
Numer. Math, 31,377-403 (1979) Numerische 
MathematJk 
 9 by Springer-Verlag 1979 
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Summary. Smoothing splines are well known to provide nice curves which 
smooth discrete, noisy data. We obtain a practical, effective method for 
estimating the optimum amount of smoothing from the data. Derivatives can be 
estimated from the data by differentiating the resulting (nearly) optimally 
smoothed spline. 

We consider the model yi=g(ti)+e~, i= 1, 2 . . . . .  n, tie[0 , 1], where geW2 ~'~) 
= {f: j;  f , ,  .... f(m- i~ abs. cont., f(m~ ~2 [0, 1 ] }, and the {el} are random errors 
with E e i=0, E eie~=a z 6~j. The error variance a 2 may be unknown. As an 
estimate ofg we take the solution g,, a to the problem: Find f ~  W2 ("~ to minimize 

1 
1_ ~ (f(t j)  - y~)2 + 2 S (f(")(u)) 2 du. The function g,, a is a smoothing polynomial 
n j = l  0 
spline of degree 2m-1 .  The,parameter 2 controls the tradeoff between the 

1 
"roughness" of the solution, as measured by S [f(m)(u)]2 du, and the infidelity to 

0 

the data as measured by -1 ~ (f(t~)_y~)2 and so governs the average square 
/~j=l  

error R(2; g)=R()0 defined by 

R(2)=~ ~ (g,,a(tj)-g(tj)) 2. 
j = l  

We provide an estimate ,~, called the generalized cross-validation estimate, for 
the minimizer of R(2). The estimate 2 is the minimizer of V(1) defined by V(2) 

1 ii(i_A(2))Yll2/ Trace (/ - A (2)) , where Y=(Yl  . . . . .  y,)' and A(2) is the n 
n 

x n matrix satisfying (g,~z(t 1) . . . . .  g, z(t,))' =A(2)y. We prove that there exist a 
sequence of minimizers 2 = 2(n) of E'V(2), such that as the (regular) mesh {ti}~= 
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becomes finer, l imER(2) /minER(2)+l .  A Monte Carlo experiment with 
n~Gr ), 

several smooth g's was tried with m = 2, n = 50 and several values of ~r 2, and 
typical values of R(~)/minR(2) were found to be in the range 1.01-1.4. The 

derivative g' ofg can be estimated by g',, ~(t). In the Monte Carlo examples tried, 
1 " 

the minimizer of Ro(2)= n ~ (g', ~(tj)-g'(tj)) tended to be close to the 
 9 , j = l  ' 

minimizer of R (2), so that 4 ̂ was also a good value of the smoothing parameter 
for estimating the derivative. 

Subject Classifications. MOS: 65D 10; CR: 5.17; MOS: 65D25. 

1 .  I n t r o d u c t i o n  

We consider the model 

y(t)=g(t)+e(t) ,  te[O, 1] (1.1) 

where g(t) is a "smooth"  curve, and e(t) is a white noise process, E ~(t) = O, E e(s) e(t) 
=a  2, s=t ,  =0, otherwise (E is mathematical expectation), y(t) is observed for 
t = t l ,  t2, . . . ,  tn, O ~ t  1 <:t 2 < . . .  < t n ~  1. It is desired to reconstruct g from the data 
y(ti) =-yj, j = 1, 2 . . . . .  n. We assume that ge  W2 ~m), where 

W2(m) = {g: g(V)abs, cont., v = O, 1 . . . . .  m - 1, g(m)e~Lf 2 [0, 1]}. 

Our estimate of g is g,, z, where g,, z is the solution to the problem: Find f e  W2 (') to 
minimize 

1 
1 ( f ( 0  - y j)2 + S ( f " '  (")) 2 d . .  (1.21 
t / j = 1  O 

The function g., x is well known to be a polynomial smoothing spline of degree 2 m 
- 1. See Reinsch [9, 10], Schoenberg [11], Wahba El 3] for properties of smoothing 
splines. A Bayesian argument that the use of smoothing splines is appropriate when 
a certain prior distribution is attached to the {g(tj))7 = 1 may be obtained from the 
discussion in Kimeldorf and Wahba [7], see also [18]. 

The parameter  2, which must be chosen, controls the tradeoff between the 
"roughness" of the solution, as measured by 

1 
[f,m) (U)]2 du 

0 

and the infidelity to the data as measured by 

1 ~ (f(tj)_y~)2. (1.3) 
? l j ~ l  

The problem is to obtain a good value of 2. Reinsch [9] suggests, roughly, that i fa  z 
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is known, then 2 should be chosen so that the infidelity satisfies 

1 " j~l (g"a(tJ) _ y  j)2 = 0.2. (1.4) 

Wahba [13] obtains theoretical results for the optimum choice of 2 in the equally 
spaced data case when certain further smoothness and periodicity conditions are 
imposed. The optimum 2 is defined as the 2 which minimizes the true mean square 
error averaged over the data points. This true mean square error is defined as R (2), 
given by 

R(2)=~ ~ (g,,a(tj)-g(tj)) 2. (1.5) 
j = l  

The results in [13] show that 2 should be chosen so that the infidelity defined by the 
left-hand side of (1.4), is actually slightly less than a 2. However, this result is not 
practical, in that how much less depends on n as well as on the unknown g and on 
t~ 2, which may also be unknown. 

If 0.2 is known, then a good value of 2 may be obtained from the data as follows: 
Define A(2) as the n • n matrix depending o n  {tl}n= 1 and 2 satisfying 

i . 
g,,z(t,)/ 

Since g,,~(t) is a linear function of Yl, Yz, ...,Y, for each t, such A(2) exists. Then 

ER(2) =E_1 Ila(2) y -gll  2 (1.6) 
n 

where Y=(Y l  . . . . .  y,)t, g=(g(t0, . . . ,g(t ,)) ,  ' and "t"  is transpose. The norm is the 
Euclidean norm. It follows from elementary calculations on (1.6) using the assumed 
mean and covariance properties of e=(e(t 0 . . . . .  e(t,))', that 

0 .2 
ER (2) =-111 (I - A (2)) g ]l 2 +__ Trace A 2 (~.). (1.7) 

n n 

It is then trivial to demonstrate the following 

Theorem 1.1. An unbiassed estimate of ER(2) is given by/~(2) defined by 
_2  0.2 

/~(2) =_1 H(I - a ( 2 ) )  yH 2 - ~ Tr(I --  A (J,)) 2 + - -  T r  A2 (2), (1.8) 
n /'/ /'/ 

that is 

= 

Therefore, the minimizer of/~(2) can be taken as a good choice of 2. An estimate of 
this type has been proposed by Mallows [8] in the context of ridge regression, see 
also Hudson [6]. 
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The main result of this paper is to obtain a good estimate of the minimizer of 
ER(2) from the data which does not require knowledge of  0 2. This estimate, to be 
called the generalized cross-validation (GCV) estimate, takes as the estimate of 2, 
the minimizer of V(2) defined by 

1 2 
V(2)= ~ [ ,(I-A(2))y ][ 2/[~ Tr(/-A()~))] . (1.9) 

We will demonstrate, under general conditions (to be given) on g, and on the mesh 
sequence {tl}~= 1 --- {tl,}~'= 1, n = 1, 2 . . . . .  that, for large n, E V(2) - o "2 ~ ER (2) for 2 in 
the neighborhood of the minimizer of ER(2). 

