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Local Regression: Automatic Kernel Carpentry 

Trevor Hastie and Clive Loader 

Abstract. A kernel smoother is an intuitive estimate of a regression 
function or conditional expectation; at each point xO the estimate of 
E(YIxo) is a weighted mean of the sample Yi, with observations close to 
xo receiving the largest weights. Unfortunately this simplicity has flaws. 
At the boundary of the predictor space, the kernel neighborhood is 
asymmetric and the estimate may have substantial bias. Bias can be a 
problem in the interior as well if the predictors are nonuniform or if 
the regression function has substantial curvature. These problems are 
particularly severe when the predictors are multidimensional. 

A variety of kernel modifications have been proposed to provide ap- 
proximate and asymptotic adjustment for these biases. Such methods 
generally place substantial restrictions on the regression problems that 
can be considered; in unfavorable situations, they can perform very 
poorly. Moreover, the necessary modifications are very difficult to imple- 
ment in the multidimensional case. 

Local regression smoothers fit low-order polynomials in x locally at 
xO, and the estimate of f(xo) is taken from the fitted polynomial at xO. 
They automatically, intuitively and simultaneously adjust for both the 
biases above to the given order and generalize naturally to the multidi- 
mensional case. They also provide natural estimates for the derivatives 
of f, an approach more attractive than using higher-order kernel functions 
for the same purpose. 

Key words and phrases: Boundary effects, derivative estimation, kernel, 
local regression, smoothing. 

1. INTRODUCTION 

Suppose that we have observations (xi, Ye); i = 

1, ... , n, with Yi = f(xi) + ci. Here, f is assumed to 
be a "smooth" function but otherwise unknown, and ci 
are independent errors with mean 0. The nonparametric 
regression problem is to estimate and find interesting 
structure in f. 

A simple estimate proposed independently by Nadar- 
aya (1964) and Watson (1964) is based on locally 
weighted averaging. Given a kernel function K, the 
Nadaraya-Watson (NW) estimate is 

(1) f(x)- n 

Ei=1 K(x- xi) 

The kernel function is chosen to give most weight to 
observations close to x and least weight to observa- 
tions far from x. Typically K is an even function speci- 
fied only up to an unknown smoothing parameter h, 

Trevor Hastie and Clive Loader are Members of the 
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which is selected by data-based methods. Since the 
smoothing parameter is not a focus of this article, we 
suppress it in our notation for K. 

Another popular estimate is the integral kernel esti- 
mate proposed by Gasser and Muller (1979). Suppose 
the xi's are ordered, and let si; i = 0, ... , n be an 
interpolating sequence with so s x1 c si < * . c Xn 
c Sn. The Gasser-Miiller (GM) estimate is defined by 

.1 n rs 
(2) f(x) = Yif K(x - u)du. 

Despite the simplicity, both these estimates have 
problems, as has been discussed by Chu and Marron 
(1991). One difficulty with the NW estimate is bias 
caused by a combination of slope in the mean function 
and asymmetry of observations (see Figure 1). Here, 
we try to estimate f(O.6). Since most observations that 
contribute to the estimate are on the left, the estimate 
is slightly biased upward. As shown in Figure 2, the 
use of integral kernels improves the bias. However, 
the weights are noisy; for example, there are seven 
observations clustered in the interval [0.56, 0.58]. Al- 
though these observations all contain similar informa- 
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FIG. 1. Effect of asymmetry on the Nadaraya-Watson estima- 
tor. Suppose we observe the data indicated by the asterisks; for 
clarity shown with no noise. We estimate f(0.6) using the locally 
constant NW fit (thick line) using Epanechnikov's kernel K(xIlO) 
= (1 - x2)11-,11i(X indicated by the circles. The asymmetry of 
observations causes substantial bias. 

tion about f(O.6), they receive very different weights. 
This suggests the GM estimate has large variance. 

