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Kernel Density Estimation
" JE

m Kernel methods are often used for density estimation
(actually, classical origin)

m Assume random sample X\,~.-, )(n ~ p A
?

N
m Choice #1: empirical estimate? ?9%\ Z gx; I ” ‘l“ | | |
m Choice #2: as before, maybe we should use an estimator a\
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m Choice #3: again, consider kernel weightings instead
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Kernel Density Estimation
" JE

m Popular choice = Gaussian kernel - Gaussian KDE
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Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book
mily F

Multivariate KDE
= JEE

m Inld 1 «
p(xo) = J;K/\(xo,l'i)

= In RY, assuming a product kernel,

n d
pzo) = ﬁ > {H K, (l’op%)}

i=1 | j=1

m Typical choice = Gaussian RBF




Multivariate KDE
" J
P(xo) = ﬁ Z H K, (wowﬁij)}
m Risk grows as O(n#/(#+d) o

m Example: To ensure relative MSE < 0.1 at O when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d
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Multivariate KDE Example
" J
m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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Multivariate KDE Example
S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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Trees Overview \/],5 R

= An alternative adaptive regressmn techrxque

Conceptually simple 1 '\-\re(q re, q
Powerful \

m Partition the covariate space into regions and then fit fl simple
model in each (e.g., constant) v Lm(‘\éfq 19ne

Cu*"s
= How to partition? /) ‘L ‘ '& &\
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Recursive Binary Partitions
" JEE
m To simplify the process and

interpretability, consider
recursive binary partitions
’_/,_’

m Described via a rooted tree

Every node of the tree
corresponds to sglit decision (Xkés

Leaves contain a subset of the ‘L\Lg( ob*
data that satisfy the conditions
wong 0V
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Recursive Binary Partitions
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m Start with a list of d-dimensional points.
Recursive Binary Partitions
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m Split the points into 2 grou
Choosing dimension d;and valu
Separating the points into T'id;

©Emily Fox 2014

j@and Lid <=1
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(methods to be discussed...)




Recursive Binary Partitions
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m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...

Recursive Binary Partitions
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m Consider each grpup separately and possibly split again
(along same/different dimension). “n
Stopping criterion to be discussed... - *y\]ﬁ r €7 \ o\§ 6\\
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Recursive Binary Partitions
" S
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m Continue splitting points in each set \\
creates a binary tree structure J(ﬁg a *\g

m Each leaf node contains a list of points H\‘h —\‘wv\$ do '\Jg
A

Resulting Model

A
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4 1
m Model the response as constant within each region
flo) =) M(a& € Ry)
m=1




Basis Expansion Interpretation
" JEE

m Equivalent to a basis expansion Xist
M TOxeRm) '
f(.CL‘) = Z Bmhm(x) ‘Ca{’”ﬁ X, <t ¥, <3
m=1 \ \y\a\ eaC"\h
m In this example: r I Xo<ta
hi(z1,22) = I(z1 < t1)1 (22 < t2) (W
ho(x1,m2) = I(x1 < tq)I (22 > to) réo\u"ca Jre'\wm Rs
hg(al'l 332) = (371 > tl)I(;ll'l < tg) oauc-\
ha(a1,@0) = I(wy > 1) (1 > t3) (29 < t4) ?‘5 din®
h5(l'1,33'2) = ](371 > tl)l(l'l > tg)l(.’lig > t4) ‘ S\{P ‘l\—.
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Questions on Building the Tree
" J
= Which variable should we split on?
m What threshold value should we consider?
m When sﬁp the process?
st Lobs. e
C 0 UM con UR |Cq%

bt s prore
rVQ(Q'&('W‘?




Building the Tree
" J

M
= Z BmI(x € Ryy,)
m=1

m Assume the partition (R,,...Ry) is given

m [f criterion is to minimize §.S then 1_> %:‘i
B = av)(“i\\('beﬁvb i(*’g\
(a9

m
m How do we find the partition (R,,...R) ?

Finding the optimal tree that minimizes RSS is generally computationally
infeasible

Consider a greedy algorithm instead
e o

Choosing a Split Decision
" JE
m Starting with all of the data, consider (R((]ﬁ\\ (Rl(iﬁ\\

spli'Fting on variable_j; at pointi )(1 (s (;?25
m Define
Ri(j.s) = {o | 2; < s} et
Ry(j,s) ={z | z; > s} Teot,

m Our objective is
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m For any (j, ), the |nner minimization |s solve
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Choosing a Split Decision

]
njlisn Z (yi — B1) + Z (yi — )’
’ z; ER1(J,s) x;€R2(],s)
1 = ave(yi | z; € Ri(j,5))

Bo = avg(y; | ; € Ra(j, 3))

m For each splitting variable j, finding
the optimal s can be done eff|C|entIy

af one enf* t [ [ )(‘
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m Max of d(n-1) partitions to consider
m So, determining (j,s) is feasible
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Choosing a Split Decision

m Conditioning on the best split just found, we recurse on

each of the two regions
m Repeat on all resulting regions

m When do we stop recursing?
~N—
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How Large of a Tree?
"
m Large tree, like partitioning until each noqe has one observation
> overfit (T‘Variandz,lk"‘l‘z .
m Small tree > 4 M?\QI it ke‘i _(lﬂqlwfe; L\L varance, 5

m Tree size is a tuning parameter that governs model complexity
Optimal tree size should be chosen adaptively from the data

m Stopping criterion
Stop when decrease,in RSS due to a srlit falls below some threshold

Sartgighted e splb later 0 he

verd §
Stop when a minimum node size (e.g., 5) is reached. Go back and prune.

