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THE 1977 RIETZ LECTURE 

BOOTSTRAP METHODS: ANOTHER LOOK AT THE JACKKNIFE 

Stanford University 
We discuss the following problem: gven a random sample X = 

(X,, X2, . . . ,Xn) from an unknown probability distribution F, estimate the 
sampling distribution of some prespecified random variable R(X, F), on the 
basis of the observed data x. (Standard j a c w e  theory giyes an approximate 
mean and variance in the case R(X, F)  = O(F) - 6'(F), 6' some parameter of 
interest.) A general method, called the "bootstrap," is introduced, and shown to 
work satisfactonly on a variety of estimation problems. The jackknife is shown 
to be a linear approximation method for the bootstrap. The exposition proceeds 
by a series of examples: variance of the sample median, error rates in a linear 
discriminant analysis, ratio estimation, estimating regression parameters, etc. 

1. Introduction. The Quenouille-Tukey jackknife is an intriguing nonparamet- 
ric method for estimating the bias and variance of a statistic of interest, and also 
for testing the null hypothesis that the distribution of a statistic is centered at some 
prespecified point. Miller [14] gives an excellent review of the subject. 

This article attempts to explain the jackknife in terms of a more primitive 
method, named the "bootstrap" for reasons which will become obvious. In princi- 
ple, bootstrap methods are more widely applicable than the jackknife, and also 
more dependable. In Section 3, for example, the bootstrap is shown to (asymptoti- 
cally) correctly estimate the variance of the sample median, a case where the 
jackknife is known to fail. Section 4 shows the bootstrap doing well at estimating 
the error rates in a linear discrimination problem, outperforming "cross-valida- 
tion," another nonparametric estimation method. 

We will show that the jackkmfe can be thought of as a linear expansion method 
(i.e., a "delta method") for approximating the bootstrap. Thls helps clarify the 
theoretical basis of the jackkmfe, and suggests improvements and variations likely 
to be successful in various special situations. Section 3, for example, discusses 
jackknifing (or bootstrapping) when one is willing to assume symmetry or smooth- 
ness of the underlying probability distribution. This point reappears more emphati- 
cally in Section 7, which discusses bootstrap and jackkrufe methods for regression 
models. 

The paper proceeds by a series of examples, with little offered in the way of 
general theory. Most of the examples concern estimation problems, except for 
Remark F of Section 8, which discusses Tukey's original idea for t-testing using the 
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jackknife. The bootstrap results on this point are mixed (and won't be reported 
here), offering only slight encouragement for the usual jackkmfe t tests. 

John Hartigan, in an important series of papers [5, 6 ,  71, has explored ideas 
closely related to what is called bootstrap "Method 2" in the next section, see 
Remark I of Section 8. Maritz and Jarrett [13] have independently used bootstrap 
"Method 1" for estimating the variance of the sample median, deriving equation 
(3.4) of this paper and applying it to the variance calculation. Bootstrap "Method 
3," the connection to the jackknife via linear expansions, relates closely to Jaeckel's 
work on the infinitesimal jackknife [lo]. If we work in a parametric framework, this 
approach to the bootstrap gives Fisher's information bound for the asymptotic 
variance of the maximum llkellhood estimator, see Remark K of Section 8. 

2. Bootstrap methods. We discuss first the one-sample situation in which a 
random sample of size n is observed from a completely unspecified probability 
distribution F, 

In all of our examples F will be a distribution on either the real line or the plane, 
but that plays no role in the theory. We let X = (X,, X,, . . . , X,,) and x = 

(x,, x,, . . . ,x,) denote the random sample and its observed realization, respec- 
tively. 

The problem we wish to solve is the following. Given a specified random 
variable R(X, F), possibly depending on both X and the unknown distribution F, 
estimate the sampling distribution of R on the basis of the observed data x. 

Traditional jackknife theory focuses on two particular choices of R. Let O(F) be 
some parameter of interest such as the mean, correlation, or standard deviation of 
F, and t(X) be an estimator of O(F), such as the sample mean, sample correlation, 
or a multiple of the sample range. Then the sampling distribution of 

or more exactly its mean (the bias of t) and variance, is estimated using the 
standard jackknife theorykas described in Section 5. The bias and variance 

&
estimates say Bias (t) and Var (t), are cleverly constructed functions of X obtained 
by recomputing t(.) n times, each time removing one component of X from 
consideration. The second traditional choice of R is 

n 
t(X) - Bias (t) - B(F)

R(X, F )  = A I 

(Var (t))? 

Tukey's ,original suggestion was to treat (2.3) as having a standard Student's t 
distribution with n - 1 degrees of freedom. (See Remark F, Section 8.) Random 
variables (2.2), (2.3) play no special role in the bootstrap theory, and, as a matter of 
fact, some of our examples concern other choices of R. 
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The bootstrap method for the one-sample problem is extremely simple, at least in 
principle: 

1. Construct the sample probability distribution I;', putting mass l /n  at each 
point x,, x,x,, . . . , x,. 

2. With F fixed, draw a random sample of size n from I;', say 

(2.4) Xi* = xi*, Xi* 
,. 

i = l ,2, ' .  . - , n .  

Call this the bootstrap sample, X* = (XT, X,*, - - . , X:), x* = (x:, x,*, . . , x:). 
Notice that we are not getting a permutation distribution since the values of X* are 
selected with replacement from the set {x,, x,, . . . , x,). As a point of comparison, 
the ordinary jackknife can be thought of as drawing samples of size n - 1 without 
replacement. 

3. Approximate the sampling distribution of R(X, F )  by the bootstrap distribution 
of 

(2.5) R* = R(X*, I;'), 

i.e., the distribution of R* induced by the random mechanism (2.4), with I;' held 

fixed at its observed value. 


The point is that the distribution of R*, which in theory can be calculated 
exactly once the data x is observed, equals the desired distribution of R if F = I;'. 
Any nonparametric estimator of R's distribution, i.e., one that does a reasonably 
good estimation job without prior restrictions on the form of F, must give close to 
the right answer when F = I;', since I;' is a central point amongst the class of likely 
F's, having observed X = x. Making the answer exactly right for F = I;' is Fisher 
consistency applied to our particular estimation problem. 

Just how well the distribution of R* approximates that of R depends upon the 
form of R. For example, R(X, F )  = t(X) might be expected to bootstrap less 
successfully than R(X, F )  = [t(X) - ~,t]/(Var,t)+. This is an important question, 
related to the concept of pivotal quantities, Barnard [2], but is discussed only 
briefly here, in Section 8. Mostly we will be content to let the varying degrees of 
success of the examples speak for themselves. 

As the simplest possible example of the bootstrap method, consider a probability 
distribution F putting all of its mass at zero or one, and let the parameter of 
interest be B(F) = Prob,{X = 1). The most obvious random variable of interest is 

(2.6) R(X, F) = X -B(F) X = ( 2 ~ =,xi/.). 

Having observed X = x, the bootstrap sample X* = (X:, X,*, . . . , X:) has each 
component independently equal to one with probability X = @I;'), zero with 
probability 1 - Z.Standard binomial results show that 

R* =R(X*, I;') = X* - Z 

has mean and variance 
P a 7 ]  
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(Notations such as "E,," "Var,," "Prob,," etc. indicate probability calculations 
relating to the bootstrap distribution of X*, with x and fixed.) The implication 
that is unbiased for 8, with variance approximately equal to jS(1 - X)/n, is 
universally familiar. 