A more severe problem with both these estimates is 
bias in boundary regions. Suppose the xi's lie in the 
interval [0,11 and we wish to estimate fiO). In Figure 
3, the mean function has substantial positive slope 
near 0, and hence the local average has substantial 
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FIG. 2. Gasser-Muiller estimate. The use of integral kernels 
downweights some of the clustered observations in [0.5,0.6], 
substantially improving the bias. However, the noise of the effec- 
tive weights introduces extra variability when the data are ob- 
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FIG. 3. Nadaraya- Watson estimate, boundary effects. When the 
Xi are in the interval [0, 1] and we attempt to estimate flO), the 
slope of the mean function induces particularly severe bias. 

positive bias. With the GM estimate and the usual 
choice so = xi, Sn = Xn, the weights do not add to 1 at 
boundary points, and so the estimate can perform very 
poorly. 

An alternative method of smoothing, locally 
weighted regression, appeared in the statistical litera- 
ture in Stone (1977) and Cleveland (1979). For each 
point of interest x, fix) is estimated using a weighted 
least-squares regression, with weights assigned to ob- 
servations as in (1). Formally, local regression esti- 
mates can be expressed as 

(3) f(x) = b(x)'(B'W(x)B)-'B'W(x)Y, 

where b(x) is an expansion of x into a basis of polynomi- 
als, B is the matrix of evaluations of b at the sample 
xis and W(x) is the diagonal weight matrix implicit in 
(1X, with 

Wi(x) = K(x -xi). 

Clearly (1) is a special case of (3) with b(x) = 1. Implicit 
in (3) is the assumption that the inverse exists; for 
one-dimnensional predictors this amounts to assuming 
that there are at least as many unique values of xi in 
the support of K(x - -) as there are basis functions in 
b(x). 

The local regression estimate is linear in the re- 
sponses Yj: 

n 

(4) f(x) = zYlx)Yj= 04x) Y), 
j=l 

where 

11xC Z)(T())l x)WZ) 
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FIG. 4. Local linear regression. We estimate 110.6) using weighted 
least squares with weights assigned by Epanechnihov's kernel. 
This has substantially reduced the bias associated with the NW 
estimate. Moreover, the effective weights, shown by the circles, 
do not have the noisy behavior associated with the GM estimate. 

We call the weights lj(x) the effective kernel at x. Effec- 
tive kernels are of little interest by themselves but are 
introduced here to aid in comparing local regression 
with other methods. In practice, one should think di- 
rectly in terms of the basis of local polynomials being 
fitted. 

Figure 4 mlustrates the local regression method. A 
straight line is fitted to the data on the window 
[0.5,0.7]; since this line closely approximates the true 
mean, the bias in estimating f(0.6) is small. Moreover, 
the effective kernel has a smooth form, and hence the 
local regression estimate is less variable than the GM 
estimate. The bias reduction of the local regression 
method is particularly advantageous in boundary re- 
gions. Compare Figures 5 and 3. 

When slope effects are properly modeled, the main 
source of bias is curvature of the mean function. If 
local quadratic (or higher-order) polynomials are fitted, 
further reduction in bias is obtained. However, fitting 
higher-order polynomials generally gives a more vari- 
able estimate. For practical applications, local linear 
and local quadratic fitting are usually the most useful 
procedures. 

Stone (1980, 1982) studied rates of convergence mn 
nonparametric regression and showed that local regres- 
sion achieves rates that are optimal in a certain mnini- 
max sense. Muiller (1987) established an asymptotic 
equivalence with kernel methods in a very restrictive 
setting. Cleveland and Devlin (1988) studied local re- 
gression for multivariate predictors. Fan (1992, 1993) 
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FIG. 5. Local linear regression, boundary region. Fltting the 
weighted least squares has substantially reduced the bias of the 
Nadaraya-Watson estimate in the boundary region. 

studied local linear regression and established some 
asymptotic miliiumax efficiency properties. 

Local polynomials are a popular choice among data 
analysts. Cleveland's lowess implementation in the lan- 
guage S (Becker, Chambers and Wilks, 1984) is widely 
used; it features a hybrid near-neighbor kernel and 
allows downweighting of outliers. A multidimensional 
version is available in the 1991 release of S and is 
described in Cleveland, Grosse and Shyu (1991). 

Despite the intuitive appeal and excellent asymp- 
totic properties of local regression, the methods are 
not always well understood. In recent years, methods 
involving special classes of kernels and modifications 
to the basic kernel methods have been popular bias- 
reduction techniques. 

