the leading term
of the expansion of the asymptotic mean squared error
(AMSE) at x0. Therefore, asn → ∞ so thathn → 0
in a manner such thatnh → ∞, summing the variance
and the square of the bias yields (introducing some ob-
vious new notation)

AMSE(x0) = σ 2R(K)

nh
+ µ2

2(K)

4
[m′′(x0)]2h4

(8)

= A

nh
+ Bh4

4
.

The large-sample approximations here hold only for
values ofx0 that are not within one bandwidth of ei-
ther end of the range. In the limit,hn becomes small
enough thatx0 will not be too close to 0 or 1. When
that close proximity to either end of the range occurs,
there is a boundary bias that is not captured by the ex-
pression in (6).

Differentiating (8) with respect toh and setting it
to zero yields−A/(nh2) + Bh3 = 0, which implies
h5 = A/Bn. Thus the asymptotically optimal band-
width ish∗(x0) = [A/Bn]1/5.

Substituting thish∗(x0) into (8) yields

A4/5

n4/5 B1/5 + B1/5

4

A4/5

n4/5 .

Hence the minimized value is

inf
h>0

AMSE(x0) = 5
4[µ2

2A
4m′′(x0)

2]1/5n−4/5.(9)

Therefore, the rate of convergence to zero is of or-
der n−4/5, slower than the rates of ordern−1 that are
typical for optimal parametric estimation. That there is
a penalty for the more difficult task of nonparametric
function estimation should not surprise anyone. This
fraction is specific to the model assumptions.

In addition to formalizing the optimal rate of con-
vergence, there is something quite noteworthy in the
expression for the optimal bandwidth,

h∗(x0) =
[

σ 2R(K)

µ2
2(K)m′′(x0)2n

]1/5

.(10)

As with many optimal quantities, this depends on the
unknown regression functionm(·). Specifically, it de-
pends on the curvature ofm(·) atx0 as measured by the
second derivativem′′(x0). The fact that, except forσ ,
the ingredients ofh∗(x0) are known has enticed a line
of research to produce estimates ofm′′(x0) and substi-
tute these intoh∗(x0). These so-called plug-in rules are
discussed in Section 6.

Recall that the dominant term of the bias expan-
sion ism′′(x0)µ2(K)h2/2 for anyh > 0. This implies
that the bias is most severe near peaks and troughs,
wherem′′(·) is greatest. Furthermore, it is positive in
any trough and negative at any peak. This explains
why these estimators tend to fill in valleys and under-
shoot peaks, regardless of whether one is using an op-
timal h∗(x0). See Figures 4 and 5 for illustrations of
this.

Optimal kernels. Still another interesting thing may
be learned from these asymptotic expressions for the
minimized AMSE in (9). The factor that depends on
the kernelK is R4µ2

2. It follows that the kernel that is
best in this sense minimizes the scale-invariant product

R2(K)µ2(K) =
[∫

K2(z) dz

]2 ∫
z2K(z)dz,

subject toK(z) ≥ 0 for everyz,∫
K(z)dz = 1,

∫
zK(z) dz = 0

and ∫
z2K(z)dz = a2 < ∞.

The solution due to Hodges and Lehmann (1956) is
familiar to students of nonparametrics using ranks.
Hodges and Lehmann were seeking this density as a
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FIG. 5. Local-linear curve estimate (solid line) for the same data as Figure 3 with h = 0.045.The biweight kernel (dotted ) is displayed at
three selected places and the fitted lines are dashed in the corresponding shaded bands.

worst-case p.d.f. for the asymptotic relative efficiency
of the Wilcoxon rank sum to the two-sample Studentt .
They obtained their optimal result in a somewhat dif-
ferent context. However, in both settings the goal is
to identify functional extremes for asymptotic efficien-
cies. Their classical finding is

Ka(z) = 3

4

[
1− z2

5a2

]
a
√

5I
(−a

√
5,+a

√
5)

(z).

This best kernel function has a scale parametera,
which may be set toa2 = 1/5 for convenience. The
simple quadraticK∗(z) = 0.75[1 − z2]I(−1,1)(z) is of-
ten called the Epanechnikov kernel due to its deriva-
tion by Epanechnikov (1969) in the density estimation
context. However, earlier credit may be due to Bartlett
(1963). Wand and Jones (1995) showed this holds more
generally than for (9). With the concept of canonical
kernels, they demonstrated a decoupling ofK andh,
rewriting (8) as

AMSE(x0) = C(K)

[
1

nh
+ h4m′′(x0)

2

4

]
.

