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IN EXTENDED LINEAR MODELING 
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AND YOUNGK. TRUONG~ 

University of California, Berkeley, Bell Laboratories, 
University of Washington and University of  North Carolina, Chapel Hill 

Analysis of variance type models are considered for a regression func- 
tion or for the logarithm of a probability function, conditional probabil- 
ity function, density function, conditional density function, hazard func- 
tion, conditional hazard function or spectral density function. Polynomial 
splines are used to model the main effects, and their tensor products are 
used to model any interaction components that are included. In the special 
context of survival analysis, the baseline hazard function is modeled and 
nonproportionality is allowed. In general, the theory involves the L2 rate 
of convergence for the fitted model and its components. The methodology 
involves least squares and maximum likelihood estimation, stepwise addi- 
tion of basis functions using Rao statistics, stepwise deletion using Wald 
statistics and model selection using the Bayesian information criterion, 
cross-validation or an independent test set. Publicly available software, 
written in C and interfaced to S/S-PLUS, is used to apply this methodol- 
ogy to real data. 

1. Introduction. The last two decades have witnessed an incredible 
change in the focus of statistical theory and methodology. Fueled in part 
by the explosion of available computer power, highly adaptive, functional 
procedures are now essential tools for modern data analysis. While freed from 
the rigid assumptions implicit in classical parametric models, the statistician 
is now expected to select not only the important variables in a model, but also 
the functional form of the dependence on these variables. To be practically suc- 
cessful, any new adaptive procedure must inevitably strike a balance between 
flexibility and the haunting "curse of dimensionality." It is in this capacity 
that statistical theory is critical to the success of emerging methodologies. 
Polynomial splines and their tensor products offer the flexibility required 
for modern data analysis, and when used in concert with low-dimensional 
analysis of variance (ANOVA) decompositions, effectively tame the curse of 
dimensionality. 
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In the pages that follow, we will alternate between a discussion of the prac- 
tical implementation of this methodology and a very broad theoretical inves- 
tigation into the properties of this approach in the context of extended linear 
models. We have coined this term because our theoretical results apply to a 
group of estimation problems that subsumes the classical exponential family 
regression models [see McCullagh and Nelder (1989)l. While our initial moti- 
vation for introducing this family was to achieve a theoretical synthesis, we 
found that this framework also allows us to entertain a fairly general treat- 
ment of the associated methodology. Throughout our presentation, however, 
we maintain a distinction between the nonadaptive procedures that we can 
treat theoretically and the adaptive methodologies that we have implemented 
for density estimation, hazard regression, polychotomous regression and spec- 
tral density estimation. In this presentation, we concentrate on theoretical and 
methodological innovations developed through many collaborations involving 
various subsets of the authors of the present paper. 

In Section 2, we define the notion of an extended linear model and use 
this framework simultaneously to discuss the L2 rate of convergence for the 
nonadaptive version of our procedures in a variety of important statistical 
settings, while in Section 3, we translate these promising theoretical results 
into practically useful, adaptive methodology. Ultimately, however, the true 
measure of any statistical procedure is its performance on real data. In Sec- 
tions 4-9 we focus on a number of specific modeling problems for which our 
approach has yielded successful data analysis tools. In each case, an SIS-PLUS 
implementation is (or will soon be made) publicly available so that the "true 
measure" of these procedures can be judged on the wealth of data that exist 
beyond the (necessarily narrow) confines of our examples. Logspline density 
estimation was our first attempt at  an adaptive spline-based methodology, and 
in Section 4 we present the latest version of this procedure, LOGSPLINE. In 
Section 5 we describe our own version of MARS [Friedman (1991)l as a rou- 
tine to handle regression problems involving many predictors. The motivation 
for reworking this routine stems from an application of linear splines to poly- 
chotomous regression, known as POLYCLASS, which is described in Section 6. 
In order to relax the proportionality and linearity assumptions in classical sur- 
vival analysis, we have developed spline routines for hazard estimation with 
flexible tails (HEFT) and hazard regression (HARE). These are the subject of 
Section 7. Spectral density estimation is another area in which our adaptive 
methodology can easily capture all the relevant features of a given time series, 
and in Section 8 we discuss LSPEC, an implementation of this approach. We 
end the paper with a discussion of Triogram models, a methodology for bi- 
variate function estimation through the use of splines defined over adaptively 
determined triangulations. 

2. Extended linear models: theory. 

Notation. Consider a W-valued random variable W, where W is an arbi- 
trary set. Let 8 = x . . . x 8, be a Cartesian product of compact intervals, 
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each having positive length. Let K be a positive integer. Consider a vector- 
valued function h = (hl, . . . , hK) on 8whose constituents hl, . . . , hK are real- 
valued functions on 8 .  Let l(h, W) be a (not necessarily true) log-likelihood 
and let A(h) = E[l(h, W)] be the corresponding expected log-likelihood. There 
may be some mild restrictions on h for the log-likelihood to be defined. We 
assume that, subject to such restrictions, there is an essentially unique func- 
tion + = . . . , 4K)  that maximizes the expected log-likelihood. (Here two 
functions on 8are essentially equal if they differ only on a subset of 8having 
Lebesgue measure zero.) 

Let H be a linear space of real-valued functions on 8 ,  let H K  denote 
the space of functions of the form h = (hl, . . . , hK), where the constituents 
hl, . . . , hK of h range over H ,  and consider the log-likelihood function l(h, W), 
h E HK.  We refer to any particular setup of this form as an extended linear 
model. The expected log-likelihood function is given by A(h), h E HK.The 
model is said to be concave if l(h, w) is a concave function of h for each w E W 
and A(h) is a strictly concave function of h when restricted to those functions 
h E HKsuch that A(h) > -a.Typically, when the model is concave, there is 
an essentially unique function 4' = (+;, . . . , 4;) E HKthat maximizes the 
expected log-likelihood over HK.  It follows from the information inequality 
that if 4 E H K ,  then 4*= +. 

In order to define ANOVA decompositions of the constituents of +*, we first 
need to define corresponding theoretical inner products and norms. To this 
end, let $ be an absolutely continuous measure on 8having a density function 
that is bounded away from zero and infinity on 8.Given square-integrable, 
real-valued functions hl and h2 on 8 ,  their theoretical inner product is defined 
by (hl,  h2) = J9 hlh2 d$. Given such a function h, its theoretical norm is 
defined by llh1I2 = (h, h) = J9 h2d$. Conversely, if 1 1  . 1 1  is defined directly, 
then $ is defined implicitly by the formula $(A) = llindA 112, where indA is the 
indicator function of A, which equals 1on A and 0 on Ac. 

Let W1, . . . ,W, be a random sample of size n from the distribution of W. 
The log-likelihood function corresponding to this random sample is given by 
l(h) = xil(h, Wi). Let G = G, be a finite-dimensional subspace of H and 
let GK = Gf denote the corresponding subspace of HK.(Note that if K = 1, 
then H K  = H and GK = G.) Under the assumptions of a concave extended 
linear model and reasonable additional conditions, except on an event whose 
probability tends to zero as n -+ co, there is a unique maximum likelihood 

A A A 

estimate T i n  GK of +*; that is, a unique function + = . . , 4K)  in GK 
that maximizes the log-likelihood function over GK. 

In order to define ANOVA decompositions of the constituents of T, we need 
to define corresponding empirical inner products and norms. For n 2 1, let 
$, be an empirical product measure on 8 that is a transform (measurable 
function) of the random sample W1, . . . ,W,. (Roughly speaking, $, should 
approach $ as n + oo.)Given real-valued functions hl and h2 on 8 ,  their 
empirical inner product is defined by (hl,  ha), = 1%hlh2 d$,. Given such a 
function h, its empirical norm is defined by llh11: = J%h2 d*,. The space G is 
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said to be identifiable if the only function g E G such that llgll, = 0 is given 
by g = 0. Under reasonable conditions, G is identifiable except on an event 
whose probability tends to zero as n -+ GO. 

Many statistical problems of theoretical and practical importance can ef- 
fectively be treated within the framework of concave extended linear models. 
Most of the investigations in this framework have involved a %-valued ran- 
dom variable U that is a transform of W. Let U1, . . . ,U, be the corresponding 
transforms of W1, . . . ,W,, respectively. Here, we typically let I) be the distri- 
bution of U and 4,the empirical distribution of U1, . . . ,U,. 

EXAMPLES. 
Regression. Consider a random pair (X, Y), where X is Z-valued and Y 

is real-valued and has finite second moment. Set l(h, X, Y) = -[Y - h(X)I2. 
Then we get a concave extended linear model with W = (X, Y), U = X and 
K = 1. If H is the space of all functions h on X with E[h2(X)] < co,then 
4 is the regression function of Y on X. More generally, if H is a Hilbert 
space of such functions h, then 4* is the best approximation in H to the 
regression function, where "best" means minimizing the mean squared error 
E{[Y -h(X)I2) in predicting Y by h(X). Here maximum likelihood estimation 
in G coincides with least squares estimation. 

Generalized regression. Suppose now that, for each x E X ,  the conditional 
distribution of Y given that X = x belongs to a fixed exponential family of 
distributions on R of the form exp[B(0)y - C(O)]p(dy), where the parameter 
0 ranges over R.Here p is a nonzero measure on R that is not concentrated 
at a single point and JRexp[B(0)y - C(0)lp(dy) = 1for 0 E R.The function 
B(.) is required to be twice continuously differentiable and its first derivative 
B1(.) is required to be strictly positive on R. It is required that there be a 
subinterval S of R such that p is concentrated on S and B"(0)y - C1(0)< 0 
for 0 E R and y E S .  If S is bounded, it is required that it contain at  least 
one of its endpoints. Let h be a candidate for the dependence of 0 on x. The 
corresponding (conditional) log-likelihood is given by l(h, X, Y) = B(h(X))Y -
C(h(X)). This has the form of a concave extended linear model with W = 
(X, Y), U = X and K = 1. As special cases, we get logistic regression, probit 
regression and Poisson regression models. 

Polychotomous regression. Let Y be a qualitative random variable having 
K + 1possible values. Without loss of generality, we can think of this random 
variable as ranging over 9= (1, . . . , K+l) .  Suppose that P(Y = klX = x) > 0 
for x E Z and k E 9.For 15 k 5 K, let hk be a candidate for the function 

The corresponding log-likelihood is given by 

- log(1 + exp hl(X) + .  . . + exp hK(X)), 
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where Ik(Y) equals 1or 0 according as Y = k or Y # k and h = (hl ,  . . . , hK). 
This setup has the form of a concave extended linear model with W = (X, Y) 
and U = X. 

Density estimation. Let Y have an unknown positive density function 
on 9.We can write its log-density function in the form 4 - C(4), where 
C(h) = log Jexp h(y) dy.  The corresponding log-likelihood function is given 
by l(h,Y) = h(Y) - C(h). This setup has the form of a concave extended 
linear model with W = U = Y and K = 1provided that, for identifiability, 
we impose a restriction on the functions h E H such as E[h(U) = 01 and we 
impose a similar condition on the functions in G. 

Hazard regression. Consider a positive survival time T, a positive censor- 
ing time C, the observed time min(T, C) and an X-valued random vector X of 
covariates. Let 6 = ind(T 5 C) be the indicator random variable that equals 
1or 0 according as T 5 C ( T  is uncensored) or T > C (T  is censored) and 
write min(T, C) as T A C. Suppose T and C are conditionally independent 
given X. For theoretical purposes, it is supposed that P(C IT)= 1, where T 

is a known positive constant. Set W = (X, T A C, 6) and U = (X, T A C). Let 
$(x, t) = log f (tlx)/[l- F(tlx)], t > 0, denote the logarithm of the conditional 
hazard function, where f (tlx) and F(t1x) are the conditional density and dis- 
tribution functions, respectively, of T given that X = x. Since the likelihood 
equals f ( T  A CIX) for an uncensored case and 1- F ( T  A CIX) for a censored 
case, it can be written as 

Thus the log-likelihood function is given by 

TAC 
~ ( h ,W) = SI(X, T A C) -1 exp h ( ~ ,  t) d t .  

0 

This setup has the form of a concave extended linear model with K = 1.Here 
the theoretical inner product is given by 

which defines @ implicitly; the corresponding empirical inner product (., .), 
and empirical measure @, are defined in the obvious manner. 

ANOVA decompositions and convergence rates. In the theoretical develop- 
ment of extended linear models, ANOVA decompositions of 4*,  $, and their 
constituents play important roles. For a simple illustration of such decompo- 
sitions, consider a regression or generalized regression context with M = 2 
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and let H be the space of all square-integrable functions on 8.Then 4 can 
be written as 

(2.1) XI, x2) = $0 + $I(XI>+ 42(x2) + $12(3~1, ~ 2 ) .  

Here 4o is the constant component, and $2 are the main effect compo- 
nents and cP12 is the two-factor interaction component. It is required that 
each component be theoretically orthogonal to all choices of the corresponding 
lower-order components; that is, 41, 42and cP12 are each theoretically orthog- 
onal to 1, and 5b12 is orthogonal to all choices of 4, and $2. The maximum 
number d of factors in any component of the model is given by d = 2. Since 
d = M, the model is saturated. 

Given a random sample, consider an estimate 

(2.2) T(x1, ~ 2 )  = To + F l ( ~ 1 )+ T2(~2)+ T12(~1,XZ), 


where each component is empirically orthogonal to all choices of the corre- 

sponding lower-order components. The right-hand sides of (2.1) and (2.2) are 

referred to as the ANOVA decompositions of $ and T, respectively. 


Removing the interaction component, we get the additive (d = 11, unsatu- 
rated approximation 

$*(x1, ~ 2 )  = $T, + $?(XI>+ $ $ ( ~ 2 )  

to $ and the corresponding estimate 

a x 1 ,  x2) = T o  + T l ( ~ 1 )+ F2(~2).  

In general, given a subset s of (1, . . . ,M), let H, denote the space of square- 
integrable, real-valued functions on % that depend only on the variables urn, 
m E s. (The space HD corresponding to the empty set 0is the space of constant 
functions.) Let 4 denote a hierarchical collection of subsets of (1, . . . ,M), 
where hierarchical means that if s is a member of 4 and r is a subset of 
s, then r is a member of 4 .  Let H now denote the space of functions on % 
of the form CsE4h,, where h, E H, for s E 4 .  Let d denote the maximum 
cardinality of the sets s E 4 .  We refer to this setup as being saturated if 
d = M and unsaturated if d < M. If d = 1, then the functions in H are 
additive functions of the individual coordinates. 