As a consequence of this, we have the following: 

Theorem 4.3. For  g~ W2 ~") and mild conditions on the mesh sequence {tl,}7 = 1, there 
exists a sequence )~=)~(n) of minimizers of EV(2) with the property that 

ER(2) 
lim = 1. (1.10) 
,~ ~ min ER (2) 

This theorem says that the expected mean square error using ~ tends to the 
minimum possible expected mean square error, as n ~ ~ .  

We now describe the origin of the GCV estimate. The intuitive idea of cross- 
validation is quite simple and goes as follows: Let g~k~ be the smoothing spline using 
all the data points, except the kth. We take the ability of g~k~ to predict the missing 
data point Yk, as a measure of the goodness of 2. Formally, let ~r[k] be the function 
f 6  W2 tin) which minimizes 

1 ( f ( t j )_y j )Z+~,[ . ( f ( , , (u) )2du ' 
n j = l  o 

j*k  

and let 

1 " Vo(2 ) =~  ~ (gt, k~(t~)--yk) 2. (1.11) 
~ k= 1 

The (ordinary) cross-validation estimate of 2 is defined to be the minimizer of V o (2). 
The equally spaced data points case was considered in Wahba and Wold [15, 16], 
where the (ordinary) cross-validation estimate of 2 was introduced. Fairly extensive 
Monte Carlo experiments [15] showed that the minimizer of Vo(2 ) was an 
amazingly good estimate of the minimizer of R(2) over a variety of g and o 2 tried. 
Theoretical results related to the optimality of the minimizer of Vo(2 ) were also 
obtained for a special case equivalent to constraining g and g,, a to be periodic and 
requiring tj =j/n, j = 1, 2 . . . . .  n. We shall call this the symmetric case. 

Note that in the symmetric case all data points are treated symmetrically. That 
is, the prediction error at t k is weighted the same as at any other tj. In the general 
case, we let 

V ( 2 ) - I  ~ (gtkl(tk)__yk) 2 Wk(2), (1.13) 
- - n k =  1 
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where the weights Wk(2 ) a r e  to compensate for nonequally spaced data points and 
the possible nonperiodicity of g. If /! ]2 

wk(2)= [(1--akk(2)) Tr(I--A(2)) , (1.14) 

k=  1, 2, ...,n, where the {akk(2)} are the diagonal elements of A(2), then V(2) of 
(1.13) becomes V(2) of (1.9), and then (1.10) holds. 

That is, we have obtained {wk} SO that (1.10) holds. A different intuitive 
argument for the choice of V(2) as in (1.9) is given in [17], and involves finding a 
rotation of Euclidean n-space which transforms the general problem into one 
equivalent to the symmetric problem and then doing ordinary cross validation. 
This point will be discussed further in Sect. 3. 

In the process of proving (1.10) we have obtained a basis for the smoothing 
spline g,,~ in terms of n periodic functions which are piecewise shifted Bernoulli 
polynomials with one knot, plus m + 1 polynomials of degree <m. (See Golomb [3] 
for earlier results on periodic splines.) An interesting fact about the n piecewise 
shifted Bernoulli polynomials is that, in the equally spaced data case their n x n 
Gram matrix is a circulant matrix. This representation will illuminate the remark 
that the smoothing spline for unequally spaced sampled non-periodic data is the 
natural generalization of the output of a low pass filter with the data as input. 

In Sect. 2, we obtain the aforementioned representation of g,,z in terms of 
polynomials plus periodic piecewise shifted Bernoulli polynomials, and we obtain 
the explicit formula for A(2) that will be used in the proof of (1.10). In Sect. 3 we 
obtain a simplified form of [/o(2) of (1.11) and show that V(2) of (1.13) with the 
weights {Wk(2)} given by (1.t4) is equal to V(2) of(1.9), tn Sect. 4, we prove the main 
theorem, namely (1.10). In Sect. 5, we present some Monte Carlo examples 
illustrating the effectiveness of the method. Data according to the model (1.1) was 
generated with several smooth g's and range of values of ~2. Typical values of 
R (~)/min R ()0 are to be found in the range 1.01-1.4 where ~'is the minimizer of V(2). 

The minimizer of/~(2) of(1.8) and the value of 2 satisfying (1.4) were also computed. 
The use of the minimizer of V(2) was found to be roughly about as good as the' 
minimizer of/~(2), while the use of (1.4) gave estimates of 2 that were consistently 
too large. 

We note that the method of generalized cross-validation is also applicable to 
choosing the regularization parameter in the method of regularization for solving 
Fredholm integral equations of the first kind, see [-14]. 

2. Bernoulli Polynomials and Smoothing Splines 

Let Br(t ), r=0,  1 .. . .  be the Bernoulli polynomials on t~[0, 1]. The {B,} are defined 
1 d 

by letting Bo(t)= 1, (r+ 1~ d~ Br+l(t)=Br(t)' and choosing the constant of in- 
1 

tegration so that SBr(u)du =0, r =  1, 2 . . . . .  Letting [x] be the fractional part of x, 
0 
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we define 

k,(t) = B r ([t])/r!. 

Let Lk, k = 0, 1 . . . .  be the linear functionals 

1 

Lo f = S f (u) du 
0 

i 
Lk f = f t k -  1~(1 ) _ f ( k -  1)(0 ) _  S f~k)(u ) du, 

0 

Then 

k = l , 2  . . . .  

Lk(k,) = 1, k =r 
=0,  k#:r, k , r = 0 ,  1 ,2 , . . . .  