Design considerations. Essentially the same large-
sample results hold for local-linear fitting. Explicit ex-
pressions for local polynomial estimators were given
by Wand and Jones (1995). They derived details for a
special case of local linear for fixed equally spacedx ’s

in Section 5.3, which is outlined here in the next sec-
tion. The more general development for local polyno-
mials is in the book by Fan and Gijbels (1996). These
latter authors investigated a breadth of material, includ-
ing estimatingr th derivatives,m(r)(·), random designs,
(X1, . . . ,Xn), bandwidth selection and effective ker-
nels.

There is an important feature that Fan and Gijbels
(1995) calleddesign adaptation. The term suggests a
property of adapting to either fixed or random design.
This valuable characteristic of local polynomial fits is
not shared by some other kernel methods. Specifically,
these local polynomial bias and variance expressions
for the fixed design are identical to those for the ran-
dom design. This is not true for Gasser–Müller es-
timators, for example, which have a variance that is
greater by a factor of 1.5 for random designs. A bal-
anced comparison of these two approaches appeared
in Chu and Marron (1991). They carefully investigated
properties of two distinct curve estimators, “evaluation
weights” represented by NW in (2) and GM “convolu-
tion weights” represented by

m̂GM(x) =
n∑

j=1

Yj

∫ sj

sj−1

K(x − t) dt,(11)

wheresi = (xi + xi+1)/2, x0 = −∞ andxn+1 = +∞.
At that time the authors and discussants agreed that
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kernel methods were worthy candidates for improve-
ment. In the process they identified several distinct
philosophical points of view that data analysts can
bring to the task of smoothing. Fan and Gijbels (1996)
made a convincing case that local polynomials elim-
inate these and other deficiencies of kernel fits of lo-
cal constants, and they do so from an asymptotically
smallh perspective.

2.2 Local Polynomial Fitting

Local polynomial fitting is weighted least-squares
estimation ofβ = (β0, β1, . . . , βp)T , the p + 1 coef-
ficients of a polynomial of degreep. The objective is
to minimize

n∑
i=1

[Yi − β0 − β1(xi − x0) − · · · − βp(xi − x0)
p]2

· Kh(xi − x0),

whereKh(t) = K(t/h)/h. The standard solution is the
(p + 1) × 1 estimator

β̂ = (XT
0 W0X0)

−1XT
0 W0Y,

provided that the matrix is nonsingular. HereY is the
n × 1 vector of responses,

X0 =




1 x1 − x0 · · · (x1 − x0)
p

...
...

. . .
...

1 xn − x0 · · · (xn − x0)
p




is the n × (p + 1) design matrix andW0 =
diag[Kh(x1 − x0), . . . ,Kh(xn − x0)] is the n × n di-
agonal matrix of weights.

With this centering onx0, when evaluated atx0, the
estimatem̂(x0;p) = eT

1 β̂ is the intercept term, where
e1 is the (p + 1) × 1 vector (1, 0, 0,. . . ,0)T . When
p = 0, this gives NW in (2) and whenp = 1, an explicit
formula for local linear (LL) is

m̂LL (x0;1) =
n∑

i=1

wiYi

/ n∑
i=1

wi,

(12)
wi = Kh(xi − x0)[ŝ2 − (xi − x0)ŝ1],

where ŝj = ∑n
i=1 (xi − x0)

jKh(xi − x0), j = 1,2.
This form in (11) is obviously linear inY . Loader
(1999) examined LL relative to local quadratic and cu-
bic alternatives from a nearest-neighbor finite-sample
perspective including valuable advice on residual plots
and effective degrees of freedom.

Large-sample normality for this entire class of linear
smoothers is immediate for a fixed value ofh. Even

so, when we let the data guide the choice of bandwidth
to be denoted bŷh, there is still a legitimate sampling
distribution form̂(x0). Clearly the normal approxima-
tion may now be quite inadequate. Nonetheless, there
are ways to construct approximate confidence inter-
vals, which are the subject of Section 7. This capabil-
ity to use a data-based valueĥ is an essential feature of
kernel smoothers. For us to move beyond an arbitrar-
ily fixed h, any reasonable choice is necessarily data
dependent.