Let h IH ,  mean that (h, h,) = 0 for h, E H,. Every function h E H can 
then be written in an essentially unique manner as h = CsE4h,, where, for 
s E 4 ,  h, E H, and h, IH, for every proper subset r of s. We refer to h,, 
s E 4 ,  as the components of the ANOVA decomposition of h. In particular, let 
4;,, s E 4 ,  denote the components of the ANOVA decomposition of 4;. Also, 
set 4; = ($?,, . . . ,4ks) for s E 4 .  

For 1 5 m 5 M, let G, denote a finite-dimensional space of functions on 
containing the constant functions. Given a subset s of (1, . . . ,M), let G, 

denote the tensor product of the spaces G,, m E s, which is the space spanned 
by functions on % of the form n,,, g,(u,) as g, ranges over G, for m E s. 
Observe that G, c G, for r c s. Let G denote the space of functions on % of 
the form CsEYg,, where g, E G, for s E 4. 

%, 
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Let g I, G, mean that (g ,  g,), = 0 for g, E G,. If G is identifiable, then 
every function g E G can be written uniquely as g = CsE4gs, where, for 
s E 4 ,  g, E G, and g, I, G, for every proper subset r of s. We refer to g,, 
s E 4 ,  as the components of the ANOVA decomposition of g .  In particular, let 
FkS,: E 4 ,  denote the components of the ANOVA decomposition of Fk.Also, 

A A 

set 4, = (&,, . . . ,+Ks) for s E 4. 
We now restrict attention to spaces G, of polynomial splines. For theoretical 

simplicity, for 15 m 5 M, let A, be a partition of 9, into disjoint intervals 
having common length a .  By a piecewise polynomial of degree q on 9,, we 
mean a function g on 9, such that the restriction of g to each S E A, is 
a polynomial of degree q. Let G, be a linear space of splines on %,-that 
is, piecewise polynomials of degree q on 9, subject to specified smoothness 
constraints, typically that of being ( q  - 1)-times continuously differentiable 
on 9,. 

Given a real-valued function h on 9 ,  let llhllocl denote the supremum of 
Ihl on 9.Given a vector-valued function h = (hl, . . . ,hK) on 9,set 1 1  hllm = 
max(llhlllcu,. . . , IlhKIIm) and I l h 1 I 2  = llh1112 + " '  + I I h ~ 1 1 2 . 

Next we consider the rates of convergence that can theoretically be estab- 
lished for the estimate F of +* and for the corresponding estimates Fsof the 
components 4: of 4*.Let s E 4.Under various conditions on the spaces G,, 
m E s, 

inf llg -+isll, = O(aP), 15 k IK and s E 4 ,  
geG, 

with p being a suitably defined measure of smoothness of the constituents of 
+*. Under various reasonable additional conditions, 

and 

Thus, by optimally choosing a - n-1/(2p+d),we get the rate of convergence 
given by 

and 

In particular, by considering additive models (d = 1)or by allowing interac- 
tions involving only two factors (d = 2), we can get faster rates of convergence 
than by choosing d = M and thereby ameliorate the "curse of dimensionality." 

Hansen (1994) introduced the class of extended linear models and obtained 
the corresponding L2 rates of convergence. The various cases of this theory 
that have previously been treated are as follows: regression in Stone (1985, 
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1994); generalized regression in Stone (1986, 1994), density estimation in 
Stone (1990, 1994); conditional density estimation in Stone (1991, 1994) and 
Hansen (1994); hazard regression in Kooperberg, Stone and Truong (1995b); 
and spectral density estimation in Kooperberg, Stone and Truong (1995d). 

3. Extended linear models: adaptive methodology. In practice, it 
seems best to select G in an adaptive manner. Let J be the dimension of G, 
let B1, . . . ,B be a basis of this space and write a candidate g = (gl,  . . . ,gK)  
for the maximum likelihood estimate in G of 4' as gk = CjPjkBj for 
15 k 5 K. Let p be the (suitably) ordered JK-tuple (/3jk)15j5J,15k5K. Then 
the log-likelihood function based on the sample data can be written as l(P), 
p E @. Assume that this log-likelihood function is twice continuously differ- 
entiable, and let Vl(P) and H(P) denote its gradient and Hessian matrix, 
respectively, a t  P. 

The quadratic approximation Q to the log-likelihood function about Po E 98 
is given by 

(3.1) Q(P) = - Po) + ;(P - PoITH(Po)(P- Po).l(P0) + [ v ~ ( P ~ ) I ~ ( P  

Suppose H(Po) is negative definite or, equivalently, that I(Po) = -H(Po) is 
positive definite. Then Q is uniquely maximized at 

Using (3.2) in an iterative manner, we get the Newton-Raphson method for 
numerically determining the maximum likelihood estimate from any starting 
value Po. If the maximum likelihood estimate exists, the log-likelihood func- 
tion is strictly concave, and we apply a suitable modification to the Newton- 
Raphson method (such as step-halving), then the method is guaranteed to 
converge to the maximum likelihood estimate from any starting value [see 
Kooperberg, Bose and Stone (1997) for details]. It follows from (3.1) and (3.2) 
that 

If Po is the maximum likelihood estimate in a subspace of @, then the right- 
hand side of (3.3) is the Rao (score) statistic for testing the hypothesis that 
the "true" value of p lies in this subspace. 

Let Q now be the quadratic approximation to the log-likelihood function 
about the maximum likelihood estimate,p E 98, and let Bobe the subspace of 
98 consisting of all p E @ such that AP = 0, where A has full rank. Then the 
maximum of Q over @o occurs uniquely at  

Moreover, 
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The right-hand side of (3.5) is the Wald statistic for testing the hypothesis 
that p E B0under the assumption that p E @. Moreover, the right-hand side 
of (3.4) gives a good starting value for using the Newton-Raphson method to 
find the maximum likelihood estimate in B0when the maximum likelihood 
estimate p in D has already been determined. 

An important aspect of the methodology for fitting extended linear models 
is the adaptive choice of the space G from a family 9 of allowable spaces that 
is typically assumed to satisfy the following properties: 

1. For each G E &, the model has dimension J > Jmin. 
2. There is only one G 	E 9 with dimension Jmi,, which we refer to as the 

minimum allowable space. 
3. If Go E 3 has dimension J ,  there is at least one space G E & with dimen- 

sion J + 1that contains Go as a subspace. 
4. 	If G E has dimension J > Jmin, there is at least one subspace Go E 3 of 

G with dimension J - 1. 

In our univariate methodologies (LOGSPLINE, LSPEC and HEFT) we use 
families of allowable spaces based on cubic splines. For each of these method- 
ologies there are some extra restrictions on the allowable spaces, which are 
discussed in the relevant sections. Also, the HEFT and LSPEC methodologies 
involve some additional basis functions that are not cubic splines. Details are 
given in Sections 7 and 8. 

For the multivariate methodologies POLYMARS (our version of MARS), 
POLYCLASS and HARE we make use of piecewise linear splines and selected 
tensor products. These spaces are discussed in detail in Section 5 about POLY- 
MARS. In all of these applications we restrict attention to d 5 2, so that 
main effects (polynomial splines in individual variables) and two-factor inter- 
actions (tensor products of polynomial splines in two different variables) may 
be allowed, but no three-factor or higher-order interactions are allowed in the 
model. The allowable spaces for the bivariate splines considered in Section 9 
are discussed in that section. 

Initially, we choose G as the minimum allowable space. Then we proceed 
with stepwise addition. Here we successively replace the ( J  - 1)-dimensional 
allowable space Go by a J-dimensional allowable space G containing Go as a 
subspace, choosing among the various candidates for a new basis function by a 
heuristic search that is designed approximately to maximize the corresponding 
Rao statistic. The reason for using Rao statistics here is to avoid the need 
for computing maximum likelihood estimates corresponding to the various 
candidate spaces G. 

Upon stopping the stepwise addition process (for example, after we reach 
a default or user-specified maximum dimension), we carry out stepwise dele- 
tion. Here we successively replace the J-dimensional allowable space G by 
a ( J  - 1)-dimensional allowable subspace Go until we arrive at  the minimal 
allowable space, a t  each step choosing the candidate space Go so that the 
Wald statistic for a basis function that is in G but not in Go is smallest in 
magnitude. The reason for using Wald statistics here is to avoid the need for 
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computing maximum likelihood estimates corresponding to the various can- 
didate subspaces Go. 

During the combination of stepwise addition and stepwise deletion, we get a 
sequence of models indexed by v, with the vth model having J ,  K parameters. 
The (generalized) Akaike information criterion (AIC) can be used to select one 
model from this sequence. Let denote the fitted log-likelihood for the vth 
model and let 

(3.6) AIC,, = -21, 
A + aJ ,  K 

be the Akaike information criterion with penalty parameter a for this model. 
We select the model corresponding to the value C of v that minimizes AIC,, ,. 
In light of practical experience, we generally recommend choosing a = log n as 
in the Bayesian information criterion (BIC) due to Schwarz (1978). (Choosing 
a = 2 as in classical AIC tends to yield models that are unnecessarily complex, 
have spurious features and do not predict well on test data.) 

Alternatively, we can use an  independent test set to obtain a more nearly 
unbiased estimate of the expected log-likelihood and select the model that 
maximizes this estimate. In the regression and classification contexts we could 
use the independent test set to obtain a nearly unbiased estimate of the mean 
squared error of prediction or the cost of misclassification and select the model 
that minimizes this estimate. 

Finally, cross-validation can be used to select a so as approximately to maxi- 
mize the expected log-likelihood or minimize the expected mean squared error 
of prediction or cost of misclassification. [For detailed discussions of the use 
of independent test sets or cross-validation in the related context of selecting 
classification and regression trees, see Breiman, Friedman, Olshen and Stone 
(1984).1 

Regardless of the final criteria used to choose between competing estimates, 
i t  is likely that  many of the models encountered during the stepwise addition 
and deletion processes will perform similarly. By examining which terms are 
present in these best fitting models, we can gain considerable insight into the 
underlying features of the data. Simulation can also be used to judge whether 
or not our procedures can reliably resolve important aspects of a given data 
set. In addition, simulation can be used to calibrate the choice of (the implicit 
smoothing parameter) a in the AIC criterion of (3.6). Illustrations of these 
procedures will be given in the context of the various adaptive methodologies 
presented in Sections 4-9. 

As mentioned in Section 1, various adaptive methodologies and correspond- 
ing software products have already bee* developed. The current situation re- 
garding software availability is as follows: 

1. Versions of the HARE, HEFT, LOGSPLINE and LSPEC methodologies are 
available from statlib. (The publicly available version of the LOGSPLINE 
program is slightly older than the one discussed in Section 4; see that 
section for more discussion.) All these methodologies are written as C pro- 
grams with an interface to the SIS-PLUS environment. 
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2. A commercial version of HARE is currently being implemented in S-PLUS. 
3. Friedman's MARS program is available as a collection of Fortran subrou- 

tines from statlib. 
4. The POLYMARS program discussed in Section 5 was not written as a stand- 

alone program. 
5. The current version of POLYCLASS is available from Kooperberg. We are 

working on a modification to this methodology to make it computationally 
much less intensive when applied to huge data sets with many classes, 
features and cases. In this modification we plan to use a stochastic gradient 
method to obtain the maximum likelihood fit to the largest model selected 
by POLYMARS. 

6. A library of SIS-PLUS routines for manipulating Triogram models is cur- 
rently available from Hansen and will soon be available in version 4 of S. 

Our eventual goal is to develop a comprehensive set of polynomial spline mod- 
eling routines. 

4. Univariate density estimation (LOGSPLINE). In logspline den- 
sity estimation a (univariate) log-density is modeled by a cubic spline. The 
LOGSPLINE project was the first methodology project employing model se- 
lection and polynomial splines on which we have worked. In this section we 
describe the fourth version of LOGSPLINE. Earlier versions are discussed 
in Stone and Koo (1986b) and Kooperberg and Stone (1991, 1992). The var- 
ious versions of LOGSPLINE all employ cubic splines and maximum likeli- 
hood estimation. The way that the program positions knots, how it deals with 
the tails of the distribution and what types of data it can handle are among the 
things that have evolved over time. Before presenting any details about the 
LOGSPLINE methodology, we give a brief example. 

In the left side of Figure 1we show a density estimate based on a random 
sample of 7125 annual net incomes in the United Kingdom [Family Expen- 
diture Survey (1968-1983)l. [The data have been rescaled to have mean 1as 
in Wand, Marron and Ruppert (1991).1 The spike near 0.24 is due to the UK 
national old age pension, which caused many people to have nearly identical 
incomes. The right side of Figure 1zooms in on the neighborhood of this spike. 
In Kooperberg and Stone (1992) we concluded that the height and location of 
this spike are accurately estimated by LOGSPLINE. 

The selection of knots in logspline density estimation is discussed in detail 
below. Here it suffices to note that the procedure involves stepwise addition 
and deletion of knots. The program starts with a fairly small number of knots. 
In Figure 1 these knots are indicated by the letter "s". I t  then adds knots 
in those regions where an added knot would have the most influence, using 
Rao statistics. The program continues adding until a prespecified maximum 
number of knots is reached. The knots for this largest model are indicated 
by the letter "m" in Figure 1.After the largest model has been fitted, knots 
are deleted one a t  a time, using Wald statistics to decide which one to delete 
next. The smallest model that is fitted has three knots. Out of the complete 
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FIG. 1. Left: Logspline density estimate for the income data. Right: Enlargement of the area near 
x = 0.24. The letters below the plots refer to the knot placement. See the text for details. 

sequence of models, LOGSPLINE selects the one having the smallest value for 
the AIC criterion. The knots for this "best" model are indicated by the letter 
"f" in Figure 1. 

Usually, as is the case here, the final model based on the AIC criterion is fit- 
ted during the stepwise deletion stage of the procedure. The new LOGSPLINE 
procedure thus has the advantage that it adds knots in those parts of the den- 
sity where they are most needed, for example, near the spike, while it deletes 
knots where they are not needed, for example, in the tails, thus creating an 
adaptivity that other density estimation procedures seem to lack. This is one 
of LOGSPLINE'S main advantages. 

LOGSPLINE has additional advantages over other density estimation 
methods: 

1. While LOGSPLINE generally gives accurate estimates of the height and 
location of peaks, thanks to adaptivity, it avoids spurious bumps and gives 
smooth estimates in the tail of the distribution. 

2. 	LOGSPLINE has a natural way to estimate densities with bounded sup- 
port, which may be discontinuous a t  the end of their range. 