Define the "Bernoulli  kernel"  k~(s, t) by 

k , ( s , t ) = -  ~ 1 _e2~i,,s_t ) r = l , 2 , . . .  
. . . .  (2re iv) ~ 

v~O 

It is known (see Abramowitz  and Stegun [1], p. 805), that 

(2.1) 

(2.2) 

k,(s, t) = 1 Br([ s -  t]) = k , ( [ s -  t]), (2.3) 

and it can be verified from the definition of kr(s, t) that 

~P 
Os p k,(s, t)=kr_p(S , t) 

p = l , 2  . . . . .  r - - 2  
c3P 
otp kr(s, t ) = ( -  )P k,_ p(s, t), s, t~[O, 1] 

(2.4) 

Or-- 1 
C3S r -  1 kr(s,  t ) = k l ( S ,  t) 

~ff- 1 k,(s, t ) = ( -  1) ' -  a kl ( s  ' t) 

s, te[0 ,  1], s ~ t .  (2.5) 

io ta ~m 
0 OS - - ~  k2m(s' u) ~f~ k2m(t, u) du = ( - 1) m- 1 k2m(s, t). (2.6) 

We are now ready to obtain a representation for g,,~ in terms of piecewise 
Bernoulli polynomials. 

Theorem 2.1. The solution g,, x, to the problem: Find f e  W~ m) to minimize 
1 

1 ~ (f(t~)-y~)2 + 2  S (ft~)(u)) 2 du (2.7) 
n j = l  0 
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is, for n > m, unique, and has the representation 

g.,z(t) = ~ Orkr(t)+(-1) m-t ~ etsk2m(t, ts), (2.8a) 
r=O j = l  

where 0=(0o,  01 . . . . .  0m)' and a=(cq ,  a2 . . . . .  e.)' are given by 

O=(TtM - 1 T+A)-  x T t M -  Xy 
c~=M- l ( y -  TO) 
Y = (Yl, Y2 .... , y,)t, (2.8 b) 

T is the n x (m+ 1) dimensional matrix with jrth entry 

Tjr=kr(ts), r=0 ,  1 . . . . .  m 
j = 1, 2 . . . .  , n, (2.8 c) 

A is the (m + 1) x (m + 1) dimensional matrix of all zeroes except 1 in the (m + 1), 
(m + 1) position, M is given by 

M = K + n 2 I  

where K is the n x n matrix with jkth entry Kjk, 

K j  k = ( _  1)m- 1 k2m(tj ' tk ) (2.8d) 

and I is the n x n identity matrix. The matrix A(2) is given by 

A(2)=KM -1 [ I -  T (T 'M -1 T+A) -1 T t M - 1 ] +  T (T tM -1 T+A) -1 Tt M -1. 
(2.9) 

Proof The expression for A(2) follows immediately from (2.8). We first show that 
g,,aesP an {{kr(')}r"= o w {k2m(., ts)}~= 1}. This demonstrat ion can be carried out a 
number  of ways using know~ results on splines. We rely on the arguments in 
Kimeldorf  and Wahba [7]. The reproducing kernel Q(s,t) for W} ") endowed 
with the inner product  

m--1 1 
( f ,  g) = ~ (L, f )  (L, g) + ~ f~")(u) g~")(u) du 

r=0  0 

is shown in Lemma 2.1, of the Appendix, to be 

Q(s, t )= ~ k,(s) k , ( t )+( -  1) m- 1 k2m(S, t). (2.10) 
r=0  

It then follows from the arguments in [7] that g,,a must lie in 

S t = s p a n  {{kfi')}m=-o 1 w {Qt~}~= 2} where Q,s(.)=Q( ., tj). 
m . n However  St is contained in span {{kr(')},=ow{k2m ( , tj)}j= 1} so that g,,z has the 

representation (2.8a) for some 0, a. Substituting (2.8a) into (2.7), and using (2.6) 
gives 
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1 
(g.,~(tj)-yj)2 +n2  S (g~,)~(u)) 2 du 

j = l  0 

~- ~ ~ Orkr(tj) q-(--1) m-1 ~ ~kk2m(tj, tk)--Yj 
j = l  r--~a0 k = l  

+ n 2  ~1 ~ %~k(--1)m-'k2'~(tj ' tk)+O: 
j - -  k = l  

-[[TO+K~--yH2+n2(~tK~+OZm).  (2.11) 

The vectors 0 and c~ are to be chosen to minimize this expression. By differentiating 
the right hand side of(2.11) with respect to 0 and ~ and setting the result equal to 0 
we obtain the Theorem. 

We remark that ( - )m-  i kErn(t, tk), considered as a function of t is a monospline 
of degree 2m, that is, the sum of the monomial t 2m plus a polynomial spline of 

degree 2 m -  1 (with a single knot at tk). However, it can be checked that ~ 7j=0, 
j = l  

so that g,,~ is a polynomial spline of degree 2 m -  1, as is well known. 
When the knots {t j} are equally spaced, K, and hence M, are circulant matrices. 

The details are given in the (well-known) 

Lemma2.2,{(-1)m-xk2m (J-,kt~ =WDW* 
\n nlJj, k= 1 ..... n 

where "*" denotes complex conjugate transpose and W is the n x n unitary matrix 
with rsth entry Wrs given by 

_ 1 e2nirs/n ~ 
w -  - -~n n 

I) is the diagonal matrix with vvth entry D~v given by 
- -  2m 

where 
~, 1 v = l , 2 , . . . , n - 1 ,  

2~,=n 
~=-o~ [2r~(v+ r n)] r' (2~. -- 2,~ . . . .  ) 

,~,. - -  n . ( 2 . 1 2 )  

~ * 0  

Proof. 

( __ 1 ) m -  1 k2 m , = . . . .  (2Zr V) 2 ~  
v:~O 

_ _ ~ ~ 1 e2~iv(j_k+~n,/n 
~=1 r . . . .  [2n(v+~n)]  2m 
(v , r  (n, - 1) 

= ~ ~ 1 e2r~iv(j_k)/n 
,;=1 ~ . . . .  [2~(V + ~ n)] 2m 
(v , r  (n, - 1) 
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The 2~, can be expressed in terms of the polygamma function, see Abramowitz and 
Stegun [1], Sect. 6.4. However, sufficient computational accuracy will usually be 
obtained with only a few terms in (2.12). 

3. The Generalized Cross-Validation Function V(2) 

We first obtain a simplified representation for the (ordinary) cross-validation 
function Vo(2 ) defined by 

1 n 

Recall that ,~kJ is the solution to the problem: Find f e  I4/(2 m) to minimize 6n, 2 

1 
1_ ~ (f(t~) - y~)2 + 21 (f~')(u)) 2 du. 
n j = l  0 

j * k  

It will be useful to know that if we replace the data point Yk by g~k,~ (tk) and solve the 
original (n-data point) minimization problem (1.2) with the data y,, Y2 . . . . .  Yk-1, 
g[kl .,~(tk), Yk+~ ... . .  y., we get g~k~ for the solution. This is the content of 

Lemma 3.1. Let n>m and let g.,a(t; k, Zk) be the solution to the problem: Find 
f e  W~ '~ to minimize 

1 i + 
n j = l  

j * k  

Then 

g.,~(t; k, '~ikl ~t Vl_,,tkJ (t). ~n, ~ %~k17 - -  15n, 2,. 