The purpose of this paper is to argue that for routine 
use, the local regression technique offers many advan- 
tages over modified kernel methods. Figures 4 and 5 
provide a simple illustration as to how local polynomi- 
als model slope effects; curvature effects are modeled 
similarly if higher-order polynomials are fitted. By con- 
trast, there is no analog of these figures to explain 
how methods such as high-order kernels and boundary 
kernels work. 

A second advantage is relative insensitivity to the 
design. While some assumptions, such as a smooth 
design density, will usually be required in asymptotic 
analysis of nonparametric regression estimates, such 
assumptions are not always appropriate for designs 
encountered in practice. A nonparametric regression 
estimate should continue to perform well for unusual 
designs. Methods that perform poorly for unusual de- 
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signs or are inefficient for random designs are unsuit- 
able for general-purpose use, such as in statistical 
software. The local linear regression models slope 
effects under just one design assumption: that the in- 
verse in (3) exists. 

Closely related to the problem of modeling slopes 
and curvature is the problem of derivative estimation. 
As a by-product of the local linear fitting, we obtain 
derivative estimates: namely, the slope of the local 
line. If higher-order polynomials are fitted, estimates 
of higher-order derivatives are also obtained. 

Perhaps the biggest advantage of local regression is 
when the predictor is two or three dimensional. In this 
case, a kernel estimate may be influenced by boundary 
effects over much of the domain, and much structure 
may be lost by ignoring the effects. Adaptation of the 
local regression estimate to multivariate predictors is 
simple: we just change the basis functions in (3). 

The performance of regression estimates is often 
characterized by mean squared error and other mea- 
sures of accuracy. We do not claim that local regression 
methods will always have dramatic advantages over 
modified kernels under such measures. Indeed, in some 
circumstances modified kernel methods closely approx- 
imate local regression methods, and mean squared er- 
ror will be very similar. Rather, we argue that local 
regression provides a simple, intuitive and automatic 
solution to the problems modified kernel methods are 
attempting to address. 

The remainder of this paper contains a more detailed 
discussion of how local polynomial methods provide a 
solution to various problems, and it presents compari- 
sons with kernel and modified kernel methods. The 
problem of unequally spaced observations is discussed 
in Section 2, boundary effects are discussed in Section 
3, and derivative estimation in Section 4. The multivar- 
iate case is discussed in Section 5. 

The polynomial smoothing spline is another popular 
smoothing technique (see Silverman, 1985). It is the 
solution to an optimization problem and adapts to 
many of the bias problems associated with kernel esti- 
mates. While kernel smoothers permit reasonably 
straightforward asymptotic analysis, splines seem to 
simplify the generation and analysis of algorithms 
(Buja, Hastie and Tibshirani, 1989; Hastie and Tibshir- 
ani, 1990). The smoothing spline and local regression 
methods appeal to rather different intuitive interpreta- 
tions, and it is unlikely that either will have universally 
dominant performance. 

2. UNEQUALLY SPACED OBSERVATIONS 

Using the linearity of kernel and local regression 
methods, and using a series expansion of f around x, 
we obtain 

n 

Ef(x) = lI(x)flxj) 
j=1 

n n 

(5) = f(x)Zlj(x) + f'(x)Z(xj - x)lj(x) 
j=1 j=1 

+ (X) (xj - x)21j(x) + R. 
2 j= 

The bias is defined as Ef(x) - fix). Under some regular- 
ity assumptions, the locality of the kernel implies that 
the remainder term R is small for both kernel and local 
linear regression estimates. It is therefore of interest 
to examine the terms involving f'(x) and f"(x) in more 
detail. 

Although (5) is for a fixed design, the expansion 
continues to hold for a random design if we first condi- 
tion on the observed xi. A similar expression for the 
variance is 

n 

(6) varf(x) = Zj(x)2varEj = aJ211(X)112 
j=1 

if the residuals have constant variance a2. 

For the Nadaraya-Watson estimate (1), the coeffi- 
cient of f(x) in (5) is 

(7) X(x - x)lI(x) = nJ=1(Xj-_)_f(_-xj) 
j=1 _,,( j 

If the kernel is symmetric and observations are sym- 
metrically distributed around x, this equals 0. How- 
ever, if the observations are asymmetric, this term will 
in general be nonzero, and slope of the mean function 
causes a biased estimate. 