3. 	LOGSPLINE can estimate the density even when some observations are 
censored. 

4. 	A LOGSPLINE density is represented by a list of numbers of moderate 
length, making it convenient to use the density for further analysis. 
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The LOGSPLINE method is fairly fast: on our Sparc 10 workstation the esti- 
mate shown in Figure 1was computed in about 9 s of CPU time. 

In the following section we will discuss the LOGSPLINE methodology in 
some detail. In Section 4.2 we present an example of the application of the 
various LOGSPLINE algorithms to a much smaller data set. 

4.1. The LOGSPLINE methodology. 
LOGSPLINE models. As usual in our polynomial spline methodologies, 

there are two main issues to LOGSPLINE: 

1. Given a linear space, how are the parameters estimated? 
2. How is the linear space selected? 

We now discuss the types of linear spaces that we consider in LOGSPLINE 
and the corresponding log-likelihood function. Then we discuss how to select 
a linear space in an adaptive manner. 

Given the integer K q 3, the numbers L and U with -cc 5 L < U Icc and 
the sequence t l ,  . . . , tK with L < tl < . . . < tK < U, let G be the space of twice 
continuously differentiable functions s on (L, U) such that the restrictions 
of s to [tl, tz], . . . , [tKWl, tK]  are cubic polynomials and the restrictions of s 
to (L, tl] and [tK, U) are linear. The space G is K-dimensional. Set J = 
K -1.Then G has a basis of the form 1,B1, . . . ,B j .  We can choose B1, . . . ,B j  
such that B1 is linear with negative slope on (L, tl], B2, . . . ,B j  are constant 
on (L, tl], B j  is linear with positive slope on [tK, U) and B1,. . . ,BJPl are 
constant on [tK, U). 

A column vector p = (PI, . . . ,P ~ ) ~E IRJ is said to be feasible if 

or, equivalently, if (i) either L > -cc or P1 < 0 and (ii) either U < cc or P j  < 0. 
Let 93 denote the collection of such feasible column vectors. Given P E @, set 

f ( y ;P) = e x ~ ( P i B i ( ~ ). . . + PJBJ(Y) - C(P)), L < Y < U,+ 
where 

Then f (.; P) is a positive density function on (L, U) for P E @. If U = cc, then 
the density function is exponential on [tK, GO); if L = - a ,  then the density 
function is exponential on ( - a ,  tl]. 

Let Y1, . . . ,Y, be a random sample df size n from a distribution on (L, U) 
having density function f .  Let Al, . . . ,A, be subintervals of (L, U) such that 
it is known only that Yi E Ai for 15 i 5 n. If Yi is uncensored, then Ai = 
{Yi). If Yi is right censored a t  Ci < Yi, then Ai = (Ci, U). If Yi is left 
censored a t  Ci > Yi, then Ai = (L,  Ci). In either case, we refer to Ci as the 
censoring value of Yi. If Yi is interval censored, then its censoring interval 
Ai is a subinterval of (L, U). Under the usual assumption that the random 
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sample is independent of the censoring mechanism, the log-likelihood function 
corresponding to the LOGSPLINE model has the form given by 

here 

if A is the one-point set {y) and 

if A has positive length. Formulas for the score function and Hessian can be 
found in Kooperberg and Stone [(1992), Section 21. These formulas become 
rather complicated when A has positive length. 

The maximum likelihood estimate p is given by l(p) = m a x g c ~I(@), and 

the log-likelihood of the fitted model is given by r=l(E). The corresponding 
maximum likelihood estimate of f is given by fly) = f (y;E) for L < y < U .  

Model selection. The knot selection methodology involves initial knot 
placement, stepwise knot addition, stepwise knot deletion and final model 
selection based on AIC. In this subsection we assume that all the data are 
uncensored; that is, Ai = {Yi) for all i. 

Initially we start with K knots, with K = min(2.5n115, n/4, N ,  25), where 
N is the number of distinct Yi's. These K knots are positioned according to 
the rule described in Kooperberg and Stone (1992). This rule places knots 
a t  selected order statistics of the data. (The rule is suitably modified when 
some data are censored.) If L = -oo and U =oo, the extreme knots are placed 
a t  the extreme observations and the interior knots are positioned such that 
the distances (on an  order statistic scale) between knots near the extremes 
of the data are fairly small and almost independent of the sample size, while 
the knots in the interior are positioned approximately equidistantly. If L > 
-oo or U < oo, the procedure is suitably modified. 

The knot-additionlknot-deletionprocedure that we employ is essentially the 
procedure described in Section 3. In particular, a t  each addition step of the 
algorithm we first find a good location for a new knot in each of the inter- 
vals (L,  tl), (tl ,  tz), . . . , (tKPl, tK), ( tK,  U) determined by the existing knots 
tl,  . . . , tK. To do this we maximize in each interval the Rao statistic for po- 
tential knots located a t  the quartiles of the data within each interval. The 
location is then further optimized, which may involve computing a few more 
Rao statistics [see Section 11.3 of Kooperberg, Stone and Truong (1995a) for 
our current implementation]. The search algorithm then selects among the 
best candidates within the various intervals. The default value for the maxi- 
mum number of knots in a model is K,, = min(4n115, n/4, N ,  30). 
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During knot deletion we successively remove the least significant knot, 
where Wald statistics are used to measure significance. We continue this pro- 
cedure until only three knots are left. (Rarely, with extremely heavy tailed den- 
sities, there are numerical problems when the number of knots is too small. In 
such a situation we terminate the procedure as soon as these problems occur.) 

Among all models that are fitted during the sequence of knot addition and 
knot deletion we choose the model that minimizes AIC with default penalty 
parameter a = log n, as described in Section 3. 

Innovations. As we mentioned in the introduction to this section, the 
present version of LOGPSLINE is the fourth version. In the first version 
[Stone and Koo (1986b)I, a small fixed number of knots was placed equidis- 
tantly on an order-statistic logit scale. In Kooperberg and Stone (1991), 
stepwise knot deletion was employed, and the initial knot placement rule 
was very similar to the one we now employ. Both of these earlier papers 
used a preliminary transformation for densities on the positive half-line. In 
Kooperberg and Stone (1992) it was decided that such a transformation is not 
needed when the knot placement is sufficiently adaptive. In the 1992 paper 
we extended logspline density estimation to censored data and discussed a 
user interface based on S. The present version of LOGSPLINE is the only 
one that includes stepwise addition of knots. There are also several signifi- 
cant computational improvements, the two most important of which are as 
follows: 

1. The starting values used during stepwise deletion are obtained by maximiz- 
ing a quadratic approximation to the log-likelihood function, as described in 
Section 3. These starting values are significantly better than those proposed 
in Kooperberg and Stone (1992). Indeed, the number of Newton-Raphson 
iterations may be reduced by as much as 30%. 

2. In the absence of censored data the log-likelihood function is strictly con- 
cave. Therefore, if a maximum of the log-likelihood function exists, it is 
unique. If some of the observations are censored, however, the log-likelihood 
function need not be concave. In Kooperberg and Stone (1992), this problem 
was circumvented by alternating between Newton-Raphson and steepest 
ascent. We now take the approach of adding a small negative constant times 
the identity matrix to the Hessian, if necessary, to ensure that this matrix 
is negative definite [see Kennedy and Gentle (1980), Section 10.2.21. 

Note that the version of the program described in Kooperberg and Stone (1992) 
is available from statlib (statlib@stat.cmu.edu). The version described in this 
paper is not yet publicly available. 

4.2. An example. The penalty parameter a in the AIC criterion (see Sec- 
tion 3) is the main parameter in the LOGSPLINE procedure that governs the 
complexity of the final density estimate. The default value for this parameter 
is a = logn as in BIC. Another commonly used value is a = 2 as in (tradi- 
tional) AIC. One of the goals of this section is to study the influence of this 
penalty parameter by means of a small simulation study. 

http:10.2.21
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Besides the choice of the penalty parameter, i t  may matter whether we use 
the new LOGSPLINE procedure, as described in this paper, or the previous 
LOGSPLINE procedure, described in Kooperberg and Stone (1992). Since the 
new procedure positions some of the knots adaptively, so as approximately to 
maximize the log-likelihood, conceivably it may lead to a more flexible esti- 
mate. 

We applied the new and previous LOGSPLINE procedures with both a = 2 
and a = logn to the Buffalo snowfall data. This is a small data set (n = 63) 
that has been used extensively in the density estimation literature; see, for 
example, Parzen (1979) and Silverman (1986). The main issue here is the 
number of modes: is there one or are there three (or maybe two)? As can be 
seen from Figure 2, the different LOGSPLINE procedures provide different 
answers, as summarized in Table 1. From this table we see that the model 
that was selected using the new procedure with penalty parameter a = 2 
would also have been selected for values of a between 0.45 and 3.01. From 
(3.6)we note that  if a model with J basis functions is selected for some value 
of a ,  i t  will be selected for a range of values of a. Some models may not be 

snowfall (inches) 

FIG. 2. Logspline density estimates for the Buffalo snowfall data ( n  = 63) for the new and the 
previous LOGSPLINE procedure and two different values of the penalty parameter. 
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TABLE1 

Knots and modes for LOGSPLINE estimates for the Buffalo snowfall data 


Optimal for a 

Procedure From To 
Number 
of Knots 

Number 
of Modes 

New procedure, a = 2 
New procedure, a = log n 
Previous procedure, a = 
Previous procedure, a = 

zz 4.14 
2 
log n % 4.14 

0.45 
3.01 
0.03 
2.65 

3.01 
8.38 
2.65 
cc 

7 
5 
7 
3 

3 
2 
3 
1 

optimal for any value of a [see Kooperberg, Stone and Truong (1995a1, Table 61. 
Note that for n = 63 the starting number of knots for the previous procedure 
is 10, while for the new procedure i t  is 6, with 4 knots being added by the 
algorithm. 

To investigate the behavior of the LOGSPLINE estimation procedures in 
situations similar to the snowfall data, we generated 100 samples of size 63 
from each of the densities shown in Figure 2, except for the estimate of the 
previous procedure with a = 2 since it is very similar to the estimate of the 
new procedure with a = 2. For each of the 300 samples that we obtained, 
we applied the same procedures with the same choices of a as in Figure 2, 
yielding four estimates for each sample. In Table 2 we summarize the number 
of modes in each of these estimates. Not unexpectedly, the procedures with 
a = logn tend to underestimate the number of modes, while the procedures 
with a = 2 tend to overestimate it. Although it  would be possible to fine 
tune the penalty parameter to balance the number of times the procedure 
underestimates and overestimates the number of modes, we feel that it may 
be more useful to look at a few estimates with different values of the penalty 
parameter before deciding on the final estimate. From Table 2 we also see that 
the newer procedures are indeed a little more flexible than the old procedures, 
yielding even more overestimation of the number of modes for the a = 2 
procedure, while the new procedure with a = logn falls in between the two 
old procedures. From this summary we thus see that with the present sample 
size it is virtually impossible to distinguish accurately between densities with 
one, two and three modes. However, when we generated samples from the 

TABLE2 
Number of modes in  the simulation study with n = 63' 

Data generated from: Previous a = log n New a = log n New a = 2  
Correct number of modes: 1 2 3 

Estimated number of modes: 1 2 3 2 4  1 2 3 2 4  1 2 3 2 4  

N e w a = 2  39 41 19 1 7 74 17 2 6 26 64 4 
New a = logn 74 23 3 0 34 64 2 0 29 40 31 0 
Previous a = 2 51 37 11 1 16 68 16 0 12 22 65 1 
Previous a = log n 84 13 3 0 51 46 3 0 45 26 29 0 

*The numbers o f  estimates having the correct number o f  modes are boldface. 
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TABLE3 
Number of modes i n  the simulation study with n = 250' 

Data generated from: Previous a = log n New a = logn N e w a = 2  
Correct number of modes: 1 2 3 

Estimated number of  modes: 1 2 3 p 4  1 2 3 p 4  1 2 3 p 4  

New a = 2 4 1  26 25 8 0 56 32 12 0  3 68 29 
New a = logn 8 8 1 2  0 0 4 9 0  4 2 0  9 8 9  2 
Previous a = 2 7 4 1 9  7 0 2 7 9 1 8  4 0  9 9 0  1 
Previous a = log n 99 1 0 0 1 6 8 2  2 0 5 1 7 7 8  0 

*The numbers of estimates having the correct number of modes are boldface. 

unimodal density (previous procedure, a = log n)  and estimated the density 
with one of the procedures with a = 2, we noticed that when we got two modes, 
the second mode was more often on the left side of the main mode than on the 
right side. This is not surprising since the density is slightly flatter on that 
side. Reversing this reasoning we are lead to believe that the existence of a 
side mode to the right of the main mode is more plausible than the existence 
of a side mode to the left of the main mode. 

Although all procedures have trouble distinguishing between unimodal and 
multimodal densities when n = 63, most carry out this task well when the 
sample size gets larger. In Table 3 we summarize a similar simulation study 
as in Table 2, except that we generated samples of size 250 from the densities 
in Figure 2. For this sample size the starting number of knots for the previous 
procedure is 12, while the new procedure starts with eight knots and adds 
four more during the algorithm. Except for the new procedure with a = 2, 
all methods get the right number of modes at  least 74% of the time. The new 
method with a = log n x 5.52 gets it right a t  least 88% of the time for each of 
the three situations. 

5. Regression (MARS). When viewing regression as a function estima- 
tion problem we recognize that the regression function may not be a linear 
additive function of the predictors and instead allow nonlinear and possibly 
also nonadditive functions. When there is only one predictor, nonparametric 
regression can be viewed as smoothing, for which there are numerous methods 
available. Some of the popular methods are kernel and local polynomial re- 
gression [Wand and Jones (1995); Fan and Gijbels (199611, smoothing splines 
[Wahba (1990); Green and Silverman (199411, and polynomial splines. Smith 
(19821 wrote the first paper to use polynomial splines with adaptively selected 
knots for regression problems. In her method, knots for cubic splines are posi- 
tioned uniformly over the range of the data, after which a stepwise knot dele- 
tion algorithm is employed. 

While many of the univariate nonparametric regression methods can be 
generalized to situations where there are a few predictors, the curse of dimen- 
sionality applies when there are many predictors. One attractive approach 
for ameliorating this curse is to model the regression function as an additive 
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function of the predictors. This approach has been popularized by Hastie and 
Tibshirani (1990), who treat both linear regression and generalized regression, 
including logistic regression and Poisson regression, and emphasize the use 
of backfitting together with a one-dimensional smoother to fit additive models 
to data. 