Poacd ood
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Cost-Complexity Pruning
" JEE

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees

> ok ot Ver\q\’\zcd RSS

m Define a subtree T C T({\ to be any tree obtained by prun\in To
z 2 AN nede
4\:0“"({(& (()Nhe Co\\qu g t:: lf\'kfn“ T\

and |T'| = ﬂ"°‘c l@'?nodef 3

Tfm = X o-C‘ p{f n lQA'(: V\Ode X2 <ty X1<g
R T S
Qm(T) _ ‘,- i(‘-\i'e"\ Xo <t

= We examine a cﬁ_ﬁg:e»(it\ycrifr_i_()ﬂ
T
O\NT) = Z N Qm (1) + AT | Qés Re R

m=1 K.. -\o‘l’%\
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Cost-Complexity Pruning
" JE
|| €nal t
CAT) = 3 1 @u(T) + ATE | W
m=l R S5 (ver r<7;”"}
m Foragiven A, wantto find 7, C T, to minimize C(7')

folltre&

m Tuning parameter A governs tradeoff between X: <’
tree size and goodness of fit to the data

Large A > 67“‘\\\ H‘Ces Xo < ta X1 <ty

A=0~> Q/b\ QU“{"(’C’&

m For each A, can show that there is a

unique smallest subtree T’ fu fe M (W
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Cost-Complexity Pruning 1

produces smallest increase in RSS X1 <t

(UMTS" Tr\* ffnq\ Se\}\'\ |

m Can find using weakest link pruning )
Successively collapse the internal node that %

which must contain T’

See Breiman et al. (1984) or Ripley (1996) R R, Rs (W

A
m Choose A via 5- or 10-fold
Ry Rs5

Continue until at single-node (root) tree Xost X153
Produces a finite sequence of subtrees, 1
Wod

m Final tree:
’V \ ©Emily Fox 2014 26
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Comments on Regression

=1 —

m Partition is not specified apriori, so regression trees provide a
locally adaptive technique
V/

m Effectively performs variable selection by discovering the
relevant interaction terms

Implicit in the process (CC““ {'cr\%r Prodvc'l' ‘D°t§l'5ﬂ

m |n the construction, we are assuming that

Error terms are uncorrelated X ( L\‘\’

Constant variance —7 K§§ \3 ‘ 2 -
minim -

4ri©

mQ
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Example: Prostate Cancer
" JEE

m Fit binary regression tree to log PSA with splits based on
eight covariates

~—

m Grow tree with condition of at least 3 observation per leaf
\/_

m Results in a tree with 27 splits
o

m Run weakest-link pruning for each candidate A, with A chosen
according to CV
—
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Example: Prostate Cancer

" SN Aﬁ“v"\

Icavol most “important”

m Compare results to LASSO (eavoigh.s62 J

Icavol< -0.4786

Then Iweight and svi

hi(x) = I(lcavol < —0.4786) 0.6017
ha(x) = I(Icavol < —0.4786) I(lweight < 3.689) I(svi < 0.5) n=9
h3(x) = I(lcavol < —9.4786) [(Iweight < 3.689) I(svi > 0.5)

ha(x) = I(lcavol < —9.4786) I(Iweight 3.689)

hs(x) = I(lcavol  2.462).

[
bhagy =
(ng o

2 Q\% 15 20 25

5
\ \I‘ ©Emily Fox 2014

—8— lcaval
—0— Iweight

n=21
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Issues
" JE

m Unordered categorical predictors

With unordered categorical predictors with g possible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large q

Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?
Can discard
Can fill in, e.g., with mean of other variables

With trees, there are better approaches
-- Categorical predictors: make new category “missing”

-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.
When examining observation with a missing predictor, when splitting on

that dimension, use top-most surrogate that is available instead

©Emily Fox 2014
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Issues
= JEE

m Binary splits
Could split into more regions at every node

However, this more rapidly fragments the data leaving insufficient data and
subsequent levels

Multiway splits can be achieved via a sequence of binary splits, so binary
splits are generally preferred

= [nstability
Can exhibit high variance
Small changes in the data - big changes in the tree
Errors in the top split propagates all the way down
Bagging averages many trees to reduce variance

m Inference
Hard...need to account for stepwise search algorithm
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Issues
= JEE

m Lack of smoothness

Fits piecewise constant models...unlikely to believe this structure
MARS address this issue (can view as modification to CART)

m Difficulty in capturing additive structure
Imagine true structure is

y=LF1l(xy <ty)+ Pol(ze <tz)+e

No encouragement to find this structure
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What you need to know
" JE

m Regression trees provide an adaptive regression method

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where
Grown in a greedy, forward-wise manner
Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits

©Emily Fox 2014

Fit constants (or simple models) to each region of a partition

33

Readings
" A
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman — 9.2.1-9.2.2, 9.2.4, 9.4
m Wasserman —5.12
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