Alternatively, consider the local regression estimate 
(3) with basis functions {1, x, . .. , xq} for some q 2 1. 
If p(x) is in the linear span of the basis functions (i.e., 
p is a polynomial of degree C q), then it follows from 
definition (3) that 

n 

(8) p(x) = DAM(x)p (xj) 
j=1 

for all x. We are fitting a polynomial regression of 
degree q (by weighted least squares) to a set of points 
lying exactly on a polynomial of degree q or lower. As 
long as there are at least q nonzero weights, the fit 
will be exact, and (3) gives the fitted value at x, namely, 
p(x). 

It follows from (5) that all bias terms of degree q 
or lower are automatically removed regardless of the 
design. To see this, let p(x) = (x - Z)k in (8), and thus 
0 = p(Z) = Ej,=1lj(Z)(Xj - Z)k for all k _ q. In particular, 
when a local linear regression (q = 1) is used, the 
dependence of bias on the slope of f is removed for all 
x's. 

An alternative method of adjusting for the effect of 
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unequally spaced observations is to consider proximity 
to other observations when assigning weights. Rela- 
tively low weight is given to observations occurring in 
clumps. The original method of this type was proposed 
by Priestley and Chao (1972), while the GM estimate 
(2) is presently popular. If the kernel is compactly 
supported on [-h, h], the term in (5) involving f'(x) is 
approximately eliminated in the interior region: 

n s 
f (xi - x)K(x - u)du 

i=l si-i 

x+h 

fx(u -x)K(x - u)du = 0. 
Jx-h 

The GM and local linear regression methods have 
been illustrated in Figures 2 and 4; both are seen to 
have similar bias reduction. It is also of interest to 
compare the variance of the estimates. Using (6), var 
f(O.6) = 0.059C2 for the NW estimate, 0.070a2 for the 
local linear estimate and 0.083c2 for the GM estimate. 
In both cases the bias reduction is accompanied by an 
increase in variance; as expected, the GM estimate is 
more variable than the local regression. 

Further insight is gained from the asymptotic analy- 
sis carried out by other authors. Assuming that the 
design density is continuous and bounded away from 
0, Fan (1992) shows that the local linear regression has 
the same asymptotic variance as the NW estimate: the 
price paid for the bias reduction is minimal. When f is 
assumed to be in a class of twice differentiable func- 
tions, Fan also derives some asymptotic minimax prop- 
erties for the local regression. 

Jennen-Steinmetz and Gasser (1988) and Gasser and 
Engel (1990) show that the GM estimate has an asymp- 
totic variance 1.5 times as large as the NW estimate. 
When the observations are unequally spaced, the GM 
estimate is an inefficient way to model slope effects. 

Chu and Marron (1991) suggest improving the vari- 
ance properties of the GM estimate by alternative 
methods of specifying si. With appropriate choices of 
si, it is quite probable that one can coerce the effective 
kernel in Figure 2 to a form similar to that of Figure 
4; however, the effort seems unnecessary since the 
local regression has automatically achieved the desired 
result. 

When the linear terms are properly modeled, the bias 
expansion (5) will be dominated by curvature terms. If 
local quadratic (q = 2) fitting is used, then dependence 
of the bias on f/' is removed. 

In some cases curvature effects can be approximately 
modeled using special classes of higher-order kernels 
(see Gasser and Muller, 1979). This approach is less 
intuitive than directly modeling curvature using local 
quadratic regression and continues to be inefficient for 
random designs. Use of higher-order kernels with the 
NW estimate can result in instability, similar to that 
illustrated with boundary kernels in the next section. 

Of course, one can fit higher-order polynomials or 
kernels and obtain further bias reduction. The down- 
side is that higher-order fits are more variable; the 
selection of order can be addressed as a bias-variance 
trade-off. 

The message of this section is that local regression 
provides a simple and intuitive way to correct biases 
to any given order and performs as well as or better 
than other methods of a comparable order. 

3. BOUNDARY EFFECTS 

At a boundary point, Figure 3 shows that slope of 
the mean function induces particularly severe bias in 
the Nadaraya-Watson estimate. This can also be seen 
from (7). Since all the xj - x have the same sign, there 
is no cancellation of terms in the numerator when a 
positive kernel is used. 