An early paper using polynomial splines for additive linear regression as 
well as additive logistic regression is Stone and Koo (1986a), in which knots 
were placed at  nonadaptive (predetermined) quantiles. Stepwise knot selec- 
tion, forward and backward, was used in the additive regression program 
TURBO by Friedman and Silverman (1989). A somewhat different approach 
to additive regression involving stepwise knot selection was developed by 
Breiman (1993). In the applications of cubic splines in these papers, linear 
constraints were placed on the tails of the splines mainly to control the vari- 
ance of the corresponding estimates. 

When nonadditive models are considered, the usual approach to nonpara- 
metric regression has been to restrict the model to additive main effects and 
selected low-order interactions. Gu and Wahba (1993) developed a smoothing 
spline approach to ANOVA modeling in function estimation. Friedman (1991) 
introduced multivariate adaptive regression splines (MARS), which is a poly- 
nomial spline methodology for estimating the regression function. 

In this section we first give a brief description of Friedman's MARS pro- 
gram. When we were working on POLYCLASS [Kooperberg, Bose and Stone 
(1997)1, we found it necessary to develop our own version of MARS to handle 
very large data sets with many predictors and basis functions. In Section 5.2 
we describe this version of MARS and list some differences between our ver- 
sion and Friedman's version. In Section 5.3 we present a small example in 
which we compare the two programs. 

From now on, when we mention "MARS" in this paper, we refer either to 
Friedman's version or to both versions simultaneously. We refer to our version 
of the MARS algorithm as "POLYMARS." 

5.1. MARS. Let (XI, Y,), . . . ,(X,, Y,) denote a random sample from the 
distribution of (X, Y), where X E RM and Y E R.We wish to estimate f (X) = 
E ( Y  IX). The MARS model [Friedman (1991)l can be written as 

J 

(5.1) f ( x )  = f(xIP) = C PjBj(X). 
j=1 

For a given set of basis functions, the unknown parameters in MARS are 
estimated using least squares. The selection of the basis functions in MARS 
is not easily written in the allowable spaces framework of Section 3. Here 
we outline the main features of the MARS algorithm when piecewise linear 
splines are used. A refinement of this algorithm makes use of continuously 
differentiable functions that are similar, but not exactly identical to the cubic 
splines employed in various other sections of this paper. (Note that these cubic 
splines yield twice continuously differentiable functions.) 
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In the MARS program the one-dimensional model f (x) = PI is initially fit- 
ted. Then, successively, models with J basis functions are replaced by models 
with J + 1or J + 2 basis functions. This is done by considering the addition 
of all possible pairs of new basis functions Bm(x)(xi - t)+ and B,(x)(t - xi)+, 
where xi is one of the predictors, t is a new knot in that predictor and B,(x) 
is a basis function currently in the model that does not depend on xi. [Some 
of these additions may involve adding only one genuinely new basis function 
since one new basis function would already be in the span of the existing basis 
functions and the other new basis function; see Friedman (19911.1 In the MARS 
algorithm every data coordinate that is sufficiently far from existing knots for 
the corresponding variable is a candidate for a new knot for that variable. The 
best model of dimension J + 2 or J + 1is chosen among such candidates for 
stepwise addition using a generalized cross-validation (GCV) criterion. The 
stepwise addition of basis functions continues until a user-specified maximum 
number of basis functions is reached. During the stepwise deletion stage of 
MARS, any of the nonconstant basis functions can be removed at any step. 
GCV is used to select the best overall model during the addition or deletion 
stage. 

An option in MARS allows the user to restrict each basis function to de- 
pend on at most d predictors. The POLYMARS methodology described below 
corresponds to MARS with d = 2. 

5.2. POLYMARS. The setup for POLYMARS is identical to that for MARS, 
except that with POLYCLASS (Section 6) in mind we allow the response Y to 
be in TRK with K > 1.For simplicity, however, we will assume here that K = 1 
since all computations generalize trivially. As in the other methodologies, we 
model f (X) in a linear space, so that (5.1) again holds. 

For POLYMARS it is convenient to define an allowable space by listing 
its basis functions. For 1 5 m 5 M, let J, be an integer with J, 2 -1; if 
J, = -1 there are no basis functions depending on x,; if J, = 0, consider 
the basis function Bmo(xm) = x,; if J, 2 1, consider the basis function 
Bmo(xm)= x,, let xmj for 15 j 5 J, be distinct real numbers, and consider 
the additional basis functions B mJ .(x,) = (x, - xmj)+ for 1Ij 5 J,. 

Let G be the linear space having basis functions 1, Bmj(xm) for 1 I m 5 
M and 0 5 j IJ,, and perhaps certain tensor products of two such basis 
functions. It is required that if Blj(xZ)Bmk(xm) be among the basis functions 
for some j 3 1, then Bl0(xl)Bmk(xm) = x1Bmk(xm)and hence (if k > 0) xzxm 
be among the basis functions. 

One reason for adding linear terms before knots and main effects before in- 
teractions is to yield models that are simpler and easier to interpret. A second 
reason is to reduce the variance associated with the overall modeling proce- 
dure, and a third is to reduce the likelihood of ending up with spurious terms 
in the final model. The requirement of adding main effects before interactions 
is also motivated by theoretical considerations regarding convergence rates 
(see Section 2). 
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It is easy to check that the collection 9of such spaces satisfies the properties 
listed in Section 3. In particular, the minimal allowable space G,, for the 
POLYMARS model is the space of constant functions. Thus the minimal model 
for (5.1) has J = 1,B, = 1and f (X) = P, so that f (X) does not depend on the 
vector X of predictors. Note that the highest order d of interactions allowed 
in a POLYMARS model is two. 

Given the basis of an allowable space G as defined above, it is obvious 
whether any given basis function can be deleted in one step. 

EXAMPLE.Let M = 4, B, = 1, B2 = xl, B, = (xl - l )+ ,  B4 = x,, B5 = x3 
and B6 = x1x2. Then B1,. . . ,B6 span an allowable space G. In this exam- 
ple, B,, B5 or B6 could be removed and the remaining space would still be 
allowable. If one of the basis functions B, or B4 were removed, however, the 
remaining space would not be allowable since it would still contain B6 = B2B4 
(as well as Bg in the case of removing B2). The constant basis function B, can 
never be removed. 

Let Go be the allowable space having basis functions 1, Bmj(xm) for 1 5 
m 5 M and 15 j 5 J,, and perhaps certain tensor products of two such basis 
functions. To decide which basis function to add to this model, we compute the 
Rao statistic as described in Section 3: 

(i) For all spaces that can be obtained from Go by adding a basis function 
B10(~1)= X l  to Go; 

(ii) for all allowable spaces that can be obtained from Go by adding a basis 
function to Go that is a tensor product of two basis functions Blj(xl) and 
Bmk(xm),I # m, that are in Go; 

(iii) for an allowable space that can be obtained from Go by adding a basis 
function corresponding to a potential new knot in predictor m for 15 m 5 M. 
For every predictor we consider a fixed number No of potential new knots, 
which typically are preselected order statistics of the data. 

As the new space G we choose the one corresponding to the largest abso- 
lute value of the Rao statistic among those candidates listed above that are 
nonvacuous. 

EXAMPLE(Continued). Corresponding to (i), we can add the basis function 
x4 to the space in the above example. Corresponding to (ii), we can add B, B5 = 
x1x3, B3B4 = (x, - 1)+x2 or B4B5 = x2x3 to the space. The basis function 
B3B5 = (xl - l)+x, cannot be added, since the resulting space would not 
contain B2B5 = x1x3 SO it would not be allowable. Corresponding to (iii), a 
basis function (xl - xlk)+ with xlk # 1, (x, - xZk)+ or (x, - x3k)+ could be 
added. No basis function of the form (x4 - x4k)+ could be added before x4 is 
added. 

For a given allowable space, the parameters P j  in (5.1) can be estimated 
using least squares. The Rao and Wald statistics that are used to decide which 
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basis function to add or delete now reduce to the difference in the residual 
sum of squares between two nested models. The AIC criterion to select the 
final model is replaced by a penalized residual sum of squares called GCV 
[Friedman, (1991)l. In particular, we select the model that minimizes 

where RSS is the residual sum of squares for the model with J basis functions 
and a is a parameter that we typically set equal to 2.5. 

Several computational tricks make it possible for the POLYMARS algorithm 
to be extremely fast, even for huge data sets and many basis functions. [See 
Kooperberg, Bose and Stone (1997) for more details.] In particular, since we 
limit the number of potential locations for new knots, inner products need to be 
computed at most once. If the maximum number of basis functions considered 
is P,,,, the complete POLYMARS program requires O(NonP&,) floating 
point operations (flops), while MARS (which has to recompute inner products 
since there are too many candidate basis functions to store them all) requires 
O(MnP;,,) flops. In particular, on an example with n = 10,000, M = 63, 
No = 20 and P,,, = 80, the POLYMARS program required 474 s of CPU 
time, while MARS required 12,636 s on the same machine. 

Besides these computational issues, there are other differences between 
MARS and POLYMARS: 

1. The allowable spaces are different. This is most evident in the addition 
stage, during which we add first a linear term and perhaps later a knot, 
while in Friedman's program two basis functions, essentially corresponding 
to a linear function and a knot, are added at  the same time. 

2. During the deletion stage POLYMARS requires interaction basis functions 
to be removed before the corresponding main effects can be removed. Knots 
have to be removed before linear terms are removed. MARS has no such 
restrictions. 

3. 	In MARS, but not in POLYMARS, a piecewise cubic approximation to the 
piecewise linear function is applied after a basis function is added. 

5.3. An example. For a comparison of the two MARS programs on a small 
data set, we applied them to the well studied Boston housing data [see, e.g., 
Belsley, Kuh and Welsch (1980) and Breiman, Friedman, Olshen and Stone 
(1984)l. The response is the median value of homes in thousands of dollars 
and there are 13 predictors, many of which are highly collinear. 

In our experiment we randomly divided the data into a training set of 304 
cases and a test set of 202 cases. Both MARS programs were applied to the 
training set, using 30 as the maximum number of basis functions, GCV to 
select the final model and otherwise the default options in both programs. (In 
MARS we set the maximum number of terms in each basis function equal to 
2, to make the program comparable to POLYMARS.) We then computed the 
mean squared error (MSE) on the test set. We repeated this experiment 10 



EXTENDED LINEAR MODELING 

TABLE4 

MARS fits for the Boston housing data 


Method M S E  CPU 

MARS, linear fit 14.37 5.07 
MARS, cubic approximation 15.91 5.07 
POLYMARS 14.07 3.41 

times. The results are summarized in Table 4, together with the average cpu 
time on our SGI workstation. Since MARS supplies both a piecewise linear 
fit and a piecewise cubic approximation to this fit, there are two MSE's for 
this program. The standard errors in the estimates of the mean squared error 
are all approximately 1.5, while the variation in the CPU times is negligible. 
Over these 10 repetitions, the correlation between the MSE of the POLYMARS 
fit and that of the piecewise linear MARS fit is 0.94, while the two other 
correlations are between 0.4 and 0.6. From this table we see that the difference 
between the two piecewise linear fits is negligible, while both are a little better 
than the piecewise cubic approximation. 

We then applied both MARS procedures to the complete data, with 80 as 
the maximum number of basis functions. MARS used 78.6 s CPU time to 
select 53 basis functions, while POLYMARS used 33.7 s to select 41 basis 
functions. Both models were very complicated: for example, POLYMARS used 
10 of the 13 covariates, and 12 pairs of covariates had at  least one tensor- 
product basis function involving both covariates in the pair. MARS used 11of 
the 13 covariates, and 22 pairs of covariates had at least one tensor-product 
basis function involving both covariates in the pair. 

6. Polychotomous regression and multiple classification (POLY-
CLASS). 

6.1. The POLYCLASS model. The multiple classification problem is well 
studied in statistics. Typically, there is a qualitative random variable Y that 
takes on a finite number K + 1of values, which we refer to as classes. Based 
on a vector of predictors X E I W ~ ,we want to predict Y. 

In POLYCLASS we use piecewise linear splines and selected tensor prod- 
ucts (d 5 2) to model the conditional class probabilities. Specifically, suppose 
P(Y = klX = x)  > 0 for k E X = (1, . . . ,K + 1) and x E E ,  where X is a 
subset of TRM over which X ranges. Set 

P(Y = klX = X)
O(klx) = log 

P(Y = K + 1IX = x)' 
x ~ E a n d k ~ X .  

Then B(K + llx) = 0 for x E E and 

exp O(klx) 
(6.1) 

P(Y = klX = X)= 
exp O(1lx) + . . . + exp B(K + l lx) '  
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We refer to (6.1) as the polychotomous regression model; when K = 1 it is 
referred to as the logistic regression model. 

Let J be a positive integer and let G be a J-dimensional linear space of 
functions on 2" with basis B1, . . . ,Bj .  Consider the model 

J 

(6.2) O(k1x) = O(k)x; Pk) = PjkBj(x), x E 9-Y and k E Z; 
j=1 

here Pk = (Pkl, .. . ,P ~ for ~1 5 ) k 5~ K,  PK+1 = 0 and P is the JK- 
dimensional column vector consisting of the entries of PI, . . . ,PK, which range 
over @ = &tJK. Correspondingly, set 

exp 8(klx; P) P ( Y  = klX = X; P) = 
exp 0(llx; p) + . . .+ exp O(K + llx; P) 

for p E @, x E 2" and k E X .  
In POLYCLASS the basis functions Bj(x) that are used in (6.2) are piece- 

wise linear splines and their selected tensor products. Based on sample data, 
the coefficients Pjk can be estimated by maximum likelihood, yielding a con- 
cave optimization problem; see Kooperberg, Bose and Stone (1997) for more 
details. 

As in most of the procedures that we describe in this paper, we use stepwise 
addition based on Rao statistics and stepwise deletion based on Wald statis- 
tics to select the basis functions. Some details specific to POLYCLASS are 
discussed in Section 6.3. The model selection in POLYCLASS can be carried 
out using AIC, an independent test set or cross-validation [see Kooperberg, 
Bose and Stone (199711. 