As a second example, consider estimating 8(F) = Var,X, the variance of an 
arbitrary distribution on the real line, using the estimator t(X) = 2;=,(Xi -
Fl2/(n - 1). Perhaps we wish to know the sampling distribution of 

(2.9) R(X, F )  = t(X) - 8(F). 


Let pk(F) indicate the kth central moment of F, pk(F) = EF(X - E,x)~, and 

fik = pk(F), the kth central moment of F. Standard sampling theory results, as in 
Cramer [3], Section 27.4, show that 

R* = R(x*, F )  = t(x*) - e(F) 

has 


The approximation Var,t(X) Var,R* is (almost) the jackknife estimate for 
Var, t .  

The difficult part of the bootstrap procedure is the actual calculation of the 
bootstrap distribution. Three methods of calculation are possible: 

Method 1. Direct theoretical calculation, as in the two examples above and the 
example of the next section. 

Method 2. Monte Carlo approximation to the bootstrap distribution. Repeated 
realizations of X* are generated by taking random samples of size n from F, say 
x*', x*,, . , . , x * ~ ,  and the histogram of the corresponding values 
~ ( x * ' ,F), R(x*,, k),, . . , R(x*~,  F)  is taken as an approximation to the actual 
bootstrap distribution. This approach is illustrated in Sections 3, 4 and 8. 

Method 3. Taylor series expansion methods can be used to obtain the ap- 
proximate mean and variance of the bootstrap distribution of R*. This turns out to 
be the same as using some form of the jackknife, as shown in Section 5. 

In Section 4 we consider a two sample problem where the data consists of a 
random sample X = (XI, X,, . . . ,X,) from F and an independent random sample 
Y = (Y,, Y,, . . . , Y,) from G, F and G arbitrary probability distributions on a 
given space. In order to estimate the sampling distribution of a random variable 
R((X, Y), (F, G)), having observed X = x, Y = y, the one-sample bootstrap method 
can be extended in the obvious way: fi and 6, the sample probability distributions 
corresponding to F and G, are constructed; bootstrap samples Xi* -F, i = 

A 

1,2, . . . , m, I;.* -- G, j = 1, 2, . . . , n, are independently drawn; and finally the 
bootstrap distribution of R* = R((X*, Y*), (F, 6)) is calculated, for use as an 
approximation to the actual distribution of R. The calculation of the bootstrap 
distribution proceeds by any of the three methods listed above. (The third method 
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makes clear the correct analogue of the jackknife procedure for nonsymmetric 
situations, such as the two sample problem; see the remarks of Section 6.)  

So far we have only used nonparametric maximum likelihood estimators, 3and 
(3, 6),to begin the bootstrap procedure. This isn't crucial, and as the examples of 
Sections 3 and 7 show, it is sometimes more convenient to use other estimates of 
the underlying distributions. 

3. Estimating the median. Suppose we are in the one-sample situation (2.1), 
with F a distribution on the real line, and we wish to estimate the median of F 
using the sample median. Let 8(F) indicate the median of F, and let t(X) be the 
sample median, 

(3.1) t(X) = X,,), 
where X(,, < X(,, < . < X(,, is the order statistic, and we have assumed an odd 
sample size n = 2m - 1 for convenience. Once again we take R(X, F )  = t(X) -
8(F), and hope to say something about the sampling distribution of R on the basis 
of the observed random sample. 

Having observed X = x, we construct the bootstrap sample X* = x* as in (2.4). 
Let 

(3.2) Ni* = #{Xi* = xi), 

the number of times xi is selected in the bootstrap sampling procedure. The vector 
N* = (NT, N,*, . . ,N,*) has a multinomial distribution with expectation one in 
each of the n cells. 

Denote the observed order statistic x(,, < x(,, < x(,, < < x(,,, and the 
corresponding N* values N;,, N&, . ,N&. (Ties xi = xi, can be broken by 
assigning the lower value of i, i' to the lower position in the order statistic.) The 
bootstrap value of R is 

(3.3) R* = R(X*, fi) = X(m)*- x(,). 

We notice that for any integer value I, 1 < I < n, 

= Prob Binomial n, - <{ ( : ) - - l )  

Therefore 

(3.5) Binomial n, ' ~ l ) < r n - l )Prob, {R* = x(/, - x(,,) = Prob { ( -
-Prob Binomial n, - < m - 1 ,i ( A )  I 

a result derived independently by Maritz and Jarrett [13]. 
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The case n = 13 (m = 7) gives the following bootstrap distribution for R*: 

For any given random sample of size 13 we can compute 

and use this number as an estimate of E,R~ = E,[t(X) - 8 ( ~ ) ] ~ ,the expected 
squared error of estimation for the sample median. Standard asymptotic theory, 
applied to the case where F has a bounded continuous density f(x), shows that as 
the sample size n goes to infinity, the quantity ~ E , ( R * ) ~  approaches 1/4f2(8), 
where f(8) is the density evaluated at the median 8(F). This is the correct 
asymptotic value, see Kendall and Stuart [ll], page 237. The standard jackknife 
applied to the sample median gives a variance estimate which is not evenxymptot- 
ically consistent (Miller [14], page 8, is incorrect on this point): n Var (R) 
(1/4f 2(8))[Xi/2]2. The random variable [x;/2l2 has mean 2 and variance 20. 

Suppose we happened to know that the probability distribution F was symmet- 
ric. In that case we could replace fi by the symmetric probability distribution 
obtained from fi by reflection about the median, 

A 1 
(3.8) FsyM: probability mass -

2n - 1 at X ( , ) ,  X(2), . . . ,X(,) and 

This is not the nonparametric maximum likelihood estimator for F, but has similar 
asymptotic properties, see Hinkley [8]. Let z(,, < z(,, < . . < z(,,-,, be the 
ordered values appearing in the distribution of fisy,.The bootstrap procedure start- 

A 

ing from FsyMgives 

(3.9) Prob,{R* = z(,) - x(,)) = Prob Binomial n, -< m - 1( ( i n l l l )  ] 
I

-Prob (Binomial(n, -2 n - 1 ) < m - 1 ) 9  

by the same argument leading to (3.5). For n = 13 the bootstrap probabilities (3.9) 
equal 

The corresponding estimate of E,R, would be X:~,[z(,, - x(,,12 Prob,{R* = z(,, 

- ~(7) ) .  
Usually we would not be willing to assume F symmetric in a nonparametric 

estimation situation. However in dealing with continuous variables we might be 
* *  . 
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willing to attribute a moderate amount of smoothness to F. This can be incorpo- 
rated into the bootstrap procedure at step (2.4). Instead of choosing each X; 
randomly from the set {x,, x,, . . . ,x,), we can take 

where the I; are chosen independently and randomly from the set (1, 2, . . . ,n), 
and the 4 are a random sample from some fixed distribution having mean 0 and 
variance a$, for example the uniform distribution on [ - i ,  i], whch has a$ = 

1/12. The most obvious choice is a normal distribution for the Z;, but this would 
be self-serving in the Monte Carlo experiment which follows, where the Xi 
themselves are normally distributed. The quantities 2, 8, and c appearing in (3.1 1) 
are the sample mean, sample standard deviation (= (h)$,and [ l  + ail-;, respec-
tively, so that X: has mean 2 and variance 82 under the bootstrap sampling 
procedure. In using (3.1 1) in place of (2.4), we are replacing k' with a smoothed 
"window" estimator, having the same mean and variance as k'. 