Proof. Let h = gtk,~, let z k = gtkl (tk) and let f be any element of W2 ~") different from h. 
Then 

n j~x (h(t'i)--Yi)2+(h(tk)--Zk)2 +2  !(h(m)(u)) 2 du 
j * k  

1 [ ~1 (h(t j)-  y j)2+ 2 f(h ~ (u)) ~ du 
n j _  o 

j ~ k  

< -  ( f  (t j ) -  y j)2 + 2 ~ (f(")(u)) 2 du 
n j _  0 

j * k  

=<- ts)-yj)  2 +(f(tk)--Zk) 2 +2  I ( f ~ ( u ) )  2 du. 
n Lj=  1 o 

j * k  
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Comparing the left and rightmost expressions, we see that h solves the n-data point 
minimization problem with Yk replaced by z k. 

The results of Lemma 3.1 allow us to prove 

Lemma 3.2. 

g[nk, l~ (tk)-- Yk =(gn,~(tk)-- Yk)/ ( l - - ~ k  gn,~ (tk) )" 

Proof. [kl t n Let z k = g.,z (k). The Lemma 3.1 and the fact that for each t, g. z(t) depends 
linearly on Yk, gives 

- yk)  ~ g . , ~ ( t k )  
zk=g,,a(t; k, Zk)=g,,a(tk; k, yk)+(z k OYk " 

= g,, Z (tk) + (Zk -- Yk) e3g,, ~(tk) 
~?Yk 

and the result follows after some algebraic manipulation. 

Denoting the entries of A(2) by ajk  , w e  have 

g.,~(tk)-- ~ akjYj j=l 

and so 

t?g,, ~ ( tk) = akk 
OYk 

and it follows from Lemma 3.2 that 

Vo()t)=~ E % y j - y ~  / ( l - a k ~ )  2 . (3.1) 
k = l  j 

To motivate the definition of V(2) consider the periodic version of the 
smoothing problem: it is: Find ge W~ m), periodic and with integral O, to minimize 

1 
1 ~, ( f ( t j )_yj)2+ 2 I (f~")(u)) 2 du. 
n j = l  0 

The function g periodic with integral 0 in this context means 

Lkg=0,  k=0,  1,...,m. 

It can be shown that the solution h,, ~ is given by 

h.,~(t)= ~ ~ j ( -1)  m-1 k2m(t, tj) (3.2) 
j=l 

where 

a = ( K + n 2 I ) - l y = M - l y .  
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Here the role of A is played by K M -  1. If t j=j/n, j =  1, 2 . . . . .  n, then K M -  1 is 
1 " 

circulant for every 2 and hence constant down the diagonals, akk=--nj~laji.= 

1 
- - T r a c e A  and Vo(2 ) becomes 

n 

1 " ( ~  f / (  1 ~  f Vo()L) = n ~ ak~yj--y k 1---- akk 
k=l j = l  n k = l  

(This expression is given in Wahba and Wold [16] for the periodic, equally spaced 
case considered there.) 

To obtain generalized cross-validation from "ordinary" cross-validation in 
general, one rotates the coordinate system so the matrix, call it/] (2), which plays the 
role in the new coordinate system of the prediction matrix A (2), is circulant. Since A 
is symmetric this can always be done by writing A(2)= UD2(2)U t where/)2 is 
diagonal and U is orthogonal. Then, letting F = W U t, A (2)= FA (2)U is circulant. 
Let 3~= Fy. Then the "smoothed" )~is F(g,, z(tl) . . . . .  g.,•(t.)) t = CA(2) y =/1 (2) y, say. 
Now do "ordinary" cross-validation on the "data" y. The result is V(2). 

We remark that inspection of h,,~ [Eq. (3.2)] reveals the "low pass filter" 
character of the smoothing spline in the periodic, equally spaced data case. From 
Lemma 2.2 and Eq. (3.2) we find that the sample Fourier coefficients {h., z, v} ofh., a, 

h,,a,~-nj~= 1 h,,x e -2~vj/~ 

are related to the Fourier coefficients {h~} of the data 

i n  
f ~ - n  j~= l Y e - 2~i~/" 

by the equations 

h,,z,v =f~ hv, v = l , 2  .....  n, 

where 
1 

L - 1 + n ~/,t~:~" 

When v ~ n we may approximate the summation for 2~, in (2.12) by the ~ = 0 term 
and so obtain 

1 
fv ~ 1 +n2(2nv)  2'~ 

where B (v~)is  the Butterworth filter, well known to electrical engineers, having 
1 

half power point v o - 2n (n 2) 1/2m" 
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4. Optimal Properties of the Generalized Cross-Validation Estimate of 2 

Recall that 

R(2) =1  
n 

1 

the true mean square error is given by 

~ ( g , ,  z(ti) - g (ti)) 2 
i = 1  

][A(2) y -g l]  2 

and the cross-validation function V(2) is given by 

1 -[[( I -A(2))y l l  2 
n 

1 2" 

The general idea is that one wishes to choose 2 to minimize R(2). This cannot be 
done directly, of course, since R(2) involves the unknown g. If0. 2 is known, then the 
minimizer of/~ (4) of (1.8) can be used to estimate the 2 which minimizes R (4). If 0.2 is 
not known, we will show that the minimizer of V(2) can be used. 

To demonstrate the usefulness of V(2), we must distinguish two cases. If 
g ( ' ) ~ m -  1, where re.,_ 1 are the polynomials of degree m -  1 or less, we shall first 
show that ER(2) and EV(2) are both minimized for 2 = ~ .  (Recall that f,, o0 is the 
m - 1  st degree polynomial best fitting the data in the least squares sense.) In 
general, we will show that if )~ is the minimizer of EV(2), then the inefficiency 
I* of the method of generalized cross validation, defined by 

ER(~.) 
I* (4.1) 

minER(k) 

tends to 1 as n-o oo. Thus, the mean square error when 2 is estimated by minimizing 
V should be close to the minimum possible mean square error. 