6.2. A phoneme recognition example. In Kooperberg, Bose and Stone 
(1997), POLYCLASS is applied to a huge data set from the area of speech 
recognition. Here we present an abbreviated version of this analysis. The 
source of this data set is the Center for Spoken Language Understanding 
in Portland, Oregon [Cole, Roginski and Fanty (1992); Cole et al. (1994)l. It 
consists of 2165 utterances from telephone calls, which are numbers that 
typically are parts of addresses, zip codes and street numbers. Each utterance 
was processed by one or more listeners, who produced a time-aligned pho- 
netic description of the utterance. For example, for one particular utterance, 
"303" (three-oh-three), it was determined that from 1to 167 ms, the speaker 
produced phoneme T,followed by phoneme r from 167 to 193 ms and so on. 
It should be noted that the person who decided which phoneme was spoken 
was not aware of the text of the utterance. The phoneme transcription, which 
we obtained from the International Computer Science Institute (ICSI) in 
Berkeley, California, is based on the LIMSI phonetic alphabet [Gauvain, 
Lamel, Adda and Adda-Decker (1994)l. 

The utterances were also processed to produce perceptual linear predic- 
tive (PLP) features. Every 12.5 ms the audible spectrum, based on a concen- 
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tric 25 ms piece of sound, is determined. Since we consider telephone data, 
which is sampled at the frequency of 8 kHz, there are 200 observations of the 
sound wave in such a 25 ms interval. A Hamming window is applied to these 
200 observations before the spectrum is estimated using the discrete Fourier 
transform, The estimated spectrum is next transformed to yield a critical- 
band integrated power spectrum with an equal-loudness preemphasis and a 
cube root nonlinearity to simulate the auditory intensity-loudness relation. 
Then the eighth-order autoregressive all-pole model of the transformed spec- 
trum is obtained. The coefficients of the Fourier transform representation of 
the log-magnitude of this model are known as its cepstral coefficients. The 
PLP features [Bourlard and Morgan (1994); Hermansky (1990); Rabiner and 
Juang (1993)l that we used are the log-gain of the model (similar to the vari- 
ance) and the next eight cepstral coefficients (similar to the autoregressive 
coefficients). 

The goal in our analysis is to estimate the probability distribution over all 
phonemes at intervals of 12.5 ms based on the (nine) features available a t  that 
time point as well as the features available at the c time points, each 12.5 ms 
apart, before and after the point a t  which we want to estimate the phoneme 
distribution. 

Such a probability distribution (or, more precisely, a likelihood that is ob- 
tained by weighting the estimated probabilities by the empirically determined 
frequencies of the phonemes) can be used as input to train (estimate) a hid- 
den Markov model, which in turn can be used for automatic speech recognition 
[Bourlard and Morgan (1994)l. In the hybrid approach described by Bourlard 
and Morgan, a multilayer perceptron network (a type of artificial neural net- 
work) is used to estimate these probabilities. 

There were 45 different phonemes, yielding 247,039 cases (12.5 ms inter- 
vals). We randomly divided the data into a training set of approximately 
112,000 cases and a test set of about 135,000 cases. We used the vector of 
features at seven different time points, so that c = 3 above. The eight cepstral 
coefficients were used exactly as we received them from ICSI. Since some 
speakers speak more loudly than others, the log-gain by itself is not an in- 
formative predictor of the phoneme that is being spoken. Differences in the 
log-gain may be more informative. If e(i) is the log-gain at  time instance i, 
we used 

3 

d(i) = e(i) - C e(i + j )  
j=-3 

instead of e(i). 
The standard POLYCLASS methodology would be practically impossible to 

apply to the phoneme recognition data, for which K = 44, M = 9 . 7 = 63 
and the sample size is given by n = 112,115. In Kooperberg, Bose and Stone 
(1997) a number of modifications, which make it possible for POLYCLASS to 
deal with this data set, are discussed. The most important such modification 
is that instead of computing the regular Rao statistics during the stepwise 
addition stage, a related least squares problem is solved. 
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We fitted a POLYCLASS model with 350 basis functions to the data. This 
maximum number was constrained by the computing resources that were 
available to us on a network of workstations at  the Maui High Performance 
Computing Center. We believe that a larger number of basis functions would 
give better results. Exhaustion of our computing resources also prevented us 
from applying the stepwise deletion algorithm to the largest model. However, 
intermediate results suggest that the deletion of some basis functions would 
not significantly improve our results. 

Of the 350 basis functions that were selected by the POLYMARS algorithm, 
1is the constant function, 31 are of the form xi, 45 are of the form (xi -xik)+, 
134 are of the form xixj, 87 are of the form (xi - xih)+xj and 11are of the 
form (xi - xik)+(xj- xjl)+. Thus, of the 63 features, 32 are not used. Of 
the remaining 31, 10 are involved in all types of basis functions, 10 more are 
involved in all types of basis functions except for (xi -xik)+(x -X jl)+ and 8 are 
involved in basis functions of the types xi, (xi - xik)+, xixj and xi(xj - xjk)+. 
Finally, two features have basis functions of the types xi, (xi - xik)+ and xixj 
only, and one feature appears only linearly in the model. 

The 63 features can be organized in a 9 (cepstral coefficients) x 7 (time 
points) table. If we label the features from 1, for the feature that occurs only 
linearly, to 5, for the features that are involved in all types of basis functions, 
and we ignore the entries for the 32 features that are unused, we obtain 
Table 5. From this table we clearly see that the most important information 
is obtained from time points -3 (37.5 ms before the phoneme was spoken), 0 
(when the phoneme is spoken) and 3 (37.5 ms after the phoneme was spoken). 
This table suggests that, in retrospect, it would have been better to use the 
cepstral coefficients at  more than seven time points. (We also see that the 
log-gain and the shorter lags are more important than the longer lags.) 

In Figure 3 we report the misclassification rate and the fitted log-likelihood 

xilog P(Y = Y lX =Xi) 
n 

TABLE5 
The features in the POLYCLASS model 

Time 

Log-gain 

Lag 1 

Lag 2 

Lag 3 

Lag 4 

Lag 5 

Lag 6 

Lag 7 

Lag 8 
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FIG.3. Misclassification rate ( lef t)  and fitted log-likelihood (right)  versus the number of basis 
functions. Solid line, training set; dashed line, test set. 

for the training set and the test set combined. From these graphs it appears 
that the fit would continue to improve if we were to increase the number of 
basis functions. 

As mentioned earlier, in this particular application the estimation of con- 
ditional class probabilities is more important than classification, since these 
probabilities can be used as inputs to the hidden Markov model for the ap- 
proach to speech recognition described in Bourlard and Morgan (1994). POLY- 
CLASS is particularly useful in this situation since, unlike most other classi- 
fication methods, it provides viable estimates of the conditional class probabil- 
ities. In Figure 4 we plot the estimated probability that a case is a particular 
phoneme grouped in bins of size 0.01 on the horizontal axis and the fraction 
of cases with that probability that correspond to the correct phoneme on the 
vertical axis. Note that each case contributes 45 observations to this graph: 
one observation per candidate phoneme. These graphs are extremely close to 
the ideal straight line (fraction true class) = (estimated probability) for the 
test set (left side) and the training set (right side). 

Clearly, not all phonemes are correctly estimated with the same probability. 
In Figure 5 we plot the average probability, over the test set, assigned to 
each phoneme. We see from Figure 5 that, not surprisingly, this probability is 
much larger for the frequently occurring phonemes than for the infrequently 
occurring ones. 

Other aspects of the analysis that are discussed in Kooperberg, Bose and 
Stone (1997) are a comparison of POLYCLASS with other classification meth- 
ods and an analysis of the patterns of misclassification by POLYCLASS. In 
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FIG.4. Fraction of phonemes that correspond to the true class versus the estimated probability. 
Data have been grouped in  bins of size 0.01. Left, training set; right, test set. 

particular, it was found that most of the traditional classification methods 
either are not able to deal with such a large data set or are outperformed 
by POLYCLASS. Neural networks, however, do give better results on related, 
but not identical, data. It was hypothesized that for POLYCLASS to be com- 
petitive with neural networks it should be able to fit larger models faster, so 

0 5000 10000 15000 0 5000 I0000 15000 

number of occurrences number of occurrences 

FIG.5. Average probability assigned to the correct class and fraction correctly classified versus 
the class frequency for the test set. 
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that, for example, one could experiment with different sets of features. It may 
be that a stochastic gradient method (as in the backpropagation algorithm 
used in fitting neural networks) can give POLYCLASS the required computing 
power. 

6.3. Some more details of POLYCLASS. The basis functions that are used 
in POLYCLASS are piecewise linear splines and their tensor products. We 
impose similar restrictions as in POLYMARS on which basis functions are 
allowed; that is, linear functions in one of the predictors are always allowed, 
while basis functions of the form (xi -xik)+ are allowed in the model only when 
the corresponding linear function is already included in the model. Tensor 
products of basis functions involving two different predictors already in the 
model are allowed, except that if such a tensor product involves a knot in 
either or both of the predictors, the corresponding basis functions with linear 
terms must already be in the model. Thus, for (xi - xik)+(xj- xjl)+ to be 
allowed in the model xi(xj - xjl)+, (xi - xik)+xj and xixj need already be in 
the model. 

The main difference between POLYCLASS and the other methodologies 
discussed in this paper is that in POLYCLASS there are K parameters for 
each basis function, while for the other methodologies there is only one pa- 
rameter. This substantially increases the amount of computation needed for 
large data sets. For example, for the phoneme recognition problem discussed 
in the previous section the number of parameters for the largest model equals 
15,400. Thus even storage of a (pseudo-) Hessian becomes prohibitively ex- 
pensive, while the computation of one score function takes O(JKn) floating 
point operations (flops) for a model with J basis functions and the computa- 
tion of a Hessian takes O(J2K2n) flops. The following modifications of the 
POLYCLASS algorithm, to make it feasible to deal with very large data sets, 
are discussed in Kooperberg, Bose and Stone (1997): 

1. During the stepwise addition stage of the program 	we use a multire-
sponse least squares approximation to the POLYCLASS problem. That 
is, we regress K + 1 response vectors Zk  on the basis functions, where 
Zki = ind(Yi = k), i = 1 , .. . ,n and k = 1 , .. . ,K + 1, with ind(.) be- 
ing the usual indicator function. This least squares approximation can 
conveniently be carried out using a multiresponse version of the MARS 
algorithm described in Section 5. Selecting J basis functions now requires 
O(50n J (  J + K))  flops. 

2. 	After the J basis functions have been selected using this least squares 
approximation, we immediately fit the largest model using maximum like- 
lihood. To obtain good starting values we successively add basis functions 
to the model, using only a fraction of the cases, until all basis functions are 
in the model. 

3. 	The code was modified to enable the maximum likelihood fitting to be car- 
ried out on a network of 64 workstations at the Maui High Performance 
Computing Center. 



1400 STONE, HANSEN, KOOPERBERG AND TRUONG 

With these modifications, the time needed to fit the largest POLYCLASS model 
was reduced from an estimated several years to one day on the network of 
workstations. 

7. Hazard regression. Recall the discussion of hazard regression in Sec- 
tion 2. Let F(t1X) = P ( T  5 tlX) denote the conditional distribution function 
of the survival time T given the random vector X of covariates and let f (tlX) 
denote the corresponding conditional density function. Define the conditional 
hazard function by A(tlX) = f(tlX)/[l - F(tlX)] and set +(tlX) = logA(t1X). 
A proportional hazard model is specified by setting +(tlX) = &,( t )+XP; here 
+,(.) is the baseline log-hazard function and P E IW*is a vector of parame- 
ters. Cox (1972) suggested a partial likelihood principle for estimating P. Since 
then, analyses of censored outcome data have largely been confined to the es- 
timation of linear covariate effects. See, for example, Andersen, Borgan, Gill 
and Keiding (1993), Cox and Oakes (1984), Fleming and Harrington (1991), 
Kalbfleisch and Prentice (1980) and Miller (1981). 

The desire to relax the proportionality and linearity assumptions has led 
to many further developments in survival analysis. For example, Hastie and 
Tibshirani (1990), Sleeper and Harrington (1990) and Gray (1992) considered 
using splines to model nonlinear covariate effects in large clinical studies. In 
practice, it is even more desirable to estimate the conditional hazard, distri- 
bution and density functions. Based on proportional hazards models, Breslow 
(1972, 1974) suggested estimating the conditional distribution by combining 
Cox's partial likelihood principle for the covariate effects and the Kaplan and 
Meier (1958) method for estimating the baseline survival function. Follow- 
ing the extended linear modeling framework described in Sections 2 and 3, 
Kooperberg, Stone and Truong (1995a, b) developed a more general approach, 
which, without requiring the proportionality and linearity assumptions, yields 
estimates of the conditional hazard, density, survival and quantile functions 
in a unified manner using the relationships 

F ( t x )  = l-exp(- du)  and f (tlx) = [I-F(tlx)]A(tlx), t 2 0. 

In the remainder of this section, we describe the methodologies for hazard 
estimation with flexible tails (HEFT) and hazard regression (HARE), and we 
give an example to illustrate their practical application. 

7.1. The HEFT and HARE methodologies. 
HEFT The HEFT methodology is des'igned to estimate the unconditional 

(or baseline) log-hazard function. Let f denote a positive density function on 
(0, co) and let F ,  A and + be its distribution, hazard and log-hazard functions, 
respectively. Given the integer J 2 3 and the sequence tl, . . . , tJ with 0 < t, < 
. . < tJ < ca,let Go be the ( J  - 2)-dimensional space of twice continuously 

differentiable, cubic spline functions s on [0, oo) with knots tl, t2, . . . , t such 
that s is constant on [0, tl] and on [tJ, oo). Let B1, . . . ,B be a basis of this 
space such that BJPz = 1on [O, co) and B1, . . . ,BJ-3 = 0 on [tJ ,  co). 
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To enhance its flexibility in estimating the hazard function, the space Go 
can be augmented by adding the basis functions 

BPl(t) = log -
t 

and Bo(t)= log (t + c), t > 0, 
t + c  

with c > 0 being a parameter. In fact, the linear space G spanned by 
Go U {BPI, Bo) includes Weibull and Pareto distributions as special cases 
[see Kooperberg, Stone and Truong (1995a)l. The collection J of such J -
dimensional spaces G forms a family of allowable spaces. 

Set 

P = (P-1, PO, P1, ..., PJ-2) E IW
J 

9 

+(.; P) = P-1B-I(.) + PoBo(.)+ + .. . + PJ-,BJ-2(.) 

and 

@ =  {(P-l,PO,P1,..., PJ-,) eIWJ: P-l > -1 and Po s -1). 

The above constraints ensure that 1;exp +(u; P) du < oo for 0 < t < co and 
1,"exp +(t; p) d t  = oo.We use +(.; p), P E @, to model the logsazard function. 