A small Monte Carlo experiment was run to compare the various bootstrap 
methods suggested above. Instead of comparing the squared error of the sample 
median, the quantity bootstrapped was 

the absolute error of the sample median relative to the population standard 
deviation. (This quantity is more stable numerically, because the absolute value is 
less sensitive than the square and also because R* = It@*) - 0(E)1/8 is scale 
invariant, which eliminates the component of variation due to 8 differing from 
a(F). The stability of (3.12) greatly increased the effectiveness of the Monte Carlo 
trial.) 

The Monte Carlo experiment was run with n = 13, Xi %(O, l), i = 
1, 2, . . . ,n. In this situation the true expectation of R is 

The first two columns of Table 1 show EFR* for each trial, using the bootstrap 
probabilities (3.6), and then (3.10) for the symmetrized version. It is not possible to 
theoretically calculate E,R* for the smoothed bootstrap (3.1 I), so these entries of 
Table 1 were obtained by a secondary Monte Carlo simulation, as described in 
"Method 2" of Section 2. A total of N = 50 replications x*J were generated for 
each trial. This means that the values in the table are only unbiased estimates of 
the actual bootstrap expectations E,R* (which could be obtained by letting 
N -+ oo); the standard error being about .15 for each entry. The effect of this 
approximation is seen in the column "d = 0," which would exactly equal column 
"(3.6)" if N +oo. (Within each trial, the same set of random numbers was used to 
generate the four different uniform distributions for Z;,d = 0, .25, .5, 1.) 
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TABLE 1 
Unsmoothed Smoothed Bootstrap (3.11) 

Bootstrap Zi uniform dist. on [ - d/2, d/2] Zi triangular 
Trial # (3.6) (3.10) d = 0 d = .25 d = .5 d = 1 dist., ug = 1/12 

1 1.07 1.18 1.09 1.10 1.12 1.11 1.16 
2 .96 .74 1.10 1.10 1.08 1.09 1.15 
3 1.22 .74 1.36 1.35 1.33 1.43 1.52 
4 1.38 1.51 1.44 1.41 1.38 1.28 1.30 
5 1.00 .83 1.03 1.05 1.09 1.14 1.17 
6 1.13 1.21 1.27 1.26 1.23 1.20 1.26 
7 1.07 .98 1.01 .94 .83 .79 .92 
8 1.51 1.40 1.40 1.45 1.47 1.51 1.50 
9 .56 .64 .69 .71 .74 .80 .81 

10 1.05 .86 1.14 1.17 1.20 1.13 1.22 

Ave. 1.09 1.01 1.15 1.15 1.15 ' 1.15 1.20 
S.D. .26 .30 .23 .23 .23 .23 .22 

*Ten Monte Carlo trials of Xi -,, a ( 0 ,  l), i = 1, 2, . . . , 13 were used to compare different 
bootstrap methods for estimating the expected value of random variable (3.12). The true 
expectation is 0.95. The quantities tabled are E,R*, the bootstrap expectation for that trial. The 
values in the first two columns are for the bootstrap as described originally, and for the 
symmetrized version (3.8)-(3.10). The smoothed bootstrap expectations were approximated using 
a secondary Monte Carlo simulation for each trial, N = 50, as described in "Method 2," Section 
2. Each of these entries estimates the actual value of E,R* unbiasedly with a standard error of 
about .15. The column "d = 0" would exactly equal column "(3.6)" if N +co. 

The most notable feature of Table 1 is that the simplest form of the bootstrap, 
"(3.6)," seems to do just as well as the symmetrical or smoothed versions. A larger 
Monte Carlo investigation of the same situation as in Table 1, 200 trials, 100 
bootstrap replications per trial, was just a little more favorable to the smoothed 
bootstrap methods: 

(3.6) (3.10) d = 0 d = .25 d = .5 d = 1 d = 2 
AVE.: 1.01 1.00 1.00 1.01 1.00 .99 .93 

S.D.: .31 .33 .32 [.31] .32 [.30] .32 [.30] .30 [.29] .26 [.25]. 

(The figures in square brackets are estimated standard deviations if N were 
increased from 100 to co, obtained by a components of variance calculation.) 
Remembering that we are trying to estimate the true value E,R = .95, these seem 
like good performances for a nonparametric method based on a sample size of just 
13. 

The symmetrized version of the bootstrap might be expected to do relatively 
better than the unsymmetrized version if R itself was of a less symmetric form than 
(3.12), e.g., R(X, F )  = exp{X(,, - 8(F)). Likewise, the smoothed versions of the 
bootstrap might be expected to do relatively better if R itself were less smooth, e.g., 
R(X, F )  = Prob{X(,, > 0(F) + a(F)). However no evidence to support these 
guesses is available at present. 
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4. Error rate estimation in discriminant analysis. This section discusses the 
estimation of error rates in a standard linear discriminant analysis problem. There 
is a tremendous literature on this problem, nicely summarized in Toussaint [17]. In 
the two examples considered below, bootstrap methods outperform the commonly 
used "leave-one-out," or cross-ualidation, approach (Lachenbruch and Mickey [12]). 

The data in the discriminant problem consists of independent random samples 
from two unknown continuous probability distributions F and G on some k-dimen- 
sional space Rk, 

On the basis of the observed data X = x, Y = y we use some method (linear 
discriminant analysis in the examples below) to partition R k  into two complemen- 
tary regions A and B, the intent being to ascribe a future observation z to the F 
distribution if z E A ,  or to the G distribution if z E B. 

The obvious estimate of the error rate, for the F distribution, associated with the 
partition (A, B) is 

# { x i ~ B }error, = ,
m 

which will tend to underestimate the true error rate 

(4.3) error, = Prob,{X E B } . 
(In probability calculation (4.3), B is considered fixed, at its observed value, even 
though it is originally determined by a random mechanism.) We will be interested 
in the distribution of the difference 

n 
(4.4) R ( ( X , Y), (F, G)) = error, - error,, 

and the corresponding quantity for the distribution G. We could directly consider 
Athe distribution of error,, but concentrating on the difference (4.4) is much more 

efficient for comparing different estimation methods. This point is discussed briefly 
at the end of the section. 