It follows immediately that I* = 1 if g~n,,_ 1, since ER(.)  and EV(. )  have the 
same minimizer. In the general case gE I4/(2 m), gr 1, it will turn out that/~ and 2", 
the minimizers of EV(2) and ER(2) respectively, must satisfy 2 ~ 0 ,  2 " ~ 0 ,  
1/n~l/2m---~O, 1/n2*1/zm--*O. We will proceed to prove that I*~1 in several steps. 
First we show that 

ER(2) + 0 .2 - -  E V(A)  . . . . .  
 9 E R ~  -~nt~tJ (4.2) 

where h(2) is a small quantity to be defined. We will then show that 

I* = R(~.) < 1 + h()~*) 
R(2*) = l - h ( ~ )  " 

Finally we show that h(2) = O(1/n21/2m) and that 2", 2 must satisfy 1/n(2*) 1/2m -o O, 
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1/n (,~) 1/2m .._+ 0, from which it will follow that (1 + h (2*))/( 1 - h (),)) ~ 1 and hence I* J, 1. 
Let 

b2(2 ) = 1  g,( i  _ A ().))2 g = ~  ii(l _ A (),)) gl[ 2 

#1(2)= 1-TrA(2) 
/1 

#2(2)=l-TrA2(2). 
n 

Then 

ER(2) = b2().) + 0.2 #2(2 ) 

b 2 (~) + 0.2 (1 -- 2 #i (2) + #2 (2)) ev(2)= 
[1 -#1 (2 ) ]  2 

We first consider the case g ( - )en  m_ a. In this case g = (g(ta), g(t2) . . . . .  g(t.))' is a 
linear combinat ion of  the first m columns of  T and so ( I - A ( 2 ) )  g = 0  for all 2 and 
b(2)_=0. Thus the minimization of ER(2) reduces to the minimization of Tr A2(2), 
which is clearly minimized for 2 = oo. Similarly EV(2) becomes 

E V (2) = (1 - 2 #1 (2) + #2 (2))/(1 - #,  (2))2. 

Now I -  A (2) has m zero eigenvalues, and the remaining n -  m eigenvalues can 
be shown to be of  the form n 2 ( n ; t + ~ , )  - l ,  v - - l , 2  . . . .  ,n-rn where ~l., 
~2,,---, ~ . . . . . .  are n - m  positive numbers, not  all the same (see Sect. 5 for more  
details), and so the above expression for EV(2) becomes 

,=1 \n2+~v.] / \n ~=1 n 2 + ~ , !  
1 .~m( n2 ]2 

1 n - m  ~=1 \ n 2 + ~ . !  1 

and the minimum is attained if and only if 2 = oo. 
We now proceed to the general case. We have 

Theorem 4.1. 

ER(2)+aZ_EV(2) __#1(2__#1 ) 0.2 #2 + 
ER(2) ( 1 - # 1 )  2 b2 +0 .2#  2 ( 1 - # a )  2 

and so 

IER(2) + a 2 - E V00)I < h(s 
ER(,~) 
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 9 EV-~ 2 
ER 

ER(I-h) 

Fig. 1. Graphical suggestion of the proof of Theorem 4.2 

where 

[2, 1 
h(2)= t ,~1,, ~ j  (1_p~(2))2. 

Proof of Theorem. The result follows trivially from 

ER(2)+cr2-EV(2)=ER(2) (1 (1_11(2))2)+~2(1_p,(2))2.  

From Theorem 4.1 one can deduce 

Theorem 4.2. Let 2* be the minimizer of ER (2). Then EV(2) has a minimum 2 so that 
the "expectation inefficiency" I* defined by 

I* = ER(2) 
ER(2*) 

satisfies 

1 + h(2*) 
I * _ < - -  - " 

Proof. Let A={2:  0<2-< oo, EV(2)-a2<R(2*)(1 +h(2*))}. 

Since 

ER(2)(1-h(2))<EV(2)-a2<ER(2)(1 + h(2)), 0 < 2 < o o ,  

and ER, EV, and h are continuous functions of 2, then A is a non-empty closed set. If 
0 is not a boundary point of A, then EV(2) has a minimum in the interior of A, (or 
possibly at oo) call it )~ (see Fig. 1). Now by Theorem 4.1 

ER(i) (1 - h(1)) < EV(~.)- o 2 < ER(2*) (1 + h (2")) 

IfA includes 0, then ~may be on the boundary of A, i.e., ~=0, but the above bound 
on I* still holds. Our aim now is to prove that h(2*) and h(2) ~ 0 as n ~ ~ .  We will 
use several lemmas, whose proofs we relegate to the Appendix. 
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L e m m a  4.1. If o e  W era) 

1 
b2(X)__<,~ j" (g~m~(u))2 du 

o 

Lemma 4.2. Let {tl}~= ~ - {tl,}~ = 1 satisfy 

~ w(u)du=i/n, i = 1 , 2 , 3  . . . .  ,n, n = l , 2  .. . .  
0 

391 

where w(u) is a continuous strictly positive weight function. Then if gCn,,_ x, (and 
not identically 0) and )~ is bounded  away from 0 as n --* ~ ,  then b2()0 is also bounded 
away from 0. 

Lemma4.3.  Let {ti,}7= 1 satisfy the hypothesis of  Lemma4.2  with 0 < ~ < w ( t )  
< f l <  ~ .  Then 

k,, _n21/2,,#1(2)<~2~ +o(1 ) 3m,. ~-o(1)< 
l~ 1,, 

fll/zm +O(1)<=n21/zml~2(2)<=~F2~+o(1), 

where 

o(1)=O(2)+O(1/n21/zm), as 2 ~ 0 ,  n21/zm-~oc 

and 

dx 1~= oo[ dx k, , -  - 0 (1 +xZm) ' 3 (1 "~'-x2m) 2" 

Conversely, if n,~ 1/2m is bounded  away from 0, then so are #1(2) and p2(,~). 
We remark that it is a consequence of  Lemma 4.3 that p~z(2)/p2(2 ) ~ 0 .  
We conclude from Lemmas 4.1-4.3 that i fg( .)r  rim_ 1, then, as 2 ~ 0 ,  n~.l/:"~o% 
ER (2) = b 2 (2) + 0 -2 ~2  (2) = O (2)  ~- O(1/n 21/2m) ---4. O, 

and if either 2 or l/n21/2r" is bounded away from 0, ER(2) does not tend to 0. Thus, 
to minimize ER (2), we must have 2* ~ 0, n(2*) 1/2 m ~ oo, so that h (2*) ~ 0. Now it 
can be checked that EV(2)>0- 2. Furthermore  EV(~.)J,0- 2 since EV(2)-0-  2 
<ER(2*)(I+h(2*))~O. If g C n , , _ ,  it is necessary that , ~ 0 ,  n ( ) ~ ) 1 / 2 ~  in 
order  that EV(,~)!,0- 2, and so it can be concluded that h ( ~ ) ~ 0  as n ~  ~ .  