Given a random sample, the maximum likelihood estimate P of P is obtained 
by using the Newton-Raphson method. (Note that the log-likelihood function 
here is easily obtained from that for hazard regression discussed in Section 2 
by ignoring the covariates.) Estimates of the log-hazard, hzzard, ~urvival~dis- 
tribution and density functions are given by +(t) = +(.;P), x(t) = exp +(t), 
S(t) = exp ( - Cx(u)du) ,  p( t )  = 1- S^(t) and f i t )  = S^(t)x(t), t 2 0. The 
corresponding estimate of the pth quantile is given by Q̂ ,= p ~ l ( ~ ) .  

Observe that the above log-hazard estimate depends on the choice of G. 
HEFT selects such a G adaptively from J by following the methodology for 
model selection described in Section 3. (In the current implementation of 
HEFT, the choice of which logarithmic terms to include in the model is made 
initially by the user and is not modified during the process of stepwise addition 
and deletion of knots.) 

HARE. HARE is a routine for estimating covariate effects on a possibly 
censored response variable. Here the allowable spaces are similar to those 
used in POLYMARS, except that the conditional log-hazard function also de- 
pends on time. To this extent we also allow piecewise linear basis functions 
depending on time and tensor products of these with (piecewise linear) basis 
functions depending on a covariate. As with POLYMARS and POLYCLASS, 
the highest order of interactions allowed is two. Let J denote the collection of 
such allowable spaces. 

For an allowable space in J ,  we get estimates of the coefficients of basis 
functions by maximizing the log-likelihood function given in the discussion 
of hazard regression in Section 2. This procedure is carried out using the 
Newton-Raphson method. Estimates of the conditional log-hazard, conditional 
hazard, conditional survival, conditional distribution and conditional density 
functions are obtained in a manner similar to HEFT. 
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For model selection, the adaptive methodology is essentially the same as 
described in Section 3 with d 5 2. In the current implementation of HARE, 
the fitted conditional log-hazard function has a constant tail. For details, see 
Kooperberg, Stone and Truong (1995a). 

Besides providing a unified framework for estimating the conditional haz- 
ard, survival, density and quantile functions, HEFT and HARE also allow 
considerable flexibility in fitting survival data. If the fitted model contains 
an interaction involving time and a covariate, then the assumption of pro- 
portionality is questionable. On the other hand, HARE can be forced to fit a 
proportional hazards model or even an additive model (d = 1). 

HEFT as preprocessor to HARE. Before applying HARE, it is useful to 
transform the time variable using HEFT. There are two advantages in doing 
this. First, because of the piecewise linear nature of HARE, the first derivative 
of the baseline hazard function can have big jumps at various knots in time. 
The HARE model for the transformed data, on the other hand, typically has 
fewer knots and the jumps in the first derivative of the hazard function at 
these knots tend to be smaller. Second, the fitted conditional hazard function 
beyond the last knot is necessarily constant when HARE is applied to the 
original data, but this is not the case when HARE is applied to the transformed 
values of time. 

Let A, denote the unconditional (baseline) hazard function of T and set 
q0 = - log(1 - F,) with Fobeing the distribution function corresponding to 
Ao, so that q, is the baseline cumulative hazard function. Then qo(T) has 
constant hazard function [see Kooperberg, Stone and Truong (1995a)l. This 
motivates the use of HARE on the transformed responses. 

We next describe relationships between the transformed and untransformed 
data. Let f l, F1and Al  denote the conditional density, distribution and hazard 
functions of qO(T) given X. Then the corresponding functions for T given X 
are given, respectively, by 

and 

Moreover, the pth conditional quantile function is given by 

Given a random sample, our methodology starts by applying HEFT to the 
response variables (no covariates), yielding an estimate xoof Ao. Then ?, is 
constructed based on the formula of the cumulative hazard function. Next the 
HARE methodology is applied to the transformed responses T0(T), yielding 
an estimate x1of the conditional hazard function for the transformed data. 
Finally, we obtain estimates of the original conditional density, distribution, 
hazard and quantile functions using the relationships given above. 
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7.2. An example. In this section we use HEFT and HARE to analyze data 
from a clinical trial. The studies of left ventricular dysfunction [SOLVD (1990)l 
involves two double-blind, randomized clinical trials to test improved survival 
by treatment with enalapril, an inhibitor of angiotensin-converting enzyme, 
in patients with left ventricular dysfunction with or without congestive heart 
failure (CHF). The study started with a registry of 6273 patients involving 23 
centers located in the United States, Canada and Belgium. Men and women 
aged 21-80 years with an ejection fraction (defined below) of at  most 35% were 
eligible for the trials. In particular, patients with overt CHF were eligible for 
the treatment trial, whereas those with left ventricular dysfunction but no 
history of overt CHF were eligible for the prevention trail. Recruitment began 
in 1986, and the study terminated in 1991. 

We will illustrate the use of HEFT and HARE on the treatment arm consist- 
ing of 2569 patients. Here the event is defined as death or hospitalization due 
to CHF. The response is time (in days). Among the 2569 observations, 1219 
were censored. The censoring occurred when the patient was lost to follow-up 
or was still alive and never hospitalized due to CHF by the end of the study. 
We begin our analyses by applying HEFT to the possibly censored responses, 
yielding a model for the unconditional log-hazard function consisting of three 
knots and a log term ( B P I ) .Figure 6 shows estimates of the unconditional haz- 
ard and survival functions. As the right side of Figure 6 shows, our survival 
function estimate is remarkably close to the Kaplan-Meier estimate. 

Next, HARE was applied to examine covariate effects on CHF. We used a 
set of 10 covariates: treatment (Lenalapril, O=placebo); serum sodium level 
(serum); systolic blood pressure (SBP); dystolic blood pressure (DBP); smoking 
(1= currently smoking, 0 = not currently smoking); sex (1= female, 0 =male); 

I I I 

0 500 1000 1500 0 500 1000 1500 

Time (in days) Time (in days) 

FIG.6. Estimated unconditional hazard and distribution functions using HEFT for the SOLVD 
data. 
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age; adherence (a measure of treatment or placebo use in terms of numbers 
of pills taken and dispensed); New York Heart Association (NYHA) functional 
class I-IV (with I indicating the least severity of illness and IV indicating the 
greatest severity); and ejection fraction (EF). 

The ejection fraction (EF) is the fraction (measured as a percentage) of the 
blood that is pumped from the left ventricle into the body's vascular system. 
After oxygenation in the lung, blood flows back to the left atrium of the heart 
and continues to the left ventricle. This is the chamber that "ejects" the blood 
from the heart into the body. Clearly, 100% of the blood cannot be ejected, but 
in normal hearts this fraction is at least 60%. In damaged hearts, where the 
muscle of the left ventricle is not working well (maybe from the effects of a 
previous heart attack), the fraction can be much lower, say 25-40%. Clinically, 
an EF of less than 35% is reason for concern. Below 15-20% the blood backs 
up into the atrium and lung, causing congestion and malfunctioning of the 
lung (CHF) and possibly death. 

After removing the 69 cases with missing values on one or more covari- 
ates, we obtained a data set with 2500 observations and 1308 events. In our 
analyses we treated the covariate NYHA as an unordered categorical variable. 
Alternatively, we could have treated it as an ordinary variable having the four 
possible values 1,2, 3 and 4. 

Table 6 shows the results of applying HARE in various ways. Specifically, 
Model 1 summarizes the fit to the untransformed responses, which has 15 

TABLE 6 

HARE analyses of the SOLVD data* 


Basis Function Model 1 Model 2 Model 3 Model 4 

1 
Age 
Smoking 
DBP 
EF 
NYHAI 
NYHA I1 
NYHA I11 
NYHAIV 
Serum 
Treatment 
(111 - t)+ 
(562 - t )+ 
DBP x serum 
EF x serum 
NYHA IV x serum 
(562 - t ) ,  x smoking 
(562 - t)+ x NYHA I1 
(562 - t)+ x treatment 

BIC 

*See text for the model descriptions. 
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basis functions and BIC = 21,620.17. As discussed in Section 7.1, the above 
analysis can further be refined by applying HARE to the transformed re-- A 

sponses using co(t) = -log(l - Fo(t)), where Fo(t) is shown on the right 
side of Figure 6. This yields a proportional hazards model having nine basis 
functions with no knots and BIC = 21,562.30. (Actually, BIC for the trans- 
formed data is 2480.49. We used the relationships described in Section 7.1 to 
retrieve BIC for the untransformed data.) The resulting fit is referred to as 
Model 2 in Table 6. Note that all of the interactions and the two nonlinear 
terms involving time have disappeared; this may be explained by the nature 
of the transformation co(T). While HARE models allow for nonlinearity, this 
smaller model is linear and easier to interpret. In general, one of the strengths 
of HARE is that it chooses more complicated models only when simpler ones 
do not fit nearly as well [see the examples in Kooperberg, Stone and Truong 
(1995a)l. 

HARE facilitates the visual examination of covariate effects. For example, 
Figure 7 shows estimates of the conditional hazard and survival functions for 
a patient having the covariate values given by 

treatment = 1, serum sodium = 138.95, EF = 24.85, 

DBP = 76.81, NYHA = IV, smoking = 1, age = 60.88. 

These values were chosen to represent an average smoking, NYHA class IV, 
treated patient. Figure 7 also compares results from untransformed data 
(Model 1)and transformed data (Model 2). We remark that the estimated 
hazard function for the untransformed data exhibits a constant tail, as was 

Time (in days) Time (in days) 

FIG. 7 .  Estimated conditional hazard and survival functions for a n  average smoking, NYHA 
class N, treated patient using HARE for the SOLVD data. 

http:21,620.17
http:21,562.30
http:2480.49
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discussed in Section 7.1. Estimates of the conditional density and quantile 
functions are also easily obtained using HARE. 

We continue our analysis by using other options in HARE. Since Model 2 
is a proportional hazards model, we decided to reapply HARE forcing it to fit 
such a model. Model 3 of Table 6 summarizes the resulting fit, indicating a 
slightly different proportional hazards model with 11basis functions and BIC 
= 21,561.83. (BIC for the transformed data is 2480.01.) Comparing this model 
with Model 2, we note that HARE has reduced BIC slightly by including two 
more basis functions, NYHA I and NYHA IV x serum. 

For a further comparison, we fitted the transformed values of time and the 
same covariates as above using coxreg from S-PLUS. In light of the analysis 
using HARE, we forced the two interaction terms of Model 3 into the Cox model 
(the default form of coxreg estimates main effects only). Table 7 provides a 
summary of the fit. 

Observe that the interaction terms are highly significant and that the fit 
is similar to Model 3, except that the covariate smoking is significant and the 
constant term is not allowed in coxreg. Since there is no knot in Model 3, 
we felt that the default penalty value log(2500) = 7.82 of HARE might have 
been too high. (This is equivalent to using the chi-squared test with 1 de-
gree of freedom and the significance level of a = 0.005 to test the model with 
12 basis functions versus a submodel with 11 basis functions.) By using a 
smaller penalty value of 7.1 (a  = 0.007) and refitting the data using HARE, 
we obtained Model 4 in Table 6, which has 12 basis functions. This model is 
in close agreement with the one obtained by using coxreg and shown in Ta- 
ble 7. Moreover, the standard errors of the coefficients in Model 4 (not shown) 
are remarkably close to the corresponding ones in Table 7. We conclude that 
Model 4 is our most reasonable HARE model for the data. 

Note that the treatment effect is included in all five models discussed above. 
In fact, the treatment was so effective that, for ethical reasons, the trial 
was terminated early. Other important covariates are the ejection fraction 

TABLE7 
Analyses of the SOLVD data using coxreg from S-PLUS 

Variable Coefficient SE P-value 

Age 

Smoking 

DBP 

EF 

NYHA I 

NYHA I11 

NYHA IV 

Serum 

Treatment 

DBP x serum 

NYHA IV x serum 


http:21,561.83
http:2480.01.)
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Ejection Fraction Ejection Fraction 

FIG. 8. Left side: estimated conditional hazard rate after 3 years as a function of Eli: Right side: 
estimated conditional suruiual probability after 3 years as a function of Eli: Same covariates as in 
Fig. 7. 

(EF), age and the NYHA functional class. To demonstrate another strength 
of HARE, we use Model 4 to examine graphically some of the above covari- 
ate effects. Figure 8 illustrates estimates of the conditional hazard rate and 
survival probability after 3 years as a function of EF. We see that the hazard 
rate decreases and the survival probability increases with EF. Figure 9 shows 

FIG. 9.  Left: Estimated conditional hazard rate affer 3 years as a function of age. Right: Estimated 
conditional suruiual probability after 3 years as a function of age. Same couariates as in Figure 7. 
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Median 
...-. 0.2 quantile 0.2 quantlle 

\ 0.8 quantile 0.8 quantile 
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\ 
\ 
\ 
\ ,..... 

------------------ .- . ._.__________________ 

Age Ejection Fraction 

FIG.10. Estimated conditional quantile functions based on Model 4 as  a function of age (left) 
and as  a function of EF (right). Same covariates as  i n  Figure 7. 

estimates of the hazard rate and survival probability after 3 years as functions 
of age. It is observed that older participants have a higher risk than younger 
ones. 

As a final illustration of HARE, Figure 10 shows estimates of the 20th, 50th 
and 80th percentiles as functions of age and EF based on Model 4. Observe 
that the median survival time decreases with age, while it increases with EF. 

In summary, in the above analyses the HEFT and HARE methodologies 
yielded estimates of the (conditional) hazard, survival, density and quan- 
tile functions in a consistent manner without requiring the proportionality 
assumption. Moreover, our highly adaptive methodology performs well in 
comparison with the traditional approach even when that approach is ap- 
plicable. In light of this example and those given in Kooperberg, Stone and 
Truong (1995a), we find that HEFT and HARE are useful tools for survival 
analysis. 

8. Spectral analysis. For stationary time series, it is known that the 
periodogram ordinates at the Fourier frequencies are approximately indepen- 
dent and have an exponential distribution with mean equal to the spectral 
density function. This implies that the periodogram is not a consistent esti- 
mate, but consistency can be achieved by smoothing the periodogram ordinates 
[see Brillinger (1981)l. In this section we present our version of the spectral 
estimate by treating it as a special case of the generalized regression problem 
discussed in Section 2. Specifically, we use the theory and methodology of ex- 
tended linear models to estimate the logarithm of the mean of the exponential 
distribution function. Here the mean is the spectral density function. 
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To describe the possibly mixed spectral distribution, consider a real-valued, 
second-order stationary time series X, with mean E(X,) = E(Xo) and co- 
variance function y ( ~ )  = cov(X,, x,,,). Assume that the time series has the 
form 

Here 0 < A j  5 T; p j  are independent and uniformly distributed on [-T, TI; 
R are independent, nonnegative random variables such that R; has positive 
mean 4 pj; and Y, is a second-order stationary time series with E ( Y , )= E(Xo) 
and autocovariance function y,(u) = cov(Y,, Y,,,) satisfying xu1 y,(u)l < co. 