Given x and y, we define the region B by 

where 2 = 2xi/m, = 2yj/n, and S = [2(xi - @(xi - 3' + 2(yj - a ( y j  -
y3']/(m + n). This is the maximum likelihood estimate of the optimum division 
under multivariate normal theory, and differs just slightly (in the definition of S )  
from the estimated version of the Fisher linear discriminant function discussed in 
Chapter 6 of Anderson [I]. 
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"Method 2," the brute force application of the bootstrap via simulation, is 
implemented as follows: given the data x, y, bootstrap random samples 

Xi* = xi*, Xi* Wind k? i =  1,2, . . . , m 

7 =r;", q*Wind 6 j =  1,2, . . . , n 

are generated, k? and 6 being the sample probability distributions corresponding to 
F and G. This yields a region B* defined by (4.5) with X*,y*, S*replacing 2,y, S. 
The bootstrap random variable in this case is 

-(4.7) R* = R((x*, Y*), (F, 6 ) )  = 
#{xi 

m 
E B*) #{xi* 

m 
E B*) 

In other words, (4.7) is the difference between the actual error rate, actual now 
being defined with respect to the "true" distribution k?, and the apparent error rate 
obtained by counting errors in the bootstrap sample. 

Repeated independent generation of (X*, Y*) yields a sequence of independent 
realizations of R*, say R*', R * ~ ,. . . ,R * ~ ,which are then used to approximate the 
actual bootstrap distribution of R*, this hopefully being a reasonable estimate of 
the unknown distribution of R. For example, the bootstrap expectation E,R* = 

ZjN=, R*j/N can be used as an estimate of the true expectation E ,  
To test out this theory, bivariate normal choices of F and G were investigated, 

Two sets of sample sizes, m = n = 10 and m = n = 20, were looked at, with the 
results shown in Table 2. (The entries' of Table 2 were themselves estimated by 
averaging over repeated Monte Carlo trials, which should not be confused with the 

TABLE 2* 

m = n = 1 0  m = n = 2 0  

Random Variable Mean (S.E.) S.D. Mean (S.E.) S.D. Remarks 


Error Rate Diff. (4.4) R .062 (.003) .I43 .028 (.002) .I03 Based on 1000 trials 
Bootstrap Expectation E,  R* .057 (.002) .026 .029 (.001) .015 Based on 100 trials; 

N = 100 Bootstrap 
[.0231 [.011] Replications per 

trial. (Figure in 
Bootstrap Standard SD,(R*) .I31 (.0013) .016 .097 (.002) .010 brackets is S.D. if 

Deviation N = co.) 
Cross-Validation Diff. k .054 (.009) .078 .032 (.002) .043 Based on 40 trials 

*The error rate difference (4.4) for linear discriminant analysis, investigated fos bivariate normal samples 
(4.8). Sample sizes are m = n = 10 and m = n = 20. The values for the bootstrap method were 
obtained by Method 2, N = 100 bootstrap replications per trial. The bootstrap method gives useful 
estimates of both the mean and standard deviation of R. The cross-validation method was nearly 
unbiased for the expectation of R, but had about three times as large a standard deviation. All of the 
quantities in this table were estimated by repeated Monte Carlo trials; standard errors are given for the 
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Monte Carlo replications used in the bootstrap process. "Replications" will always 
refer to the bootstrap process, "trials" to repetitions of the basic situation.) Because 
situation (4.8) is symmetric, only random variable (4.4), and not the corresponding 
error rate for G, need be considered. 

Table 2 shows that with m = n = 10, the random variable (4.4) has mean and 
standard deviation approximately (.062, .143). The apparent error rate underesti- 
mates the true error rate by about 6%, on the average, but the standard deviation of 
the difference is 14% from trial to trial, so bias is less troublesome than variability 
in this situation. The bootstrap method gave an average of ,057 for E,R*, which, 
allowing for sampling error, shows that the statistic E,R* is nearly an unbiased 
estimator for EF, .R. Unbiasedness is not enough, of course; we want E,R* to 
have a small standard deviation, ideally zero, so thit we can rely on it as an 
estimate. The actual value of its standard deviation, ,026, is not wonderful, but 
does indicate that most of the trials yielded E,R* in the range [.02, ,091, which 
means that the statistician would have obtained a reasonably informative estimate 
of the true bias E,, .R = .062. 

As a point of comparison, consider the cross-validation estimate of R, say R", 
obtained by: deleting one x value at a time from the vector x; recomputing B using 
(4.5), to get a new region B" (it is important not to change m to m - 1 in 
recomputing B-doing so results in badly biased estimation of R); seeing if the 
deleted x value is correctly classified by B"; counting the proportion of x values 

h/ 

misclassified in this way to get a cross-validated error rate error,; and finally, 
h/ ndefining R" = error, - error,. The last row of Table 2 shows that R" has mean and 

standard deviation approximately (.054, .078). That is, R" is three times as variable as 
E,R* as an estimator of E,, .R. 

The bootstrap standard deviation of R*, SD,(R*) = {X~',[R*~ - E*R*]*/(N 
- l));, can be used as an estimate of S D ,  .(R), the actual standard deviation of 
R. Table 2 shows that SD,(R*) had mean and standard deviation (.131, .016) 
across the 100 trials. Remembering that S D ,  ,(R) = .143, the bootstrap estimate 
SD,(R*) is seen to be a quite useful estimator of the actual standard deviation 
of R. 

How much better would the bootstrap estimator E,R* perform if the number of 
bootstrap replications N were increased from 100 to, say, 10,000? A components of 
variance analysis of all the data going into Table 2 showed that only moderate 
further improvement is possible. As N + GO, the trial-to-trial standard deviation of 
E,R* would decrease from .026 to about ,023 (from .015 to .011 in the case 
m = n = 20). 

The reader may wonder which is the best estimator of the error rate error, itself, 
rather than of the difference R. In terms of expected squared error, the order of 

Apreference is error, + E,R* (the bias-corrected value based on the bootstrap), 
h/a,, 
 but the differences are quite small in the two situations of ,,and lastly error 

Table 2. The large variability of a,,compared to its relatively small bias, makes 
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bias correction an almost fruitless chore in these two situations. (Of course, this 
might not be so in more difficult discriminant problems.) The bootstrap estimates of 
EF, .R and S D ,.(R) considered together make it clear that this is the case, which is 
a good recommendation for the bootstrap approach. 

5. Relationship with the jackknife. This section concerns "Method 3" of ap- 
proximating the bootstrap distribution, Taylor series expansion (or the delta 
method), which turns out to be the same as the usual jackknife theory. To be 
precise, it is the same as Jaeckel's infinitesimal jackknife [lo, 141, a useful mathe- 
matical device which differs only in detail from the standard jackknife. Many of 
the calculations below, and in Remarks G-K of Section 8, can be found in 
Jaeckel's excellent paper, which offers considerable ins!ght into the workings of 
jackknife methods. 

Returning to the one-sample situation, define Pi*= N,*/n, where N,* = #{Xi* = 
xi)  as at (3.2), and the corresponding vector 

(5.1) P* = (PT, P;, . ,P,*). 

By the properties of the multinomial distribution, P* has mean vector and covari- 
ance matrix 

(5.2) E,P* = e/n, Cov,P* = 1/n2 - e'e/n3 

under the bootstrap sampling procedure, where I is the identity matrix and 
e = ( l , l , l ,  . . . , I). 

Given the observed data vector X = x, and therefore f ,  we can use the 
abbreviated notation 

(5.3) R(P*) = R(X*, f )  

for the bootstrap realization of R corresponding to P*. In malung this definition we 

assume that the random variable of interest, R(X,F),is symmetrically defined in 

the sense that its value is invariant under any permutation of the components of X, 

so that it is sufficient to know N* = nP* in order to evaluate R(X*, i ) .  This is 

always the case in standard applications of the jackknife. 