Local linear regression is shown in Figure 5; this 
provides a simple and intuitive way of modeling slopes 
in the boundary region. However, the local regression 
will be substantially more variable, and, unlike the 
situation discussed in the previous section, the vari- 
ance increase persists even asymptotically. 

Do we gain by modeling slopes in the boundary 
region? Suppose the observations are uniformly dis- 
tributed on [0, 1]. With appropriate bandwidths, an 
asymptotic analysis similar to that in Stone (1982) 
shows that f(O) has mean squared error O(n213) for the 
NW estimate and O(n-415) for the local linear regression. 
This suggests that for large n, fitting slopes is benefi- 
cial. 

For small n, the situation is more difficult; either 
estimate may have better mean square error. Suppose 
that our purpose in fitting a nonparametric regression 
curve is to uncover structure in the true mean. Gener- 
ally, structure that can be found by the NW estimate 
but cannot be found by the local linear regression will 
be confounded with boundary bias, and it would be 
unusual for the NW estimate to identify structure 
that the local regression cannot detect. However, if 
prediction is our main interest, then bias and variance 
are the major considerations, and the NW estimate 
may give better predictions in situations without much 
structure. 

Several methods have been proposed to modify ker- 
nel estimators to handle boundary effects. A popular 
method is through the use of special boundary kernels. 
If the data are uniformly distributed on [0, 1], (7) sug- 
gests imposing the constraints 

f'Kx(x - u)du = 1, 
(9)Jo 

f'(u - x)Kx(x - u)du = 0. 

Typically, the modified kernels are of the form 
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(10) Kx(x - u) = K(x - u)(yo + yi(x -u)), 

where yo and yi, dependent on x, are determined by 
the moment conditions (9); see Muller (1991). 

The effective kernels for the local linear regression 
also have the form (10) if the integrals in (9) are replaced 
by sums over the observed x;. This implies that bound- 
ary kernels are essentially an attempt to approximate 
directly the effective kernels from local linear regres- 
sion; under appropriate conditions there is an asymp- 
totic equivalence between the two approaches. This is 
investigated in more detail by Muller (1988, Section 
4.3) and in references therein. 

What problems exist with the use of boundary modi- 
fied kernels? First, there is no intuitive explanation as 
to why they work, unlike the local regression method 
which has been simply illustrated in Figure 5. 

A more serious problem is a lack of design adaptabil- 
ity. Suppose that the design density is 2xI[o, il(x). If 
boundary kernels satisfying (9) are used to estimate 
f(O), the denominator of (1) is close to 0, and anything 
could result. 

Clearly, we could replace (9) by conditions appropri- 
ate to this type of density, and derive more classes of 
boundary kernels. However, either user or software is 
then required to decide what type of boundary kernel 
is appropriate, according to an observed density of 
points near the boundary. By contrast, the use of local 
regression automatically adjusts to the various types 
of density. 

Boundary kernels can also be combined with integral 
kernels; see, for example, Muller (1991). This reduces 
the problem of design adaptability associated with 
the NW estimate. However, our objection to integral 
kernel methods is clear, from previous sections: they 
are inefficient for random designs. 

Other methods to reduce boundary bias have been 
proposed, including extrapolation methods (Rice, 1984) 
and reflection methods (Hall and Wehrly, 1991). 

Extrapolation methods involve combining two differ- 
ent kernel estimates with different bandwidths to elimi- 
nate the f'(x) terms. Suppose that the estimates are 
fi(x) and fm(x) with 

Efj(x) = f(x) + f'(x)L + Rl; 

Efm(X) = f(x) + f'(x)M + Rm. 

Here, L and M depend on x and the design points but 
not on f. An appropriate linear combination of the two 
estimates removes the f '(x) terms. The difficulty is that 
we need to choose several smoothing parameters, the 
number increasing depending on how many terms we 
wish to remove. It is also difficult to see exactly how 
this method operates on the data. 