3. BANDWIDTH SELECTION

The selection of appropriate values forh is the most
challenging aspect of nonparametric regression. This
is true for kernel smoothing as well as for any of the
other methods, which all have a smoothing parameter
of some sort. There are numerous approaches to this
task of adapting to the level of the noise and the amount
of structure in the data set at hand. The efficiency of
the estimator is far more sensitive to the value ofh

than it is to the choice ofK . Movies by J. S. Marron,
D. Ruppert, E. K. Smith and G. Conley that teach
lessons about local polynomial smoothing are on-
line athttp://www.stat.unc.edu/faculty/marron/Movies/
locpoly_movies.html.

3.1 Plug-in Estimators

This approach addresses efficiency through the as-
ymptotic mean squared error (MSE) but attempts a di-
rect estimate of the optimalh∗ in (10). Substituting
estimates of unknown quantities in that formula pro-
duces a variety of plug-in estimates that have worked
well in local-linear regression in some settings. See
Wand and Jones (1995) for a description of these band-
width selectors and citations to the relevant literature.
Fan and Gijbels (1996) gave the details of some of
these, and implemented bothconstant (also known as
global ) andvariable bandwidths. They elaborated on
the basic concept and elucidated the more sophisticated
applications of the plug-in principle.

3.2 Cross Validation

Other “classic” approaches estimate the finite sam-
ple MSE(x0) or any other information measure and
then minimize it. The basic idea behind cross-valida-
tion (CV) is to hold out part of the sample with which
to evaluate the performance of a predictor. A com-
mon practice is to leave one out; here that is(xi, Yi)

for eachi = 1, . . . , n. The predictor of the unusedYi

based on the othern − 1 pairs may be denoted by
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m̂i(xi;h). Thesen prediction errors are summarized in
least squares CV by

CV(h) = 1

n

n∑
i=1

[Yi − m̂i(xi;h)]2.(13)

There are justifications that relate the expectation of
this criterion to the MSE averaged over then design
points. The CV estimate of the bandwidth that is opti-
mal in this sense is the minimizer of (13). Alternatives
that leave out nonoverlapping fifths or tenths of the
sample are mainstays for a wide spectrum of nonpara-
metric regression estimators and other prediction and
classification rules in Hastie, Tibshirani and Friedman
(2001).

Hart (1997) covered risk estimation and generalized
cross validation (GCV) along with his “one-sided” CV.
A recent article by Hart and Lee (2005) presented con-
vincing evidence of the relatively undesirable variabil-
ity of leave-one-out CV bandwidths. This paper offers
both an empirical and a theoretical basis for CV’s ten-
dency to produce unrealistically small estimates ofh.
The relative merits of such classical methods versus
plug-in rules are explored in depth in Chapter 10 of
Loader (1999). Signorini and Jones (2004) provided a
thorough examination of these selection methods for
both NW and LL in the special case of binary re-
sponses.

3.3 Information

The Akaike information criterion (AIC) was origi-
nally designed for parametric models as an
approximately unbiased estimate of the expected
Kullback–Leibler information. For linear regression
and time series models, Hurvich and Tsai (1989)
showed that the bias of AIC can be large in small
samples. This leads to overfitting, especially as the
dimension of the candidate model approaches the
sample size. One may think of AIC as a maximized
log-likelihood plus a penalty for the number of para-
meters. Huvrich and Tsai proposed a corrected ver-
sion, denoted by AICC, which is less biased than AIC.
Hurvich, Simonoff and Tsai (1998) investigated the
use of AICC to choose smoothing parameters. They
showed that using AICC avoids the large variability
and the tendency to undersmooth (compared to the ac-
tual minimizer of average squared error) that is typical
for other classical approaches such as GCV or AIC.

Consider the same simulation ofm3(x) as in Fig-
ure 3. Here in Figure 5 is an evaluation of the entire
curve estimate (11) with the same value ofh = 0.045
throughout. This smallh is apparently not a good

choice forx > 0.4, because of the numerous oscilla-
tions associated with undersmoothing.

3.4 Recursive Partitioning

For nonparametric regression problems with com-
plicated structure a single global smoothing parame-
ter is unsatisfactory. Specifically, kernel estimators can
be improved by adapting to local curvature. There
has been some progress with piecewise constant band-
widths for local-linear fitting and AICC. One new
approach uses a recursive partitioning (RP) to simul-
taneously determine both the intervals in the explana-
tory variable and the bandwidths used throughout the
intervals. The result is a regression tree with sepa-
rate ĥ values used over adaptively selected regions
in the predictor variable. We denote these bandwidths
by hRP.