We can approximate the bootstrap distribution of R(X*, i )  by expanding R(P*) 
in a Taylor series about the value P* = e/n, say 

(5.4) R(P*) = R(e/n) + (P* - e/n)U + f (P* - e/n)V(P* - e/n)'. 

Here 
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Expansion (5.4), and definitions (5.5), assume that the definition of R P * )  can be 
smoothly interpolated between the lattice point values originally contemplated for 
P*. How to do so will be obvious in most specific cases, but a general recipe is 
difficult to provide. See Remarks G and H of Section 8. 

The restriction EPi* = 1 has been ignored in (5.4), (5.5). This computational 
convenience is justified by extending the definition of R P * )  to all vectors P* 
having nonnegative components, at least one positive, by the homogeneous exten- 
sion 

It is easily shown that the homogeneity of definition (5.63 implies 

(5.7) 	 eU = 0, eV = -nu', eve' = 0. 

From (5.2) and (5.4) we get the approximation to the bootstrap expectation 


where 

Ignoring the last term in (5.4) gives a cruder approximation for the bootstrap 
variance, 

(Both (5.8) and (5.10) involve the use of (5.7).) 
Results (5.8) and (5.10) are essentially the jackknife expressions for bias and 

variance. The usual jackknife theory considers R(X, F )  = ~ ( f )- Q(F), the dif- 
ference between the obvious nonparametric estimator of some parameter 8(F) and 
8(F) itself. In this case R(X*, F )  = Q ( P )  - ~ ( f ) ,f*being the empirical distribu- 
tion of the bootstrap sample, so that R(e/n) = ~ ( f )- ~ ( f )= 0. Then (5.8) 
becomes E,[Q(F) - Q(P)]= (1 /2n) v, suggesting E,[Q(~) - 8(F)] w (1 /2n) F; 
likewise (5.10) becomes ~ar,[Q(+) - ~ ( f ) ]= 2 q2/n2,  suggesting varF8(f) w 
E v2/n2.  

The approximations 

- 1 -
Bias, Q(F) w-

2 n 
V, Var, ~ ( f )  =27=,u,'/n2 

exactly agree with those given by Jaeckel's infinitesimal jackknife [lo], which 
themselves differ only slightly from the ordinary jackkmfe expressions. Without 
going into details, which are given in Jaeckel [lo] and Miller [14], the ordinary 
jackknife replaces the derivatives 4= aR(P*)/aPi with finite differences 
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where R(7, = R(e(,/(n - I)), e(,, being the vector with zero in the ith coordinate 
and ones elsewhere, and R,* = 2?=,R&/n. Expansion (5.4) combines with (5.7) to 
give 

u; - = -n - 2  q - 1 
~ -i v),n - l  2(n - 1) ( 

so that q/  U, = 1 + O(l/n). The ordinary jackknife estimate of variance is 
2?= q 2 / n  . (n - I), differing from the variance expression in (5.1 1) by a factor 
1 + O(l/n), the same statement being true for the bias. (In the familiar case 
R = 0(k) - O(F), definition (5.12) becomes = (n - I)($ - d(,), where d(, is the 
estimate of 0 with xi removed from the sample, and d,= Zi  d(,)/n; the jackknife 
estimate of 0 is 8 = 6 + (n - 1)(8 - d,), and = 8 + q,.is the ithpseudo-ualue, to 
use the standard terminology.) 

As an example of Method 3, consider ratio estimation, where the Xi are bivariate 
observations, say Xi = Zi), and we wish to estimate O(F) (Take(Y,, = E,Y/E,Z. 
Y, Z > 0 for convenience.) Let t(X) = F/Z, and R(X, F )  = t(X)/O(F). It is easily 
verified that 

and that (5.8), (5.10) gve 

The biased corrected estimate for O(F) is t(X)/ E,R*, with approximate variance 
(d/n)22[yi/P - zi/,TI2. If the statistician feels uneasy about expressions (5.15) for 
any particular data set, perhaps because of outlying values, Method 2 can be 
invoked to check the bootstrap distribution of t(X*) directly. 

The infinitesimal jackknife and the ordinary jackknife can both be applied 
starting from gSy,, ( 3 . Q  rather than from k.  It is easiest to see how for the 
infinitesimal jackknife. Expansion (5.4) is still valid except that U is now a 
(2n - I) x 1 vector, V is a (2n - 1) x (2n - 1) matrix, and P* has bootstrap 
mean e/(2n - I), covariance matrix (I/n)[I/(2n - 1) - e'e(2n - I)']. The vari- 
ance approximation corresponding to (5.10) is 

6. Wilcoxon's statistic. We again consider the two-sample situation (4. l), this 
time with F and G being continuous probability distributions on the real line. The 
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parameter of interest will be 

(6.1) O(F, G) = P ,.(X < Y ) ,  

estimated by Wilcoxon's statistic 

where 

(6.3) 

The bootstrap variance of d can be calculated directly by Method 1, and will 
turn out below to be the same as the standard variance approximation for 
Wilcoxonys statistic. The comparison with Method 3, the infinitesimal jackknife, 
illustrates how this theory works in a two-sample situation. More importantly, it 
suggests the correct analogue of the ordinary jackknife for such situations. 

There has been considerable interest in extending the ordinary jackknife to 
"unbalanced" situations, i.e., those where it is not clear what the correct analogue 
of "leave one out" is, see Miller [15], Hinkley [9]. In the two-sample problem, for 
example, should we leave out one xi at a time, then one yj at a time, or should we 
leave out all mn pairs (xi, yj) one at a time? (The former turns out to be correct.) 
This problem ,gets more crucial in the next section, where we consider regression 
problems. 

Let R((X, Y), (F, G)) be d itself, so that the bootstrap value of R corresponding 
to (x*,Y*) is R((x*, Y*), (3, 6 ) )  = &, 

1 
(6.4) o* = -

mn Z i  Xj I(xi*, q*) .  
Letting J? = I(X,*, y),straightforward calculations familiar from standard non- 
parametric theory, give 

and 

i # i'. 

Using these results in (6.4) gives 

which is the usual estimate for the variance of the Wilcoxon statistic, see Noether 
[16], page 32. 



16 B. EFRON 

Method 3, the Taylor series or infinitesimal jackknife, proceeds as in Section 5, 
with obvious modifications for the two-sample situation. Let N; = 

(N:, ,  N:2, . . ,NFm) be the numbers of times x,, x,, ,x, occur in the 
bootstrap sample X*, likewise NT; = (N;,, N;,, ,N&) for Y*, and define 
PF* = Ng/m, PT; = NT;/n, these being independent random vectors with mean 
and covariance as in (5.2). The expansion corresponding to (5.4) is 

(6.8) R(P& PT;) = R(e/m, e/n) + (P: - e/m)UF + (PT;- e/n)U, 

+ (PT; - e/n) V,(PT; - e ln ) ' ] ,  ' 

where 

all the derivatives being evaluated at (PF, PT;) = (elm, e/n), analogous definitions 
applying to U, and V,. 