Combining the above arguments with Theorem 4.2 gives the following main 
/ tin 

W, ~) and let {tl,}7 = 1 satisfy - ~ w(u)du, where w(u) is a Theorem4.3. Let g ( ' ) e  2 ' 
n o 

strictly positive continuous weight function. Then there exist a sequence )~ =)~(n) of  
minima of EV(2) such that 

ER(2) , 
lira ER(2*)= t. 
n~oo 
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5. Numerical Results 

We have tried the method  on artificial data  of  the form y(ti) = g (tl)+ ~i, where ~i are 
normal ly  distributed pseudo- random numbers  with mean  0 and variance a 2, and 
m = 2 .  For  m = 2 ,  g,.~ is a cubic smoothing spline. 

In the m = 2  case, it can be established from Reinsch [9], p. 179, that  

I - A (2) = Q (Qt Q + p ~)-1 Q, (5.1) 

where 

p = 1/n 2, 

0 is the n x ( n - 2 )  dimensional  tr idiagonal matr ix  with entries qij, i =  1, 2 . . . . .  n, 
j = 1, 2 . . . . .  n - 2, given by 

qi, i+l=i/hi+a, qi i=-l /h , -1/hi+l ,  qi+,,i  = 1/hi+ 1, 

where hi--- ti+ 1 - tl, and T is the (n - 2) • (n - 2) dimensional  t r idiagonal  matr ix  with 
entries ti~, i,j = 1, 2 . . . . .  n - 2  given by 

tli=2(hi+hi+l)/3, t],i+ a =ti+a,i=hi+l/3. 

The matr ix  7" is strictly positive definite (assuming h i > 0). Let F = 0T-1 /2 ,  where 
h -  l ,  ~ -  1/2 is the symmetr ic  square root  of T -  ~. When i = -  i = 1, 2 , . . . ,  n, T -  1/2 can 

n 
be found analytically from the formula  

i) =FDF' (5.2) 

where 

. l - - f - .  jkn  
Fjk= V ~~-~ sin n + 1 

and D is the diagonal  matr ix  with jjth entry ct + 2 fl cos n ~ l '  thus 

~-- 1/2 = F D -  1/2 F t. 

Then 

I - A  =F(UF +pI)- 1 F t. (5.3) 
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Let the singular value decomposition of F be (see [5]) 

F = UDV r 

where U and V are n • ( n -  2) and ( n -  2) • ( n -  2) orthogonal matrices and D has 
the (non-zero) singular values of F, call them d~, d 2 . . . . .  d,_ 2 on the diagonal and 
zeroes elsewhere. Then 

a o / 
I - A = g  9 U' (5.4) 

d2_2+p/ 
and 

1. -2(  d 2 ~2 t r l . - 2  i d 2 ~]2 z (5.5) 
F/j=I = 

where 

z=(z l ,  ..., z,_ 2)' = U'y  

The numerical experiments were conducted as follows: To conform to 
Reinsch's formulae, 2 is everywhere replaced by p = 1/n 2. For given g, a 2, and n, 
data Yl, i=  1, 2 . . . . .  n, were generated by 

where the e i are pseudo-random variates with mean 0 and variance ~r z. V(p) is 
computed using (5.5), for log~ 0 P in increments of 1/9, and the minimizing p, call 
it /~, was obtained by global search. Then g,,~ for 2 =  1/n~ is computed using 
Reinsch [9], (Eqs. 8, 9, 13 and 14), and R(p), 

1 " 
R ( p ) = -  ~ (g(ti)--gn, a(ti)) 2 

/11=1 

is obtained for comparison. 
Test functions of the form 

g(t)= ~ Wjflpj,qj(t), j=l 
where 

F(p+q)  tp_ 1 (1 - t )  q- 1 flpq(t) r ( p ) r ( q )  

and F is the gamma function were used. 
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Fig .  2. E x a m p l e s  I, II, a n d  III ,  g, g , A ,  a n d  the  d a t a  

E x a m p l e  111 
o'  = 0 1  
n = 50 

] I I I ] I I 
0.4 0.6 0.8 1.0 

The examples are 

Example I r = 3 

Example II  r = 2 

Example III  r = 3  

wl =0.2 pa = 4 q1=15 
w2=0.7 p2 = 5 q2 = 7 
w3 =0.1 p3=12  q3= 5 

wl =0.4 p t = 1 2  q l =  7 
w/=0 .6  p2 = 4 q 2 = l l  

w 1 =0.5 p l = 1 0  q1=30 
w 2 =0.2 P2 =20  q2 =20 
w3 =0.3 P3=30 q3=10 (i) 

Figure2 gives plots of the original function g(t), the data yi=g n +gi'  

i =  1, 2 . . . . .  n, and g,,~(t), ;~= 1/n/3, and/3 is the minimizer of V(p).Here a =0.1 and 
the number of data points n =50. Figure 3 gives plots of V(p), R(p), and R(p). 

/~(p) is defined by (1.8) and is computed by 

1 n - - 2  [ d 2 \2  2 0 . 2  n - 2  

" j = l  /7" 1 = 1  

The minima of each of these curves is marked with a circle. Reinsch's 
suggestion for choosing p [Eq. (1.4)] when a 2 is known, was also implemented. 
In our notation, his suggestion becomes: Choose p so that S(p)/a2=l. To 
evaluate this suggestion, S(p) is also plotted, and the point S(p)=0. 2 is also 
marked with a circle. 

In each example I, II, I II  it is seen that /~(p) tracks R(p), and in the 
neighborhood of the minimum of R(p), V(p)~R(p)+constant, where the con- 
stant is around 0.2. (Note that Se2/0. 2 is a pseudo random X 2 variate.) It is seen 
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log p 

Fig. 3 

Table 1. Inefficiencies associated with V,/~ and S 

a=0.1 a=0.01 

R (/~) R (/~R) R (/~s) R (/~) R (/~R) R (/~s) 
min R (p) min R (p) min R (p) min R (p) min R (p) min R (p) 

P P P P P P 

Example I 1.01 1.00 1.21 1.02 1.06 2.38 
Example II 1.04 1.10 1.14 1.01 1.04 1.07 
Example III 1.42 1.01 2.02 1.22 1.00 2.06 

a=0.001 

Example II 1.12 1.04 1.97 

that the p obtained by setting S ( p ) = 6  2 consistently results in p too small, 
confirming the theoretical results to this effect in [-13]. We caution the reader 
that a good value of  a 2 is required in order that the minimizer of/~(p) be near 
that of R(p). In the computations,  a 2 is taken as the variance used to generate 
pseudo random numbers ~i. 