The spectral distribution function of X, is given by 

where 

and 

pj, if A = &Aj,
d(A)= (0 ,  otherwise. 

The functions f ,  and f d  are referred to as the spectral density function and 
line spectrum of the time series X,. 

Note that f ,  and f d  are nonnegative and symmetric about zero and that 
they can be extended to periodic functions on (-oo,oo) with period 2 ~ .  From 
now on we limit our attention to the interval [0, TI. Observe that if the in- 
dicated derivatives of f ,  exist, then f',(O), f',"(O), f ' , ( ~ )  and f ' , ' , ( ~ )  all equal 
zero. 

8.1. The LSPEC methodology. Let S,(A) equal 1or 0 according as A = a 
or A # a.  Given a time series X1, Xz, . . . , XTP1, Set f = f ,  + ( T / ~ T )fd,  
4 = log f and 4, = log f,. Then 4 = 4, + cPd, where qbd = PlaA,+ . . .  + 
ppaApwith pl,  . . . , PP > 0. Moreover, f = (2~/T)(exp+d - 1) f ,. In the 
following discussion, we will use cubic splines to obtain a finite-dimensional 
approximation to 4, and hence to 4. 

First, we describe the space of splin'es that will be used to model the log- 
arithm of the spectral density function. Given the positive integer J,, let G, 
be the J,-dimensional space of twice continuously differentiable, cubic spline 
functions s with the knot sequence 0 5 tl < . . . < tJe 5 T. We require that 
sf(0)= sl(n-)= 0. Also, sl"(0) = 0 unless tl = 0, and ~"'(n-) = 0 unless tJ, = T. 

Let B1,. . . , BJe be a basis of G,. Then functions in G, can be extended to 
splines on (-co, co) that are symmetric about zero, periodic with period 2 ~ ,  
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have a knot at zero if and only if tl = 0 and have a knot at  rr if and only if 
tJ, =rr. 

Next, we describe the space that will be used indirectly to model the line 
spectrum. Given the nonnegative integer Jdand the increasing sequence 
a l ,  . . . ,aJd of members of (2rr j /T: 15 j 5 T/2), let Gd be the Jd-dimensional 
space of nonnegative functions s on [0, rr] such that s = 0 except at  a l ,  . . . ,a ~ , .  
Set Bj+j,(A) = SaJ(A) for 15 j IJd.Then BJC+i, . . . ,B j  form a basis of Gd, 
where J = J, + Jd. 

Let G be the space spanned by B1,. . . ,Bj .  The collection 9 of such J-
dimensional spaces G forms a family of allowable spaces. Set 

and 

We use $,(.; PC) to model the logarithm of the spectral density function and 
$(.;p) to model log f .  Thus, f,(.; PC) = exp $,(.; PC), f (.;P) = exp $(.;P) and 

Denote the Fourier frequencies by A k  = 2rrkIT for k = 0,1, . . . ,[T/2]. Let 
Ikdenote the kth ordinate of the periodogram, which is given by 

For Gaussian time series, Ik ,  1 5 k 5 [T/2], are independent and have the 
exponential distribution with mean equal to f(Ak) = exp $(Ak). Hence, the 
log-likelihood function is given by 

Observe that the log-likelihood is a concave function of P. 
Let E denote the maximum likelihood estimate of P, which is obtained as 

usual by the Newton-Raphson method. The corresponding estimate of the 
function f is given by R A )  = f (A;E). Similarly, estimates of the spectral 

A A A 

density function and line spectrum are given by fc(.) = fc(.; PC) and fd(.)  = 
A A A 

fd('7Ed)i where Ec= (&>... 2 pJc)and P d  = ( P J C + 1 7 . .  PJ). 
As in other cases discussed in this paper, our spectral estimate depends on 

G. We follow the procedure described in Section 3 (with d = 1)to select G 
adaptively from 8.This methodology is referred to as LSPEC in Kooperberg, 
Stone and Truong (1995~). (In the current implementation of LSPEC, if an 
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atom has a frequency that is not of the form 2.rr KIT, then it is typically re- 
placed by the two closest adjacent atoms with frequencies of this form. Also, 
LSPEC prevents atoms with small mass from entering the model.) 

In the absence of atoms, the rate of convergence of the maximum likelihood 
estimate Scis given in Kooperberg, Stone and Truong (1995d). This result 
lends theoretical support to LSPEC. 

8.2. An example. We will use LSPEC to analyze the result of a neuro- 
physiological experiment consisting of 30 trials of electrical potential (EP) 
measurements [see Durka, Kelly and Blinowska (1995)l. I t  started with a 
24 Hz (cyclesls), 500 p m  peak-to-peak sinusoidal stimulus applied to the right 
fingertip. The responses are the EP measurements a t  the scalp and wrist. 
Each EP measurement lasted for 6 s, with the stimulus coming on at  2 s and 
staying on for the remainder of the trial. The channels were sampled a t  256 
timesls, giving a total of 1536 sampling points per channel. 

Since the stimulus was not active for the first 2 s, our analyses were based 
on the last 4 s of recordings, so that T = 1024. Figure 11shows the averages of 
30 EP responses from the scalp and wrist, which appear to be stationary. The 
left side of Figure 12 shows the LSPEC estimate of the scalp EP spectrum. We 
observe two lines with frequencies of 9.25 and 9.75 Hz [the former frequency 
corresponds to k = 4(9.25) = 37 and A = 2~(37)/1024= 0.227, and the latter 
frequency corresponds to k = 39 and A = 0.2391. These are approximately the 
alpha-rhythm frequencies. There is also a peak with a frequency of 48 Hz (A = 
1.178), corresponding to the second harmonic of the stimulus frequency 24Hz. 
In the right side of Figure 12, we observe that the wrist EP  responded with a 

FIG. 11. Averages o f  30 series of  electrical potential (EP)measurements from the scalp ( top) and 
wrist (bottom). 
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FIG.12. The scalp EP spectrum (left) has line frequencies equal to 9.25 and 9.75 Hz;the peak 
has a frequency equal to 48 Hz.The line frequencies of the wrist EP spectrum (right) are 24 and 
60 Hz. 

frequency (the first line) at  24 Hz, while it also picked up the electrical power 
line frequency at 60 Hz. Note that the background noise level (the continuous 
spectrum) is much higher in the scalp EP than in the wrist EP. 

The responses were then filtered to remove the unwanted (alpha-rhythm, 
electrical power line) signals and low frequency components of background 
noise, and sampled at 128 timesls, yielding a total of 512 sampling points. 
Applications of LSPEC to the filtered observations are illustrated in Figure 13. 

FIG.13. Spectra of the filtered EP data. The scalp (left) has line frequencies equal to 24 and 48 
Hz.The wrist (right) has a line frequency equal to 24 Hz. 
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For the scalp EP data, the resulting fit is a spline with seven knots and three 
lines in the model. The first line has a frequency of 24Hz ( A  = 1.178), showing 
that LSPEC has located the desired signal. The other two lines correspond to 
the second harmonic. The fit for the wrist EP data shows a spline with eight 
knots and one line (at 24Hz) in the model. 

In summary, in this example the LSPEC methodology yielded a precise es- 
timate of the stimulus frequency (24 Hz) and provided an informative descrip- 
tion of the neurophysiological data. More generally, in the light of the present 
example and those given in Kooperberg, Stone and Truong (1995c), we find the 
LSPEC methodology to be both effective and of considerable practical value. 

9. Models based on multivariate splines. In the last two decades, a 
considerable body of literature on multivariate spline spaces has been amassed 
by approximation theorists, numerical analysts and computer scientists. In 
this section, we demonstrate the practicality of these tools for statistical ap- 
plications. We begin our survey on a theoretical note, developing rates of 
convergence for ANOVA decompositions based on multivariate splines and 
their tensor products. Then we shift our emphasis somewhat and consider 
techniques for adaptively constructing multivariate spline spaces, borrowing 
heavily from the ideas of knot addition and deletion presented in previous 
sections. Finally, we present a simple illustrative application of these ideas to 
bivariate logspline density estimation. 

9.1. The extended linear model revisited. In Section 2, we introduced the 
notion of a concave extended linear model and discussed a variety of statis- 
tical problems that can be treated effectively within this framework. In each 
of these cases, our data consist of a sample from the distribution of a random 
vector W. In this section, we focus our attention on the derived variable U, 
which is typically a subvector of W. Broadly speaking, we are interested in es- 
timating a (possibly) vector-valued function $* = ($T, . . . ,$%),where the con- 
stituents $;, 15 k 5 K, are real-valued functions on a set % = %, x . . .x a M ,  
the range of U. So far, we have considered only the case in which each of the 
sets %,, . . . ,%M is (in theory) a compact interval with positive length. Un- 
der this restriction, we are naturally led to estimators of $* that are built 
up from univariate spline spaces defined on these intervals. From a method- 
ological perspective, however, tensor products of univariate splines may not 
be flexible enough to capture all of the features exhibited by a particular data 
set. In addition, known structural relationships between the variables that 
constitute U might suggest that the domain of $* is something other than a 
hyperrectangle. 

In the rest of our discussion, we allow %,, . . . ,%M to be compact sub- 
sets of Ktd', . . . ,IKd~,respectively. In this case, the unknown function $* = 
$*(ul, . . . ,uM) is still defined on % = %, x . . . x a M ,  with the distinction that 
now the individual variables u, may be vectors. Recall that our approach to 
estimating $* E HK begins with an ANOVA decomposition $* = CSeS4; 
that decomposes $* into its components $;, s E 4.A parallel construction 
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is then used to define an ANOVA decomposition of the maximum likelihood 
A A 

estimate $ = Cse44, in a space GK consisting of smooth, piecewise polyno- 
mials. Not surprisingly, this approach can successfully be applied to derive 

A 

the convergence properties of $ even when we allow the sets Q1, . . . , QM to 
be more complicated than compact intervals of the real line. Once we remove 
these restrictions, the components $,, s E 4,of the ANOVA decomposition of 
$become multivariate splines and their tensor products. 

To be more specific, for 1 5 m 5 M, let Am be a partition of Qm c K t d m  

into disjoint (measurable) sets and for simplicity assume that each set has a 
common diameter a .  By a piecewise polynomial of degree q over Am, we now 
mean a function g on 9, such that the restriction of g to each set 6 E Am is 
a polynomial of degree q in the dm variables that constitute urn. Let Grn be a 
linear space of multivariate splines; that is, piecewise polynomials of degree q 
on 9, that satisfy certain smoothness constraints. Following the development 
in Section 2, for each s E 4 ,  we let G, denote the tensor product of the spaces 
G,, m E S. 

The rate at  which $ and its components approach $* and its components 
were derived in Hansen (1994). In the simple case described so far, if we 
assume that the spaces G, are flexible enough to ensure that 

inf llg - $i,IIm= O(aP), 15 k 5 K and s E 4 ,  
g,G, 

where p is a measure of smoothness of the constituents of $*, we find that 

and 

where d = m a x , , ~Ern,,dm. As we collect more and more data, if the sets in 
our partition shrink so that a - n-1/(2p+d), then we obtain the rates in (2.3) 
and (2.4) with the indicated definition of d. Hansen (1994) extended these 
results and, in particular, derived L2 rates of convergence for the case when 
the various constituents 6: satisfy different smoothness conditions and the 
sets in the triangulations Am do not share a common diameter. 

9.2. Bivariate splines and the extended linear model. For simplicity, we 
now focus our discussion on saturated, bivariate models, where $* = $. As-
sume that Q is a compact region in the plane so that $ is a function of u E Kt2. 
In the context of our previous discussion, we now view U as a single variable 
and hence will not attempt to decompose $ into components based on indi- 
vidual spatial coordinates. In the remaining pages, we will discuss the use of 
bivariate splines to construct estimates of $. 

Triangulations and piecewise linear basis functions. Let A be a collection 
of closed subsets of Q having disjoint interiors and satisfying Q = U,,, 6. In 
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general, the set A is a tessellation of 9.If each element 6 E A is a triangle, 
A is said to form a triangulation of 9.Furthermore, a triangulation A is said 
to be conforming if the nonempty intersection between pairs of triangles in 
A consists of either a single shared vertex or an entire common edge (see 
Figure 14). Throughout this section, we reserve the symbol A for this special 
type of tessellation. 

Given such a conforming triangulation A, we let G denote the space of 
continuous, piecewise linear functions over A. There is a natural association 
between the vertices vl, . . . ,VJ of the triangles in A and the basis functions 
Bl(u), . . . ,BJ(u) of G. To be more precise, we define Bj(u) to be the unique 
function that is linear on each of the triangles in A and takes on the value 
1 at v j  and 0 at  the remaining vertices in the partition. This collection of 
tent functions is frequently used in the finite element method and is often the 
starting point for defining multivariate splines of higher degrees [see Chui 
(1988), de Boor (1987) and Farin (1986)l. 

Many of the important properties of this basis can be obtained from a lo- 
cal representation of the tent functions. For the moment, consider a single 
triangle 6 6 A having vertices vl, v2 and v3. Relative to 6, the barycentric 
coordinates of any point u = (ul, u2) E IE2 are defined as a triple p(u) = 

(cpl(U), cp2(u), cp3(u)) such that 

Casting these conditions into a simple set of linear equations we find that 

Provided that 6 has a nonempty interior, this system can be solved explicitly, 
and the solution is best written in terms of the function SignedArea(vl, v2, v3), 

Nonconforming Partition Conforming Partition 

FIG. 14. In  a nonconformingpartition, at least one vertex of a triangle in  A falls along the interior 
of an edge of another triangle in the partition. 
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which we define by 

As its name suggests, the absolute value of SignedArea(vl, v2, v3) is just the 
area of the triangle with vertices vl, v2 and v3. By applying Cramer's method 
to the set of equations (9.1) we find that cpl(u) is given by the ratio 

Thus, the barycentric coordinates are linear functions of ul and u2, where 
u = (ul,  u2), and satisfy the interpolation conditions 

hence the vertices vl, v2 and v3 have barycentric coordinates (1,0, O), (0,1,0) 
and (0,0, I) ,  respectively. Furthermore, from (9.2) we see that the points on the 
edge connecting v2 and v3 have barycentric coordinates of the form (0, a ,  1-a), 
a €  [O,l]. 