The results corresponding to (5.8) and (5.10) are 

and 

VF 
-

= Pi VFii/m, vG= 2, VGj/n. For R = 0($, 8)- O(F, G), the approximations 
corresponding to (5.1 1) are 

For the case of the Wilcoxon statistic (6.1 1) (or (6.12)) gives 

which should be compared with (6.7). 
How can we use the ordinary jackknife to get results like (6.12)? A direct analogy 

of (5.12) can be carried through, but it is simpler to change definitions slightly, 
letting 

(6.14) D(i, ) = R(e/m, e/n) - R(e(i)/ (m - I), e/n) 

D( ,j)= R(e/m, e/n) - R(e/m, e(,,/ (n - I)), 
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the difference from R((x, y), (8,6))obtained by deleting xi from x or yj from y. 
Expansion (6.8) gives 

From (6.15) it is easy to obtain approximations for the bias and variance 
expressions in terms of the D's: 

which, as m and n grow large, approaches. the second term in (6.10). (For 
R = - 8,this gives the bias-corrected estimate 8 = (m + n - l)d - 2, Bci, ,-
Z j  d( ,j,.) Likewise, just using the first line of (6.8) gives 

which approaches (6.11) as m, n + co. 
The advantage of the D's over expressions like (5.12) is that no group averages, 

such as R,*, need be defined. Group averages are easy enough to define in the 
two-sample problem, but are less clear in more complicated situations such as 
regression. Expressions (6.16) and (6.17) are easy to extend to any situation (which 
doesn't necessarily mean they give good answers-see the remarks of the next 
section!). 

7. Regression models. A reasonably general regression model is 

(7.1) xi = + ei i =  l , 2, . . . ,n, 
the g(.) being known functions of the unknown parameter vector P, and 

(7.2) 4 wind i =  l , 2, . . . ,n. 
All that is assumed known about F is that it is centered at zero in some sense, 
perhaps EFe = 0 or MedianF€ = 0. Having observed X = x, we use some fitting 
technique to estimate P, perhaps least squares, 

and wish to say something about the sampling distribution of ,8. 
Method 2, the brute force application of the bootstrap, can be carried out by 

defining >as the sample probability distribution of the residuals ti, 
1 

(7.4) 3 : mass-n at 2 = xi - gi( j ) ,  i =  1 ,2, . . . ,n. 
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(If one of the components of p is a translation parameter for the functions g(.), 
then k has mean zero. If not, and if the assumption EFc = 0 is very firm, one might 
still modify k by translation to achieve zero mean.) The bootstrap sample, given 
( A  b,is 

(7.5) Xi'= gi(b)+ r:, ci* -,in* k i = 1 , 2, . . . , n. 

Each realization of (2.5) yields a realization of p* by the same minimization 
process that gave b, 

(7.6) ,6* : minp Ey=l[x,? - gi(p)]2. 

Repeated independent bootstrap replications give a random sample 
p*', b*', b*3,. . . ,b*Nwhich can be used to estimate the bootstrap distribution of 
p*. 

A handy test case is the familiar linear model, gi(P) = ciP, ci a known 1 X p 
vector, with first coordinate cil = 1 for convenience. Let C be the n X p matrix 
whose ith. row is ci, and G the p X p matrix C'C, assumed nonsingular. Then the 
least squares estimator ,d = G-'C'X has mean P and covariance matrix U ~ G - 'by 
the usual theory. 

The bootstrap values q* used in (7.5) are independent with mean zero and 
variance 6' = E;=' [xi - g(p)12/n. This implies that b* = G-'C'X* has bootstrap 
mean and variance 

The implication that is unbiased for P, with covariance matrix approximately 
equal to 6'GP', agrees with traditional theory, except perhaps in using the estimate 
6' for u2. 

Miller [15] and Hinkley [9] have applied, respectively, the ordinary jackkmfe and 
infinitesimal jackknife to the linear regression problem. They formulate the situa- 
tion as a one-sample problem, with (c,, xi) as the ith observed data point, essen- 
tially removing one row at a time from the model X = CP + r .  The infinitesimal 
jackknife gives the approximation 

(and the ordinary jackknife a quite similar expression) for the estimated covariance 
matrix. This doesn't look at all like (7.7)! 

The trouble lies in the fact that the jackknife methods as used above ignore an 
important aspect of the regression model, namely that the errors ci are assumed to 
have the same distribution for every value of i. To make (7.8) agree with (7.7) it is 
only necessary to "symmetrize" the data set by adding hypothetical data points, 
corresponding to all the possible values of the residual t ,  at each value of i, say 

x.. = c,p +;j
I/ 


j = l , 2  , . . . ,n ( i =  1 ,2  , . . . ,n). 
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Notice that the bootstrap implicitly does this at step (7.5). Applying the infinitesimal 
jackknife to data set (7.9), and remembering to take account of the artificially 
increased amount of data as at step (5.16), gives covariance estimate (7.7). 

Returning to the nonlinear regression model (7.1), (7.2), where bootstrap-jack- 
knife methods may really be necessary in order to get estimates of variability for ,L?, 
we now suspect that jackknife procedures like "leave out one row at a time" may 
be inefficient unless preceded by some form of data symmetrization such as (7.9). 
To put things the other way, as in Hinkley [9], such procedures tend to give 
consistent estimates of Cov ,L? without assumption (7.2) that the residuals are 
identically distributed. The price of such complete generality is low efficiency. 
Usually assumption (7.2) can be roughly justified, perhaps after suitable transfor- 
mations on X, in which case the bootstrap should give a better estimate of Cov ,L?. 

8. Remarks. 

REMARK A. Method 2, the straightforward calculation of the bootstrap distri- 
bution by repeated Monte Carlo sampling, is remarkably easy to implement on the 
computer. Given the original algorithm for computing R, only minor modifications 
are necessary to produce bootstrap replications R*', R*', . . . ,R*N. The amount of 
computer time required is just about N times that for the original computations. 
For the discriminant analysis problem reported in Table 2, each trial of N = 100 
replications, m = n = 20, took about 0.15 seconds and cost about 40 cents on 
Stanford's 370/ 168 computer. For a single real data set with m = n = 20, we might 
have taken N = 1000, at a cost of $4.00. 

REMARKB. Instead of estimating B(F) with t p ) ,  we might make a transforma- 
tion C+ = g(B), s = g(t), and estimate +(F) = g(B(F)) with SO() = g(t(X)). That is, 
we might consider the random variable SO(, F) = SO() - +(F) instead of R(X, F) 
= tO() - B(F). The effect of such a transformation on the bootstrap is very 
simple: a bootstrap realization R* = R*(X*, F) = tO(*) - B(F) transforms into 
S = SO(*, k ) = g(t(X*)) - g(B(&)), or more simply 

(8.1) S* = g ( ~ *+ 8)- g(8), 

so the bootstrap distribution of R* transforms into that of S*by (8.1). 
Figure 1 illustrates a simple example. Miller [14], page 12, gives 9 pairs of 

numbers having sample Pearson correlation coefficient 6 = .945. The top half of 
Figure 1 shows the histogram of N = 1000 bootstrap replications of 6* - 6, the 
bottom half the corresponding histogram of tanh-' fi* - tanh-' 6. The first dis- 
tribution straggles off to the left, the second distribution to the right. The median is 
above zero, but only slightly so compared to the spread of the distributions, 
indicating that bias correction is not likely to be important in this example. 