Consider local-linear regression estimates ofm =
(m(x1), . . . ,m(xn))

T , the regression function at each
of the observed predictorsx = (x1, . . . , xn)

T . It was
noted by Hurvich, Simonoff and Tsai (1998) that local-
linear regression is a linear smoother, that is,m̂(hRP) =
H(hRP)y, wherey = (y1, . . . , yn)

T is the response vec-
tor andH(hRP) is the smoother (or hat) matrix that
results from evaluating (12) at eachxi . Thus we have
what one may think of as expected log-likelihood plus
a penalty for the effective number of parameters,

AICC = log(σ̂ 2) + ψn

{
tr

(
H(hRP)

)}
,(14)

whereσ̂ 2 is the MSE of the residuals at the observed
predictors, and�n(t) = [1 + t/n]/[1 − (t + 2)/n] for
0 < t < n − 2 and= ∞ otherwise is the penalty func-
tion applied to the trace of the smoother matrix. In
an obvious parallel with linear regression, the quan-
tity tr(H) can be interpreted as an effective number
of parameters, a measure of model complexity. See
Section 7.6 of Hastie, Tibshirani and Friedman (2001).
This reflects the “roughness” of the estimated curve in
the sense of a more complex basis. As the global band-
width decreases,̂σ 2 decreases and the estimates are
less biased, whereas the tr(H(h)) and ψn{tr(H(h))}
increase as the estimated curves become less smooth.
Pitblado (2000) demonstrated this behavior of AICC
for global bandwidth choice. Figure 6 illustrates one
such result.

Consider curve estimates using simulated data from
the functionm2, which was defined in Section 3. Fig-
ure 6 shows the true regression function and the local-
linear fit with a global bandwidth. The estimated curve
with a global bandwidthh = 0.040 exhibits under-
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FIG. 6. The true regression function m2 (dashed ) and the local-linear fit (solid ) with the AICC minimizing global bandwidth (shaded
region along the x axis).

smoothing of the left half and oversmoothing of the
right mode.

How do variable bandwidths, in particular piecewise
constant bandwidths, help us in this respect? Some im-
provements are obvious in the estimated curve with
variable bandwidths in Figure 7. The new method
found a partition of two with a split atx = 0.66 and a

variable bandwidthhRP = (h1, h2), whereh1 = 0.078
is for the left subinterval andh2 = 0.033 is for the right
subinterval. Regression trees are a recognized feature
of the nonparametric landscape. Recursive partition-
ing for appropriate variable bandwidths is a successful
new branch. For a full description of the methodology,
see Jia and Schucany (2004), who also reported the re-

FIG. 7. The true regression function m2 (dashed ) and the local-linear fit (solid ) with two bandwidths, hRP (shaded regions along the x

axis), determined by recursive partitioning.
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sults of a Monte Carlo study of the effects of curvature
change, sample size and signal-to-noise ratio.

4. CONFIDENCE INTERVALS

All of the linear statistics that we have considered
[NW in (2), PC in (3) and LL in (12)] can be put in the
form

∑
i ui(x0, h)Yi . With nh sufficiently large,m̂(x0)

is approximately normal with meanE[m̂(x0)] and
Var[m̂(x0)] = σ 2 ∑

i u
2
i . In some settings this would be

enough to produce approximate 1− α confidence in-
tervals. Unfortunately for nonparametric curve estima-
tion, the large-sample correctness of this does not hold.

Suppose that model (1) holds with constant vari-
anceσ 2. The naive interval

m̂(x0) ± zα/2σ̂

[
n∑

i=1

u2
i (x0)

]1/2

(15)

with σ̂ consistent forσ may not have the asymptot-
ically correct coverage. That is, even thoughσ̂ → σ

andm̂(x0) → m(x0) when bothn → ∞ andnh → ∞,
the coverage of (15) need not converge to 1− α as a
confidence interval form(x0). Hart (1997, Section 3.5)
presented a formula for the limiting coverage for an
interval based on GM in (11). The culprit is the large-
sample behavior of the bias, which is not degenerate
and offsets the proper normal interval. There have been
several proposals to correct intervals based on a broad
class of linear fits. Section 9.2 in Loader (1999) ad-
dressed these corrections to obtain both approximate
pointwise confidence intervals and approximate simul-
taneous confidence bands.