Given the interpolation conditions (9.3) and the consequence of (9.2) that 
the barycentric coordinate functions are linear functions of u ,  we now have 
an explicit representation of the basis functions of G that correspond to the 
vertices of 6; that is, for all u E 6, Bi(u) = cpi(u), i = 1,2,3.  As an immediate 
consequence of this local (triangle by triangle) representation, we find that the 
basis functions B1, . . . ,B j  associated with the triangulation A are bounded 
between 0 and 1and satisfy 

Bl(u) + .. . + B j(u)  = 1, u E 9. 

From (9.2) it is also possible to demonstrate that, for any nonsingular, 2-by-2 
matrix A and any vector b E TR2, 

Bj (u)=B5(Au+b) ,  ucIK2, 

where B b  . . . ,B> is the basis associated with vertices Avl +b,  . . . ,A v j  +b 
of the transformed set 9*= {Au +b,  u E 9).This means that models built 
from functions in G have a natural invariance under affine transformations. 
Using the barycentric coordinate functions, we will see in the next subsection 
that this invariance carries over to our adaptive methodology as well. 

To summarize, we have derived some' of the essential properties of a basis 
for the space of continuous, piecewise linear functions associated with a tri- 
angulation A of 9.An important observation here is that there is a simple 
correspondence between the structure of the partition A and the basis func- 
tions of G. As in the previous sections, this relationship will allow us to use 
simple model selection criteria to construct a functional form of our estimate 6 
of the unknown function 6.The only issue left to resolve is how we generalize 
the notion of stepwise addition and deletion of knots in this context. 
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Stepwise addition. The most natural way to proceed from one step to the 
next in the stepwise addition procedure is to introduce a new vertex into the 
existing triangulation, thereby adding one new basis function to the existing 
spline space. This operation requires a rule for connecting this point to the 
vertices in A so that the new mesh is also a conforming triangulation. In Fig- 
ure 15, we illustrate three options for vertex addition: we can place a new 
vertex on either a boundary or an interior edge, splitting the edge, or we can 
add a point to the interior of one of the triangles in A.Note that the space 
obtained by adding a vertex v to an interior edge of a triangle 6 E A cannot 
be achieved as the limit of spaces constructed by adding v to the interior of 6. 
In this case, if v is very close to an edge of 6, the new triangulation is essen- 
tially nonconforming and the associated space of linear functions G contains 
elements that are discontinuous along that edge. Similar discontinuities arise 
when the new point v is positioned extremely close to an existing vertex. De- 
generacies such as these are encountered in the context of univariate spline 
spaces when knots are allowed to coalesce [de Boor (1978)l. 

Original Triangulation Splitting Boundary Edge 

Splitting an Interior Edge Subdividing a Triangle 

FIG.15. Three ways to add a new vertex to a n  existing triangulation. Each addition represents 
the introduction of a single basis function, the support of which is colored gray. 
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Given a triangulation A,we construct a set of candidate vertices by consid- 
ering the points with barycentric coordinates 

where k l ,  k2  and K are nonnegative integers satisfying k l  + k2  5 K + 1and 
no coordinate equals 1.We have introduced a subscript 6 to make it clear that 
these points are calculated for each triangle in A.At each step in the addition 
process, we select from this set of candidate vertices the point that maximizes 
the Rao statistic described in Section 3. Stability considerations may dictate 
that we do not consider for addition vertices in areas where there is little data. 
Moreover, we have found it useful to avoid creating triangles having one or 
two very small angles. Restrictions such as these are easily incorporated into 
the stepwise addition procedure. 

Stepwise deletion. There are two possible strategies for reducing the di- 
mension of an existing piecewise linear spline space. In each case, we enforce 
the condition that a function in the space be continuously differentiable across 
a given edge in the existing triangulation. Observe that a continuous, piece- 
wise linear function has continuous partial derivatives across an edge if and 
only if the function is linear on the union of the two triangles that share 
the edge. Using the correspondence between vertices and basis functions de- 
scribed above, we can show that the subspace of spline functions satisfying 
this condition is characterized by a simple linear constraint of the type dis- 
cussed in Section 3. In each of the examples in Figure 15, enforcing continuity 
of the first partial derivatives across any of the gray edges is equivalent to 
removing the added vertex, returning us to the original partition in the upper 
left corner of the figure. Thus, in light of the stepwise knot deletion strategy 
discussed in the previous sections, one procedure for stepwise deletion in the 
bivariate context involves using the Wald statistic to choose between conti- 
nuity constraints across edges that fall into one of the three categories listed 
in Figure 15. An alternative deletion procedure is somewhat more aggressive 
and involves choosing from among all the continuity constraints, regardless 
of how the edge is positioned relative to the other edges in the partition. The 
important distinction between these two procedures is that only in the first 
case are we actually guaranteed that the structure of A is simplified at  each 
step. 

9.3. Bivariate logspline density estimation. 
Maximum likelihood estimation. While the bivariate methodology intro- 

duced in the previous paragraphs has been implemented for a variety of ex- 
tended linear models, we will focus mainly on logspline density estimation. In 
this context, we choose to model the logarithm of an unknown density 4 of a 
random vector U as a bivariate spline. For ease of presentation, we restrict our 
attention to densities that are supported on a simply connected region Q E IE2 
having a polygonal boundary. As usual, let A denote a conforming partition of 
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Q and let B,(u), . . . ,Bj(u)  denote the basis functions of the corresponding 
space G of continuous, piecewise linear functions over A. 

Given a vector p = (PI, . . . ,PJ) E KtJ, we can define a density f(u;  P) over 
Q having the form 

f (u ;  P) = ex~(PiBi(u)+ . . .+ PJBJ(u) - C(P)), 

where 

is the normalizing constant. Based on a random sample U,, . . . ,U, from the 
distribution of U, we estimate 4 by the function F = f(u;p),  where 6 max-
imizes the "log-likelihood" l(P) = log f (U,; P) + . . . + log f (U,; P). While we 
do not believe that I(.) is the true log-likelihood function corresponding to our 
sample, we know from the discussion at the beginning of this section that as 
n + co,F tends to 4. 

As in univariate logspline density estimation (see Section 4),the likelihood 
equations take on the very simple form 

where 

EoBj(U) = 1Bj(u)f(u; p )du  and E,Bj(U) = -
1 "  

Bj(Ui).
% i = l  

Since the functions B j  are piecewise linear over Q, it is possible to evaluate 
the required integrals exactly. As in previous sections, the equations in (9.5) 
are solved using Newton-Raphson iterations. To obtain the Hessian matrix 
required for this procedure, we must also calculate expressions of the form 
Ep[B j,(U)Bj,(U)] for 15 j l ,  j25 J. Since the basis functions are piecewise 
linear, however, we again do not require numerical quadrature to carry out 
these computations. 

Implementing stepwise addition and deletion. Recall that we add basis 
functions to G by adding vertices to A and that our strategy for choosing 
between the competing basis functions is based on the heuristic maximiza- 
tion of Rao statistics. This process can be simplified considerably by making 
explicit use of the barycentric coordinate functions discussed above. For ex- 
ample, suppose that we want to add a node v inside 6, the right-hand triangle 
in Figure 16. Once again, suppose that 6 has vertices v,, v2 and v3 and let 
cpl(u), cp2(u) and cp3(u) denote the barycentric coordinates of a point u E IE2 
relative to 6. Now, if we let B,(u), Bi(u) and B(u) represent the piecewise 
linear basis functions associated with the points vl, v2 and v in the updated 
triangulation, then it is straightforward to demonstrate that, for all points u 
in the shaded triangle on the right in Figure 16, 
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FIG.16. Adding a new vertex at the point v = pl(v)vl + pa(v)v2+ p3(v)v3I n  this case, we are 
adding to G the continuous, piecewise linear function that takes on the value 1 a t  the point v and 
0 at  each of vl ,  v2 and VQ. 

Combining these relationships with the fact that within 6, the piecewise lin- 
ear basis functions associated with vl, v2 and v3 are exactly the barycentric 
coordinate functions relative to 6, we arrive at simple formulas for calculating 
the necessary inner products and empirical moments that go into forming the 
Rao statistic for adding v to the partition A. Similar expressions can be de- 
rived for evaluating the candidate function over the remaining two triangles 
in the right plot of Figure 16. In the numerical example discussed below, we 
introduce vertices at  the points corresponding to K = 5 in expression (9.4). 

Using these ideas, we can also derive a simple procedure for determining 
the constraint that a function in G be continuously differentiable across a 
given edge in A. To make this more precise, consider the triangulation on 
the left in Figure 17 and let cpl(u), cp2(u) and cp3(u) denote the barycentric 
coordinates of a point u E &t2 relative to the triangle with vertices vl, v2 and 
v3. Given a function g E G, let P1, p2 and P3 denote the coefficients of the 
basis functions associated with these vertices. Then for all points u in this 
triangle, g(u)  is the linear function given by Plcpl(u) + P2cp2(u)+ P3p3(u). 
Now, if we let P4 denote the coefficient of the basis function of G associated 
with the vertex v4, then g(v4) = P4.Therefore, the function g is linear on the 

FIG.17. The effect of enforcing the constraint that  functions i n  G be continuously differentiable 
across edges i n  two triangulations. 
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union of the two triangles in the left portion of Figure 17 provided that 

By swapping the roles of vl and v4 in this argument, we find that C1 continuity 
of a function g E G can also be assured by the constraint 

where G2(u), G3(u) and &(u) denote the barycentric coordinates of a point u 
relative to the triangle with vertices v2, v3 and v4. It is not hard to demon- 
strate that these two constraints are equivalent up to a multiplicative con- 
stant. Observe, however, that when this condition is enforced, we are left with 
a single linear function over the pair of triangles that constitute A, but we 
have not produced a simpler triangulation in the process. 

Suppose instead that we want to remove the vertex v4 in the middle of the 
triangle in the right portion of Figure 17. Given g E G and 15 i 5 4, we again 
let pi correspond to the coefficient of the basis function associated with the 
vertex vi. It can be shown that each of the C1 continuity constraints across 
the shaded interior edges shown in the figure is of the form 

where pl(u), p2(u) and p3(u) are the barycentric coordinates of a point u 
relative to the outer triangle in Figure 17. Observe that the expression on the 
left is the value at  v4 of the unique linear function interpolating P1, p2 and 
P3 at the points vl, v2 and v3, respectively. Recalling that g(v4) = P4, we see 
that the constraint in (9.6) has considerable intuitive appeal. 

9.4. A n  example. We end our discussion of bivariate logspline density es- 
timation with an example suggested to us by Karl Broman. The points in the 
left panel of Figure 18 represent a collection of amino acids obtained from 
100 protein structures taken from the Brookhaven Protein Data Bank [see 
Hobohm, Scharf, Schneider and Sander (1992)l. In order to characterize the 
local environment of each amino acid within a given protein structure, three 
pieces of information were recorded: the local structure of the protein at  the 
given amino acid (whether the protein is twisting around a helix, for exam- 
ple), the fraction of the amino acid side-chain area that is buried in the protein 
structure and the fraction of the side-chain area that is covered by polar atoms. 
Because the unburied portion of the amino acid is exposed to a polar solvent, 
the final two quantities are restricted to the upper triangle of the unit square. 
In Figure 18, for example, we plot these two measurements for all of the oc- 
currences of the amino acid lysine for which the local protein structure is a 
helix. 

Bivariate density estimates computed for each amino acid and each local 
protein structure are the basis for an approach to solving the so-called in- 
verse folding problem [see Bowie, Luthy and Eisenberg (1991) and Zhang and 
Eisenberg (1994)l. Evaluating the structure of a given protein is extremely 
difficult. Determining the sequence of amino acids that comprise the protein, 



STONE, HANSEN, KOOPERBERG AND TRUONG 

buried 

FIG. 18. Applying the density estimation routine. In  the top row we present the data and both the 
triangulation obtained from stepwise addition ( th in ,  dashed line) and that obtained from stepwise 
deletion (thick, solid line). I n  the bottom row we present the data along with a contour plot of the 
final fit from the deletion process. 

however, is relatively simple. It would seem reasonable, therefore, to attempt 
to infer the protein's structure from its amino acid sequence. Unfortunately, 
many rather different sequences produce very similar structures, so the objec- 
tive of the inverse folding problem is to determine which amino acid sequences 
might result in a given known structure. This can be accomplished by studying 
the propensity for certain amino acids to occur in certain local environments 
in a large collection of known protein structures. The procedure described by 
Zhang and Eisenberg involves a log-odds calculation, the main ingredient of 
which is a set of bivariate density estimates for the type of data given in 
Figure 18. 

In the bottom panel of Figure 18, we present a contour plot of the density es- 
timate obtained by stepwise addition followed by stepwise deletion. The model 
shown was encountered during stepwise deletion and attains the minimum 
BIC value among all the models obtained during both the stepwise addition 
and deletion processes. During this process, we selected candidate knots cor- 
responding to K = 5 in (9.4), and did not consider any new vertices that would 
result in a triangle containing fewer than 25 points. In the panel on the upper 
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right in the same figure, we present the final triangulation along with dashed 
edges to indicate the additional structure present when the stepwise deletion 
process began. The fits as well as the various plots in Figure 18 were produced 
using a library of SIS-PLUS routines that are available from Hansen. 

In this section we have introduced a method for bivariate density estimation 
using piecewise linear, bivariate splines based on an adaptively constructed 
triangulation. We have also implemented this procedure for both regression 
and generalized regression. The resulting estimates, which we have named 
Triograms, have performed well on a variety of of bivariate data sets taken 
from a number of different estimation contexts. The interested reader is re- 
ferred to Hansen, Kooperberg and Sardy (1996), where Triograms are com- 
pared to several existing function estimation routines. One advantage that 
Triograms have over these other methods is that the entire estimation pro- 
cedure is invariant under affine transformations and is the most natural ap- 
proach for modeling data when the domain of the predictor variables is a 
polygonal region in the plane. As anticipated by the convergence rate derived 
at the beginning of this section, if our underlying function 4 is smooth, piece- 
wise linear estimates are suboptimal. This problem can be corrected by using 
higher-order splines, and we are currently investigating how to extend the 
Triogram procedure to make use of the generalized vertex splines of Chui and 
He (1990). 
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I would like to congratulate Stone, Hansen, Kooperberg and Truong for suc- 
cessfully outlining an ingenious principle on flexible statistical modeling. This 
principle is convincingly and successfully applied to a wide array of statistical 