Letting i0, /~k and /~s be the estimates of  p using Generalized Cross-Vali- 
dation, the minimizer of/~(p), and Reinsch's suggestion respectively, the first 
three columns of  the top of  Table 1 gives the observed inefficiencies 

R ~ )  R(/~R) and R(ps) 
min R (p)' min R (p) min R (p)" 

p p p 

These experiments were replicated for a--0.01 and a = 0.001. Plots of  V, 1~, R 
and S for the a--0.01 case appear  in Fig. 4, and the inefficiencies appear in the 
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Fig. 5. The derivative g' and its estimate g'.,~ 

Example ]]1 
o" = 001 
n = 50 

0.4 0.6 0.8 1.0 

third through sixth columns of Table 1. The functions g and g.,~ in the a=0 ,01  
case (which is roughly 1% of the average g) are nearly visually indistinguishable 
and are not plotted. G o o d  estimates of  the derivative of  g can be obtained by 
differentiating g., ~. The functions g' and g'., ~ are plotted in Fig. 5, and it can be 
seen that at this signal to noise ratio the results are impressive. The mean square 
error RD(p) in estimating the derivative, 

RD(P) "~-n j= 1 

is also plotted in Fig. 4. Note  that the min imum of RD(p) is close to the 
min imum of R(p), so that in these examples both the GCV estimate and the 
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minimizer of/~(p) are good from the point of view of minimizing Ro(p ). This 
phenomena also obtained for the noisier data with a=0.1,  however the best 
derivative estimate with this 10 % noise is fairly crude. 

As a 2 ~  0 R(p) will flatten out so that the optimum p ~ ~ ,  and/~(p) and V(p) 
also display this behavior. To illustrate what can happen as a 2 ~  0 we present 
the V(p), l~(p), R(p), S(p) and RD(p) curves for Example II, a=0.001 in Fig. 6. 
Note that, while V(p) appears to have its minimum at p = Go, R and/~ have finite 
minima. Judged from the point of view of inefficiency, however,/~ and/~R are not 
bad. The estimate /~s becomes very inefficient in the a 2 small case (again 
agreeing with the theoretical results in 1-13], Eq. (1.3b) there says that as a 2 ~ 0 ,  
Reinsch's suggestion becomes progressively worse). 

6. Conclusions 
The method of generalized cross validation has been shown both theoretically, 
and by example, to be an effective method for estimating that value of the spline 
smoothing parameter which minimizes the mean square error. Excellent es- 
timates of the derivative are also obtained in examples involving roughly 1% 
and a~6 of 1% noise. 

Appendix 
In this Appendix we give proofs of Lemmas 2.1 and 4.1 through 4.3. 

Lemma 2.1. Q(s, t) given by 

Q(s, t)= ~, k,(s) k , ( t )+(-  1) m- 1 kz,.(s ' t) 
r = O  
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is the reproducing kernel for W~ r") endowed with the inner product 
r " - i  1 

( f ,  g) = ~ (L r f )  (L, g) + ~ ftr,) (U) gtm)(U) du. 
r = O  0 

Proof. Let Qt(.)-Q(t,  .). We have to show 

i) Qte WE tr"} for each t 
ii) (Qt, f ) = f ( t ) ,  lewd2 r"], te l0 ,  1]. 

(For further properties of reproducing kernels, see Aronszajn, [2], Kimeldorf 
and Wahba [7].) Part i) is obvious upon noting that Qt is a monospline of 
degree 2m and hence has 2 m - 2  continuous derivatives. To verify ii), we 
calculate 

LrQt=kr(t), r=O, 1 .. . .  , m - 1  
Or" 

Ou r" Qt(u)=km(t)+(__ 1)2r"- 1 km(t ' u) 

and so 

m - 1  1 

( Q o f )  = ~ kr(t)(Lrf)+ ~ (km(t)-kr"( t, u)) f~m>(u)du 
r=O 0 

1 

= ~ k~(O (L, f ) -  I k~(t, u) f~' (u/au (12.1) 
r = 0  0 

= h(t), say. 

We wish to show that h(t)=f(t). We are allowed to differentiate (A2 .1 )m-1  
times under the integral sign, giving 

h~r")(t)=(Lr"f) - (kl( t ,u)  f<m>(u)du. 
o 

Since Bx(t)=t-1/2,  kl(t, u )=( t -u ) -1 /2 ,  u<t, = ( t - u ) +  1/2, u>t, and hence, if 
t is a point of continuity of f(r"), 

h~r")(t)=(Lmf)- [i ~--t kl (t' u) f~m) (u) du + kl (t , t_) f<m) (t) 

10 -1 
+ ~ -;- k I (t, u) f<~)(u) au - k I (t, t +) ftr"] (t)| 

0dt d 
1 

= (L m f )  _ ~ f<r.)(U) du + ftr")(t) 
0 

=f{r") (t). 

It is easy to see that Lr( f -h )=O for r=0 ,1  . . . . .  m - 1  so that f = h .  (This 
lemma corrects an error in [13], p. 391, line 2.) 
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Lemma 4.1. For  any ge W~ m~, 
1 

bZ(2 ) =_1 i](i_ h(2)) gN2 < 2 ~ (g~,,)(u)) 2 du. 
-- ?'t 0 

Proof. Note  that A(2)g is the vector of values of the function, call it * g,, z, which 
is the solution to the problem; Find f e  W2 ~') to minimize 

1 
1_ ~ (g(tj)--f(tj)) 2 + 2 ~ (f(m)(U))2 du. 
n j = l  0 

Therefore, 
1 

F/ j=1 0 

1 - -  I[(I - A (2)) g II 2 + 2 ~ (g*.~a m) (u)) 2 du 
n 0 

1 1 
! ~ (g(tj) - g(t j ) )  2 + ~ f (g(m)(/,/))2 du = ~ ~ (g(m)(U))2 du. 
/'t j=  1 0 0 

Lemma 4.2. Let {t/,}~= 1 satisfy 

t~n 
w(u)du=i/n, i = 1 , 2  . . . . .  n, n = l ,  2 . . . .  

0 

where w(u) is a strictly positive continuous weight function. Then if g( ' ) r  1 
1 

(and not identically 0), and 2 is bounded away from 0 as n ~  then - g'(I 
n 

-A(2))z  g is also bounded away from 0 as n--* ~ .  