5. OTHER WAYS TO DO THIS

There are some parallel and some different chal-
lenges in other approaches to fitting smooth models
for the relationship ofy to x. These others include
splines and expansions in terms of basis functions, for
example, wavelets or Fourier series; see Ramsay and
Silverman (1997) and Hastie, Tibshirani and Friedman
(2001). These alternative techniques involve select-
ing smoothing parameters, whether these are the num-
ber of basis functions in an expansion, the number of
knots or explicit weights in the bias–variance trade-off.
They all have their strengths and weaknesses in dif-
ferent settings, depending on the objective, the curva-
tures present in the unknown model, the signal-to-noise
ratio, the sample size, the arrangement of the design
points and so forth. However, local-linear kernel re-
gression has the most direct interpretation in terms of
familiar, intuitive, simple functions.

6. EXTENSIONS FOR KERNELS

Derivatives. Estimation of the νth derivative
m(ν)(x0) was presented by Fan and Gijbels (1996) as
one of the advantages of using a local polynomial of
degreep. In Section 3.3 they analyzed asymptotic vari-
ance as a function ofν and p, and recommend that
p − ν be odd. This is consistent with the general desir-
ability of local linear (p = 1) for the functionm(·) for
which ν = 0.

Multivariate predictors. Ruppert (1997) proposed a
local bandwidth selector for local polynomial fits that
adapt easily to multidimensional explanatory variables.
Fan and Gijbels (1996) devoted all of Chapter 7 to
multivariate predictors. They discussed local polyno-
mial univariate smoothers as the building blocks for
a variety of approaches. Ultimately they provided de-
tails for the extension of local-linear regression to a
d-dimensional explanatoryX.

Change-point analyses. This represents a fertile
area for extensions to statistical methodology. The pro-
totype model has a jump discontinuity in the mean
function m. There are obvious parallels in higher di-
mensions, variance functions, transition probabilities
and abrupt changes in the complexity of models [e.g.
ARMA (p, q)]. In the prototypical situation a smoother
is designed not to respond to such jumps. Wavelets
seem to be better suited to reproducing such irregular
(unsmooth) features. The use of kernel fits separately
on each side of a candidate discontinuity inm(x0) has
been investigated by Müller (1992), Loader (1996) and
Gerard and Schucany (1997).

Dependent data. Hart and Lee (2005) addressed de-
ficiencies of CV for bandwidth selection. Excellent
coverage of the issues that arise for dependent data
may be found in Lin, Wang, Welsh and Carroll (2004).
Welsh, Lin and Carroll (2002) established a fundamen-
tal difference between kernels and splines in this set-
ting. Their key finding is that splines have equivalent
kernel representations when the additive model (1) has
independence, but not when theεi are dependent. The
essence of the difference is their “local” behavior in
which kernels are local and splines are not. Further-
more, they concluded that there are compelling reasons
to recommend efficient nonlocal splines for such appli-
cations.
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tions.Sankhyā Ser. A 25 245–254.

BENEDETTI, J. K. (1977). On the nonparametric estimation of re-
gression functions.J. Roy. Statist. Soc. Ser. B 39 248–253.

CHU, C.-K. and MARRON, J. S. (1991). Choosing a kernel regres-
sion estimator (with discussion).Statist. Sci. 6 404–436.

CLEVELAND , W. S. (1979). Robust locally weighted regres-
sion and smoothing scatterplots.J. Amer. Statist. Assoc. 74
829–836.

EPANECHNIKOV, V. A. (1969). Nonparametric estimation of a
multivariate probability density.Theory Probab. Appl. 14
153–158.

EUBANK , R. L. (1999). Nonparametric Regression and Spline
Smoothing, 2nd ed. Dekker, New York.

FAN, J. (1992). Design-adaptive nonparametric regression.
J. Amer. Statist. Assoc. 87 998–1004.

FAN, J. and GIJBELS, I. (1995). Data-driven bandwidth selec-
tion in local polynomial fitting: Variable bandwidth and spatial
adaptation.J. Roy. Statist. Soc. Ser. B 57 371–394.

FAN, J. and GIJBELS, I. (1996).Local Polynomial Modeling and
Its Applications. Chapman and Hall, London.

GASSER, T. and MÜLLER, H.-G. (1979). Kernel estimation of re-
gression functions.Smoothing Techniques for Curve Estima-
tion. Lecture Notes in Math. 757 23–68. Springer, Heidelberg.

GERARD, P. D. and SCHUCANY, W. R. (1997). Locating
exotherms in differential thermal analysis with nonparametric
regression.J. Agric. Biol. Environ. Stat. 2 255–268.

HART, J. D. (1997).Nonparametric Smoothing and Lack-of-Fit
Tests. Springer, New York.