The purpose of making transformations is, presumably, to improve the inference 
process. In the example above we might be willing to believe, on the basis of 
normal theory, that t a d - '  6 - tanh-' p is more nearly pivotal than 6 - p (see 
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FIG. 1.  The top histogram shows N = 1OOO bootstrap replications of p* - for 
the nine data pairs from Miller [lo]: (1.15, 1-38), (1.70, 1.72), (1.42, 1.59), 
(1.38, 1.49, (2.80, 1.66), (4.70, 3.45), (4.80, 3.89, (1.41, 1.31), (3.90, 3.75). The 
bottom histogram shows the corresponding replications for tanh-' i* -
tanh-' i.The 1/6, 1/2, and 5/6 quantiles are shown for both distributions. AU 
quantiles transform according to equation (8.1). 
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Remark E) and so more worthwhile investigating by the bootstrap procedure. This 
does not mean that the bootstrap gives more accurate results, only that the results 
are more useful. Notice that if g(.) is monotone, then any quantile of the bootstrap 
distribution of R* maps into the corresponding quantile of S* via (8.1), and 
vice-versa. In particular, if we use the median (rather than the mean) to estimate 
the center of the bootstrap distribution, then we get the same answer working 
directly with 6* - 8 (c* - in the example), or first transforming to $* - $ 
(tanh-' @*- tanh-' b), talung the median, and finally transforming back to the 
original scale. 

REMARKC. The bias and variance expressions (5.11) suggested by the infinites- 
imal jackknife transform exactly as in more familiar applications of the "delta *n

method." That is, if + = g(8), C$ = g(8) as above, and GF8, Var ,8 are as given 
in formula (5.1 l), then it is easy to show that 

In the context of this paper, the infinitesimal jackknife is the delta method; starting 
from a known distribution, that of P*, approximations to the moments of an 
arbitrary function R(P*) are derived by Taylor series expansion. See Gray et al. [4] 
for a closely related result. 

REMARKD. A standard nonparametric confidence statement for the median 
8(F), n = 13, is 

If we make the continuity correction of halving the end point probabilities, (3.6) 
gives 

(8.4) rob, {x(,) < 8* < x( ,~ ) )= .914, 

where 8' = X&,, the bootstrap value of the sample median. The agreement of (8.4) 
with (8.3) looks strhng, until we try to use (8.4) for inference about 0; (8.4) can be 
rewritten as Prob,{x(, - x, < 8' - 8 < x,,, - x,,) (remembering that 8 = 

x(,,), which suggests 

The resulting confidence interval statement for 8, again using d = x(,,, is 

(8.6) Prob,{2~(~)- x(,,, < 8 < 2x(,) - x(,,) w .914, 

which is the reflection of interval (8.3) about the median! 
The trouble here has nothing in particular to do with the bootstrap, and does not 

arise from the possibly large approximation error in statement (8.5), but rather in 
the inferential step from (8.5) to (8.6), which tries to use d - 8 as apivotal quantity. 
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The same difficulty can be exhibited in parametric families: suppose we know that 
F is a translation of a standard exponential distribution (density e-", x > 0). Then 
there exist two positive numbers a and b, a < b, such that ProbF{ - a  < 8 - B < 
b) = .91. The corresponding interval statement ProbF{x(,) - b < 0 <xo + a )  = 

.91 will tend to look more like (8.6) than (8.3). 

REMARKE. The difficulty above is a reminder that the bootstrap, and the 
jackknife, provide approximate frequency statements, not approximate likelihood 
statements. Fundamental inference problems remain, no matter how well the 
bootstrap works. For example, even if the bootstrap expectation E,(B* - B)2 very 
accurately estimates E,(B - 8)2, the resulting interval estimate for B given 8will be 
useless if small changes in F (or more exactly, in B(F)), result in large changes in 
E,(B - el2. 

For the correlation coefficient, as discussed in Remark B, Fisher showed that 
tanh-' 6 - t a d - '  p is nearly pivotal when sampling from bivariate normal popu- 
lations. That is, its distribution is nearly the same for all bivariate normal popula- 
tions, at least in the range -.9 < p < .9. This property tends to ameliorate 
inference difficulties, and is the principal reason for transforming variables, as in 
Remark B. The theory of pivotal quantities is well developed in parametric 
families, see Barnard [2], but not in the nonparametric context of this paper. 

REMARKF. The classic pivotal quantity is Student's t-statistic. Tukey has 
suggested using the analogous quantity (2.3) for hypothesis testing purposes, relying 
on the standard t tables for significance points. This amounts to treating (2.3) as a 
pivotal quantity for all choices of F, B(F), and t(X). The only theoretical justifica- 
tions for this rather optimistic assumption apply to large samples, where the 
Student t effect rapidly becomes negligible, see Miller [14]. Given the current state 
of the theory, one is as well justified in comparing (2.3) to a %(O, I) distribution as 
to a Student's t distribution (except when t(X) = F). 

An alternative approach is to bootstrap (2.3) by Method 2 to obtain a direct 
estimate of its distribution, instead of relying on the t distribution, and then 
compare the observed value of (2.3) to the bootstrap distribution. 

REMARKG. The rationale for bootstrap methods becomes particularly clear 
when the sample space % of the Xi is a finite set, say 

(8.7) % = { 1 , 2 , 3  , . . . ,L}. 

The distribution F can now be represented by the vector of probabilities f = 


(fl, f2, . . . :fL),4 = ProbF{Xj = I).  For a given random sample X l e t j  = #{Xi = 


I) /n and f = (fl,f2, . . . ,IL)',), so that if R(X, F )  is symmetrically defined in the 

components of X we can write it as a function of i and f, say 


(8.8) R(X, F )  = ~ ( i ,f). 

Likewise R(X*, 2)= ~ ( i * ,i), where j*= #{Xi* = I ) / n  and i* = 

(h,
&, . . . ,fL*). 
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Bootstrap methods estimate the sampling distribution of ~ ( i ,  f), given the true 
distribution f, by the conditional distribution of ~ ( i * ,  1) given the observed value 
of i. This is plausible because 

(8.9) ilf-- a L ( n ,  f) and i*li -- 91LL(n, i), 

where 9RL(n, f) is the L-category multinomial distribution with sample size n, 
probability vector f. In large samples we expect i to be close to f, so that for 
reasonable functions Q(., .) (8.9) should imply the approximate validity 'of the 
bootstrap method. 

The asymptotic validity of the bootstrap is easy to verify in this framework, 
assuming some regularity conditions on Q(., .). Suppose that Q(f, f) = 0 for all f 
(as it does in the usual jackknife situation where R(X, F )  = @(E)- 8(F)); that the 
vector u(i*, i) with Ith component equal to aQ(i*, i ) / a j  exists continuously for 
(i*, i) in an open neighborhood of (f, f); and that u = u(f, f) does not equal zero. 
By Taylor's theorem, and the fact that i* and 1converge to f with probability one, 

(8.10) ~ ( i ,f) = (1 -i)(u + c,) and ~ ( i * ,f )  = (f* - i)(u + in), 

both c, and Cn converging to zero with probability one. From (8.9) and the fact that 
i converges to f with probability one, we have 

(8.11) ni(i -f)Jf -+ 9LL(0, Zf) and ni(i* - i)li -+ %L(O, Zf), 

where 2, is the matrix with element (I, m) equal to f,($ - fm). Combining (8.10) 
and (8.1 1) shows that the bootstrap distribution of niQ(f*, i),given i, is asymptoti- 
cally equivalent to the sampling distribution of n+Q(i, f), given the true probability 
distribution f. Both have the limiting distribution %(O, ulZfu). 