The reflection technique proposed by Hall and 
Wehrly (1991) involves generating pseudo-data, so that 
in an enlarged data set the boundaries of the original 

data set are now on the interior. If the xi are supported 
on [a, b], the single point f(a) is estimated using a 
one-sided boundary kernel, and additional data are 
generated by reflecting in this estimate. Similar reflec- 
tion is carried out at b. The estimate f(x) for x E [a, b] 
is then constructed using an ordinary kernel estimate. 
However, we have shown above that boundary kernels 
can fail for some designs, and hence this reflection 
technique can also fail. 

There are two main conclusions of this section. First, 
the NW estimate may have substantial boundary bias, 
and it is usually preferable to use methods which model 
slopes in boundary regions. Second, the local linear 
regression is the best method by which to model slope 
effects. The method is automatic, has a simple intuitive 
interpretation and adapts well to different designs. 

4. DERIVATIVE ESTIMATION 

The first and second derivatives of a regression func- 
tion often have important physical interpretations, and 
it is interesting to study estimates of these quantities. 
A linear estimate of f"(x) is 

n 

f"(x) = E dj(x)Yj 
j=1 

for appropriate dj. In view of the bias expansion (5), a 
minimal set of constraints is 

n 
Z dj(x) = 0, 

j=1 
n 

(11) Y(xj - x)dj(x) = 0, 
j=1 
n 

Z(Xj - x)2dj(x) = 2. 
j=1 

Suppose that we fit a local polynomial at x of degree 
q 2 2 and take f"(x) to be the second derivative of the 
local polynomial [not the second derivative of fAx)]. 
Then 

(12) d(x)T = b(x)'(BTW(x)B)-lBTW(x), 

and d(x)TB = b(X)IT. This implies that ;'=,dj(x)p(xj) = 
p"(x) for any polynomial of degree ' q, and hence the 
conditions (11) are satisfied. One can go further and 
play the bias-reduction game by fitting even higher- 
order polynomials. Rates of convergence for this type 
of derivative estimate are studied by Stone (1980). 

Gasser and Muller (1984) propose integral kernel 
type derivative estimates, 

f'GMX) = EYjJK(2)(x - u)du, 
j=1 sj-s 
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fK2)(u)du = 0, 

2uK'2(u)du = 0, 

u2K2)(u)du = 2. 

Under suitable assumptions, (11) will be approximately 
satisfied by these weights, and for well-behaved de- 
signs the results of Muller (1987) establish an asymp- 
totic equivalence with the local regression method. 
However, under random designs, f"GM will again be 
more variable. 

5. MULTIVARIATE SMOOTHING 

There are many important applications of smoothing 
techniques in two or more dimensions. Examples in- 
clude images from medical scanning devices and satel- 
lite photographs, as well as geographically recorded 
data. Smoothing becomes less feasible as the dimen- 
sion of the predictors xi gets too large because of the 
curse of dimensionality (Bellman, 1961). Also, beyond 
two or three dimensions, a full nonparametric regres- 
sion surface is difficult to visualize, and regression 
methods which try to capture lower dimensional struc- 
ture may be appropriate. Methods of this type include 
projection pursuit (Friedman and Stuetzle, 1981) and 
additive models (Hastie and Tibshirani, 1990). 

The definition of local regression is easily extended 
to multiple predictors, and the methods have been 
successfully applied in two and three dimensions; see 
Cleveland and Devlin (1988) for examples. 

Many properties of local regression estimates extend 
immediately from the one-dimensional case. For exam- 
ple, a local linear regression will model the slope of the 
mean function; the bias depends only on the second- 
and higher-order partial derivatives of the true mean 
function. Asymptotic properties such as rates of con- 
vergence can be derived in a straightforward manner; 
see for example Stone (1980). 

The local regression method is particularly useful 
with unusual designs. For example, Buta (1987) made 
velocity measurements on a galaxy at positions on the 
celestial sphere. Because of the way measurements 
were made, the predictor variables form a star-shaped 
pattern (see Figure 6). Cleveland and Devlin (1988) 
fitted a local quadratic model to this data set and found 
revealing structure in the velocity measurements. 

Could modified kernel methods be devised to ade- 
quately model multivariate regression functions? We 
would need modifications to handle boundary effects 
and nonuniformity and curvature effects in the interior 
region. 