Proof. Let g.*z be as in the proof  of Lemma 4.1. Then g,*z converges in W2 ~"), as 
n ~ o0, to the minimizer, call it g*, of 

1 (g(u) - - f ( u ) )  2 1 
J~, g(f) = ! duq- 2 ! (f(m)(U))2 du. 

o)(u) 

Now if g~zt,._ 1, it is easy to see that g~=g ,  since, in that case Jo~,g(g)=O. 
However,  if gr ~ then 

for 

J+,g(Og)<J~,g(g) 

i g2(u) du 

O= i -2tU't 1 ~ ,  du + ,~ ~ g(m)(U) du 
o wtu) o 

so that g~ is not equal to g. Fur thermore  
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1 
g=l_n s= 1~ (g(tl)-g"*~(ti))2~ ! (g(u)-g'~(u))2co(u) ~ g t ( I - A ( 2 ) ) 2  > 0  for 2 > 0  

Lemma4.3. Let {ti,}~'= 1 satisfy the hypothesis of Lemma4.2 with 0 <~<w ( t )  
< fl < oo. Then 

(! ) fli/2,~ 4-0(2)+0(1/n21/2=) <n21/>" TrA(2) -n21/2"#1(2) 

< km = ~1/2-, + 0 ( 2 )  + O(1/n 21/2,.) 

lm 
- In TrA (2)) -''~ n 2 #2(2) fll/2m + O ( 2 ) + O ( 1 / n 2 i / 2 m ) < n 2 a / 2 m  11 2 \ 1/2m 

1,, _< ~ - +  0(2) + O(1/n 21/2") 

as 2--+0, n21/2" ~ oo 
where 

k=l  ax 
" n o (l+x2m) ' m 7~ 0 (1 + x 2 m )  TM 

Conversely, if n2 ~/2'' is bounded away from 0 as n~o o ,  then so are -JTrA(2) r 

and 1Tr  A2(2). 
n 

Proof. 
A(2)=(n2P+K)M -1, 

where 

M = K + n 2 I  
and 

P = M -  1 T (T tM-1T+A) - I  7'. 

Let 

n2PM-  i =E 
K M -  1 = A o. 

Now, since O ~ A o ~ A - A o + E ~ I ,  (where B ~ C  means C - B  is non-negative 
definite) and O~E~I ,  with E of rank m+ 1, we have 

TrAo < T r  A < T r  Ao + ( m +  1) 
TrAZ=<TrA 2 = T r A 2 + 2 T r A o E + T r E  2 

< T r A Z + 3 T r E  
<TrA2o+3(m+ 1) 
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and so 

21/2v=1 ~ \2v,+n2l = ( 2~, ]<n21/2,"  TrA(,~)<21/z~" ~=, ~ ) + z  ( re+l ) ,  

where 2v,, v = 1, 2 . . . .  , n, are the eigenvalues of K. We continue the proof  under 
the assumption that the eigenvalues 2v, satisfy 

(~v) :" __</~(rcv) ~" 
c~ <2~, 1 - -  (A4.3.1) /,/ /,/ 

for some ~, fl, 0 <  a < f l< oo. Then we give an outline of an argument to show 
that the hypothesis of the theorem on {tl, } guarantees that (A4.3.1) holds with ~, 
fl given by 

= min w(t) (1 + o(1)) 
t 

fi = max w(t) (1 + o(1)) (A4.3.2) 
t 

where o(1) ~ 0 as n --, oe. 
Using (A4.3.1) gives 

~1/2m+ 1 ,(~l/2rn ~ ( 1 )2 ,~1/2m~,, 1 
v=Z~'l (1 -]- .~fl(gr) 2m) = ~=1 1 -.J.-/"/,~,~,~-n I ~ v=l  (1 _]_ ~ ( g y ) 2 m )  

Since, for any fixed 7 > 0 we have 

(n- 1)(~ 2)1/2m~ 

I (~, ~.) ~/2 m 

dx , " 1 < ~ dx 
(1 +x2")  z <(TA)l '2"r t~l  (1 "-}" ~L ~ ( ~ ) 2 m y 2 m )  2 ~- 0 (1 -'}-x2m) 2 '  

we obtain 

1 (n- 1) (~),)wzm 
fll/2mT~ .f (~ ~)1/2,,~ 

and so 

dx <n21/zm[1TrA(2)] 
(1 + x  2'') - I_n 

1 ~ dx 
--< ~1/2.,~ (1 o +x2" )  2 ~-21/2m(m+l)' 

[! ] fll/2m ~-O(2)+O(1/n21/2m) <n21/2m Tr A(2) 

< ~ 2 ~  +0(2)+0(1/n21/2"). 

A similar argument gives the inequality involving TrA2(2). We now give a 
heuristic argument  to show that A.4.3.1 holds with a, fl given by A.4.3.2. The 
j kth entry Kjk of K is given (n even) by 
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K.ik = ( _  1)m- 1 k2m(tj ' tk ) = v_~ o~ (2~Z v) 2m e2'~i""~-tk) 
va~O 

n/2 1 
"~ v=~-n/2 ( 2 ~ V )  2m eZ~iv(tj-tl")' 

and so 

K ~ ~Dq~* 

where  9 is the n •  matrix with jv th  e n t r y  l~ne  2~ivt'", and D is a diagonal  
j *  

n 
matr ix  with vv th entry D~v~(2~v)2m, v = - n / 2 , . . . , n / 2 ,  v+-O, (n even). Since 

1 
t s + L , -  tj. = nw(t . ) '  for some t.  ~ [ t j , ,  t j+L.  ] we have 

1 e 2~ivt-in e -  2rcilatsn 1 1 
- ~ ~ . ~ e 2 ~ i ( ~ - U ) ~ d s = l ,  / 2 = v  
/1 j= 1 wttj., o 

= 0 otherwise 

1 
and so, letting Dw be the diagonal  matr ix  with j j th entry - - ,  we have w(tj.) 

4 "  Dw~ ~ 1. 

Let t ing U = D~/2 4, we have that  U is (approximately)  unitary 

K .~D~ x/2 U D U *  OwU2. (A4.4.3) 

I f  equality were to hold in (A4.4.3) and U were unitary, then we would have that  
the eigenvalues 2v. of  K satisfy 

mint 1 D, ~ < 2, .  < max D v ~. 

o r  

rain w(t) Dvv < 2~n 1 < m a x  w(t) Dvv. 
t t 

tZ 
Since the 2v th and the 2 v - 1 s t  largest D ~  are v)2~, we then would have 
(A4.3.1) with ~, fl as in (A4.3.2). (2 rc 

It remains to show that  if 1/(n 21/2m) is bounded  below away from 0 as n ~ o% 

then so is 1TrA2(2) .  We have 
n 

1 ~ 1 2 2 < l T r  A2(2)" 
n v ~  ( l + f l ~ " 2 v  m) - n  
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Le t  2 = 2 ( n )  sa t is fy  n ,~l/2,n =c1/2,n, e q u i v a l e n t l y  2 = c/n TM. T h e n  

1 < 1  i 1 < 1 T r A 2 ( 2 ) "  
(1 -~]~ 7[7 TM C) 2 : / ' ~  v= 1 (1 + f l  rc TM c(ve"/n2"))  2 - n 
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