The argument above assumes that the form of Q(., .) does not depend upon n. 
More careful considerations are necessary in cases like (2.3) where Q(., .) does 
depend on n, but in a minor way. Some nondifferentiable functions such as the 
sample median (3.3) can also be handled by a smoothing argument, though direct 
calculation of the limiting distribution is easier in that particular case. 

REMARKH. Taylor expansion (5.4) looks suspicious because the dimension of 
the vectors involved increases with the sample size n. However in situation (8.7), 
(8.8), it is easy to verify that (5.4) is the same as the second order Taylor expansion 
of ~ ( i * ,  i),for i* near 1, 

Here e has Ith element aQ(i*, i ) /ai :~~, ,~ and f has 1,mth element 
a2Q(i*, i ) /a$a~l~. ,~.  The dimension of the vectors in (8.12) is L, and does not 
increase with sample size n. Expressions (5.8), (5.10) are the standard delta theory 
approximation for the mean and variance of ~ ( i * ,  i), given i, obtained from (8.12) 
and the distributional properties of i*li-- 9RL(n, i). 
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REMARKI. Hartigan [5, 71 has suggested using subsample values to obtain 
confidence statements for an estimated parameter. His method consists of choosing 
a vector x* whose components are a nonempty subset of the observed data vector 
X = x (so each component xi appears either zero or one time in x*). This process is 
repeated N times, where N is small compared to 2", giving vectors 
x*', x*,, . . . ,x * ~  . . . , t ( ~ * ~ )and corresponding subsample values t(x*'), t(x*,), 
for some symmetric estimator t (*)defined for samples of an arbitrary size. By a 
clever choice of the vectors x*], and for certain special estimation problems, the 
t(x*]) can be used to make precise confidence statements about an unknown 
parameter. More importantly in the context of t h s  paper, Hartigan shows that by 
choosing the x*' randomly, without replacement, from the 2" - 1 possible non- 
empty subsamples of x, asymptotically valid confidence statements can be made 
under fairly general conditions. This is very similar to bootstrap Method 2, except 
that the x*' are selected by subsampling rather than bootstrapping. 

In the finite case (8.7), let x* be a randomly selected subsample vector, and, let 
= #{xi* = I)/(number of components of x*), so i*= (fi,&, . . . ,&), as be- 

fore, is the vector of proportions in the artificially created sample. It is easy to show 
that ni(i* - hli -t 9ZL(0, Zf), as at (8.1 I), which is all that is needed to get the 
same asymptotic properties obtained for the bootstrap. (Conversely, it can be 
shown that bootstrap samples have the same asymptotic "typicality" properties 
Hartigan discusses in [5, 71.) The bootstrap may give better small sample perfor- 
mance, because the similarity in (8.9), which is unique to the bootstrap, is a 
stronger property than the asymptotic equivalence (8.1 l), and also because the 
artificial samples used by the bootstrap are the same size as the original sample. 
However, no evidence one way or the other is available at the present time. 

Hartigan's 1971 paper [6] introduces another method of resampling, useful for 
construct.ing prediction intervals, which only involves artificial samples of the same 
size as the real sample. Let {xr, x:, . . . ,x,*) be a set of size n, each element of 
which is selected with replacement from {x,, x,, . ,x,). There are (2iI;) 
distinct such sets, not counting differences in the order of selection. (For example 
{x,, x,} yields the three sets {x,, x,), {x,, x,), {x,, x,).) The random version of 
Hartigan's second method selects x*, or more exactly the set of components of x*, 
with equal probability from among these ('"- ') possible choices. It can be shown 

n - 1  

that this results .in ni(i* - hli -+ x ( 0 ,  2Zi), so that the asymptotic covariance 
matrix is twice what it is in (8.11). Looking at (8.10), one sees that for this 
resampling scheme, 2 - i  ~ ( i * ,  i) has the same asymptotic dstribution as ~ ( i ,  f). 

It is not difficult to construct other resampling schemes which gve correct 
asymptotic properties. The important question, but one whch has not been 
investigated, is which scheme is most efficient and reliable in small samples. 

REMARKJ. In situation (8.7), (8.8), the ordinary jackknife depends on evaluat- 
ing ~ ( i * ,  i) for vectors i* of the form i(*,,, 
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el = (0, 0, . . . , 1, 0, . . . ,O), 1 in the lth place. (The values of 1 needed are those 
occurring in the observed sample (x,, x,, . . . ,x,,); a maximum of min(n, L) 
different 1 values are possible.) Notice that 

The "resampling" vectors 8,; are distance O(l/n) away from i, as compared to 
O , (n i )  for the bootstrap vectors i*, as seen in (8.1 1). In the case of the median, 
(3.3), the jackknife fails because of its overdependence on the behavior of ~ ( i * ,  f') 
for i*very near i. In this case the derivative of the function Q(. , .) is too irregular 
for the jackknife's quadratic extrapolation formulas to work. The grouped jack- 
knife, in which the i* vectors are created by removing observations from x in 
groups of size g at a time, see page 1 of Miller [14], overcomes this objection if g is 
sufficiently large. (The calculations above suggest g = ~ ( n i ) . )As a matter of fact, 
the grouped jackknife gives the correct asymptotic variance for the median. If g is 
really large, say g = n/2, and the removal groups are chosen randomly, then this 
resampling method is almost the same as Hartigan's subsampling plan, discussed in 
Remark I. 

REMARKK. We have applied the bootstrap in a nonparametric way, but there 
is no reason why it cannot be used in parametric problems. The only change 
necessary is that at (2.4), fi is chosen to be the parametric m.1.e. for F, rather than 
the nonparametric m.1.e. As an example, suppose that F is known to be normal, 
with unknown mean and variance, and that we are interested in the expectation of 
R(X, F )  = I [ ,,](F),i.e., the probability that X occurs in a prespecified interval 
[a, b]. Then the nonparametric bootstrap estimate is E,R* = 6in)(b)- 6(")(a), 
where 6(") is the cdf of Ey=, X,*/n, obtained by convoluting the sample distribu- 
tion n times and then rescaling by division by n. The parametric bootstrap 
estimate is E,R* = @((b- %)/ (6 -ni)) - @((a - T)/ (Blnt)), where B = 

and @(.)is the standard normal cdf. If F is really normal and if n is moderately 
large, n > 20 according to standard Edgeworth series calculations, then the two 
estimates will usually be in close agreement. 

It can be shown that the parametric version of Method 3 of the bootstrap, 
applied to estimating the variance of the m.1.e. in a one parameter family, gives the 
usual approximation: one over the Fisher information. The calculation is almost 
the same as that appearing in Section 3 of Jaeckel [lo]. 
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