If a boundary region can be precisely specified, then 
boundary kernels can be derived using multivariate 
extensions of (9) and (10). However, the precise specifi- 
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FIG. 6. Predictor variables for the NGC7531 data set (Buta, 1987; 
Cleveland and Devlin, 1988). 

cation of a boundary region is difficult; for the design 
in Figure 6 it certainly is not clear where the boundary 
should be. Also, the boundary region may be quite 
complex, making the evaluation of the extensions of (9) 
complicated. Finally, the success of boundary kernels 
requires that predictors be approximately uniformly 
distributed near boundary points. 

For nonuniform observations, extension of GM type 
estimates to the multivariate setting is discussed by 
Ahmad and Lin (1984) and Muller (1988). This involves 
dividing the predictor space into sets Ai,,i = 1, . .. , n 
associated with each observation and using the natural 
extension of the GM estimate. However, unless the 
design is a grid of points, deriving the sets Ain is fairly 
arbitrary, and integrating the kernel over these sets is 
an additional complication. As in one dimension, inte- 
gral kernel estimates will have poor variance proper- 
ties. 

We have indicated the severe difficulties encountered 
when trying to modify kernel methods for multivariate 
designs. Supposing that these can be overcome, it 
seems that the best we can expect is modified kernels 
which closely approximate the effective kernels of local 
regression methods. Clearly, the local regression 
method is preferable, since the bias is corrected auto- 
matically and simultaneously for: 

* asymmetric neighborhoods in the interior; 
* closeness to the boundary and 
* the shape of the boundary. 

6. EXAMPLES 

This section contains a numerical study of some 
of the methods discussed. We restrict ourselves to 
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TABLE 1 

Integrals of IIl(X)112 over the boundary region [0, 0.3] U [0.7, 1.0] 
and the center region [0.3, 0.7] 

Design 1 Design 2 Design 3 

Estimator Boundary Center Boundary Center Boundary Center 

NW 0.02310 0.01633 0.02429 0.02615 0.02232 0.01309 
GM 0.01346 0.01631 0.01924 0.04676 0.02722 0.01934 
Loc lin 0.04127 0.01633 0.03584 0.03363 0.07631 0.01372 
Mod NW 0.05453 0.01633 0.03097 0.02616 47.6342 0.01309 
Mod GM 0.05407 0.01631 0.06006 0.04676 0.10885 0.01934 

second-order methods; that is, methods that model the 
slope of the mean function. 

Three different designs are considered: 

1. 50 points equally spaced on [0, 1], xi = (i - 1)/ 
49. 

2. 50 points on [0, 1], xi = (1- l -2(i-)1 j49)12 
if i < 25 andxi = (1 + 22(i-1)/49-1)/2ifi > 

26. 
3. Random design, 50 points from density 

6x(1 - x)I[o,1j(x). 

The mean function considered is fix) = x2. 
We use the Epanechnikov kernel K(x) = (1 - x2) 

I[_1,1J(x) and the boundary-modified version given in 
Table 1 of Muller (1991). A varying bandwidth is used: 

0r.6-x, x < 0.3, 
h = h(x) 0.3, 0.3 < x<0.7, 

Lx-0.4, 0.7 <x, 

which has reasonable sized boundary and central re- 
gions for illustration. When the n data points are 
equally spaced on [0, 1], this corresponds roughly to a 
0.6n nearest neighbor bandwidth. 

We consider bias and variance separately. For conve- 
nience, the residual variance is taken to be 1. In Tables 
1 and 2, the five estimates are summarized by their 
integrated variances and squared biases. For three of 
the estimates, bias and variance are compared on a 
pointwise basis in Figure 7. 

In the central regions, all estimates had comparable 

performance for the uniform design, as expected. The 
second design has a low density of points in the central 
region, and the NW estimate had substantially larger 
bias than with the other methods but slightly less 
variable. For the third design, the nonuniformity again 
results in the NW estimate having slightly larger bias. 
Since this design is random, the GM estimate is more 
variable than the local regression. 

The boundary regions are more interesting. As ex- 
pected, the local linear regression and the two bound- 
ary modified estimates are more variable and less 
biased than the unmodified estimates. Since f'(O) = 0, 
most of the bias reduction occurs at the upper bound- 
ary. The modified NW estimate achieves little bias 
reduction for design 2 and is unstable for design 3. 
The boundary modified GM estimate has greater bias 
and greater variance than the local linear regression, 
even for the uniform design where we would expect 
the methods to be similar. However, the "optimum" 
boundary kernels given by Muller (1991) and applied 
here give low weights to observations near the 
boundary. 