HART, J. D. and LEE, C.-L. (2005). Robustness of one-sided
cross-validation to autocorrelation.J. Multivariate Anal. 92
77–96.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001).The El-
ements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, New York.

HODGES, J. L., JR. and LEHMANN, E. L. (1956). The efficiency
of some nonparametric competitors of thet-test.Ann. Math.
Statist. 27 324–335.

HURVICH, C. M., SIMONOFF, J. S. and TSAI, C.-L. (1998).
Smoothing parameter selection in nonparametric regression
using an improved Akaike information criterion.J. R. Stat.
Soc. Ser. B Stat. Methodol. 60 271–293.

HURVICH, C. M. and TSAI, C.-L. (1989). Regression and time se-
ries model selection in small samples.Biometrika 76 297–307.

JIA , A. and SCHUCANY, W. R. (2004). Recursive partitioning for
kernel smoothers: A tree-based approach for estimating vari-
able bandwidths in local linear regression. Unpublished manu-
script.

L IN, X., WANG, N., WELSH, A. H. and CARROLL, R. J.
(2004). Equivalent kernels of smoothing splines in nonpara-
metric regression for clustered/longitudinal data.Biometrika
91 177–193.

LOADER, C. R. (1996). Change point estimation using nonpara-
metric regression.Ann. Statist. 24 1667–1678.

LOADER, C. R. (1999). Local Regression and Likelihood.
Springer, New York.

MÜLLER, H.-G. (1987). Weighted local regression and kernel
methods for nonparametric curve fitting.J. Amer. Statist. As-
soc. 82 231–238.

MÜLLER, H.-G. (1992). Change-points in nonparametric regres-
sion analysis.Ann. Statist. 20 737–761.

NADARAYA , E. A. (1965). On nonparametric estimates of den-
sity functions and regression curves.Theory Probab. Appl. 10
186–190.

PARZEN, E. (1962). On estimation of a probability density function
and mode.Ann. Math. Statist. 33 1065–1076.

PITBLADO , J. (2000). Estimating partially variable bandwidths in
local linear regression using an information criterion. Ph.D.
dissertation, Dept. Statistical Science, Southern Methodist
Univ.

PRIESTLEY, M. B. and CHAO, M. T. (1972). Nonparametric func-
tion fitting. J. Roy. Statist. Soc. Ser. B 34 385–392.

RAMSAY, J. O. and SILVERMAN , B. W. (1997).Functional Data
Analysis. Springer, New York.

ROSENBLATT, M. (1956). Remarks on some nonparametric esti-
mates of a density function.Ann. Math. Statist. 27 832–837.

RUPPERT, D. (1997). Empirical-bias bandwidths for local polyno-
mial nonparametric regression and density estimation.J. Amer.
Statist. Assoc. 92 1049–1062.

RUPPERT, D., WAND, M. P. and CARROLL, R. J. (2003).Semi-
parametric Regression. Cambridge Univ. Press.

SCHLEE, W. (1988). Regressograms.Encyclopedia of Statistical
Sciences 8 1–3. Wiley, New York.

SCOTT, D. W. (1992).Multivariate Density Estimation. Wiley,
New York.

SHEATHER, S. (2005). Density estimation.Statist. Sci. 19
588–597.

SIGNORINI, D. F. and JONES, M. C. (2004). Kernel estimators
for univariate binary regression.J. Amer. Statist. Assoc. 99
119–126.

SILVERMAN , B. W. (1986).Density Estimation for Statistics and
Data Analysis. Chapman and Hall, London.

SPENCER, J. (1904). On the graduation of rates of sickness and
mortality.J. Institute of Actuaries 38 334–343.

STONE, C. J. (1977). Consistent nonparametric regression (with
discussion).Ann. Statist. 5 595–645.



KERNEL SMOOTHERS 675

TUKEY, J. W. (1961). Curves as parameters and touch estimation.
Proc. Fourth Berkeley Symp. Math. Statist. Probab. 1 681–694.
Univ. California Press, Berkeley.

ULLAH , A. (1985). Specification analysis of econometric models.
J. Quantitative Economics 1 187–209.

WAHBA , G. and WOLD, S. (1975). A completely automatic French
curve.Comm. Statist. 4 1–17.

WAND, M. P. and JONES, M. C. (1995).Kernel Smoothing. Chap-
man and Hall, London.

WATSON, G. S. (1964). Smooth regression analysis.Sankhyā
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