In summary, the local linear regression has per- 
formed well for all three designs. Although more vari- 
able than the NW estimate in the boundary regions, 
there is a substantial bias reduction, particularly at 
the upper boundary. The GM estimates performs com- 
parably to the local linear regression in terms of bias 
correction over the central region, although it is more 
variable. In the boundary regions, the local linear re- 
gression outperforms the other boundary corrected 
methods. 

TABLE 2 
Integrated squared biases over the boundary region [0, 0.3] U [0.7, 1.0] 

and the center region [0.3, 0.7] 

Design 1 Design 2 Design 3 

Estimator Boundary Center Boundary Center Boundary Center 

NW 0.01126 0.00013 0.00513 0.00267 0.01919 0.00026 
GM 0.04314 0.00013 0.04297 0.00015 0.04450 0.00013 
Loc lin 0.00020 0.00013 0.00009 0.00020 0.00056 0.00011 
Mod NW 0.00055 0.00013 0.00426 0.00266 8.88807 0.00026 
Mod GM 0.00054 0.00013 0.00057 0.00015 0.00064 0.00014 
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FIG. 7. Compdrisons of biases (left column) and IIl(x)II (right column) for three designs. The solid lines represent a local linear regression; 
the short dashes represent a Nadaraya-Watson estimate, and medium dashes are the boundary corrected Gasser-Muller estimate. The 
long dashes show zero bias for reference. 

7. CONCLUSIONS AND DISCUSSION 

Kernel smoothing, especially the NW estimate (1), 
has great intuitive appeal and is easily motivated. 
There are however bias problems, especially at bound- 
aries. In practice, boundary effects may occur over a 
substantial region, especially in dimensions greater 
than 1, and the bias of the NW estimate may mask 
interesting structure. We have shown that, unlike the 
modified kernel approaches, local polynomial smooth- 
ing attends to the bias problems while retaining the 
original simplicity. Local polynomials generalize imme- 
diately to smoothing problems in higher dimensions, 
and their bias-correction properties accompany them. 

Another form of bias commonly encountered in prac- 
tice is curvature effects, often referred to as "trimming 
the hills and filling the valleys." This is particularly 

noticeable when the signal-to-noise ratio is very high. 
In this case local quadratic smoothers perform well; 
once again an attractive alternative to higher-order 
kernels. 

Kernel smoothing can be extended to nonparametric 
regression in likelihood-based models ["Local Likeli- 
hood," Hastie and Tibshirani, (1990), especially sec- 
tions 6.5.1 and 6.13 and references therein]; once again, 
bias problems can occur and can be corrected by fitting 
polynomials locally. 
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Comment 
J. Fan and J. S. Marron 

1. GENERAL COMMENTS 

We would like to thank the authors for a useful and 
informative article on the state of -the art in nonpara- 
metric regression. Especially enjoyable were the novel 
and imaginative graphical methods that were devel- 
oped to illustrate the points being made. These reveal 
more intuition behind the theoretical results of Stone 
(1977, 1982) and Fan (1992, 1993). It contains a nice 
summary of many points which have already been 

J. Fan is Assistant Professor and J. S. Marron is 
Associate Professor, Department of Statistics, Univer- 
sity of North Carolina, Chapel Hill, North Carolina 
27599-3260. 

made and justified (theoretically and intuitively) by 
the recent papers of Chu and Marron (1991) and the 
discussions therein and of Fan (1992, 1993). 

The main contribution of the paper is a very accessi- 
ble introduction to a point which is becoming quite clear 
to insiders in the field of nonparametric regression: 
local (i.e., moving window) polynomial regression esti- 
mators have a number of compelling advantages over 
the more widely used and studied kernel estimators. 

In view of the very large literature on kernel regres- 
sion estimators, an interesting issue is why it took so 
long for the smoothing community at large to under- 
stand fully the benefits of local polynomials. We specu- 
late that this was because of "equivalence results," the 
best known being M(iller (1987) but see also Lejeune 
(1985), whose main intuitive message was for equally 
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