

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- Assume random sample $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} P$
- Choice #1: empirical estimate? $\hat{p} = \frac{1}{n} \stackrel{?}{=} \frac{1}$
- Choice #2: as before, maybe we should use an estimator

$$\hat{p}(x_0) = \frac{\pm x_i \in Nhhd(x_0)}{n}$$
 width of nbhd

■ Choice #3: again, consider kernel weightings instead

$$\hat{p}(x_0) = \frac{1}{n\lambda} \sum_{i} K_{\lambda}(x_0, x_i)$$
 Parzen est.

©Emily Fox 2014

Kernel Density Estimation

From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

Multivariate KDE

In 1d

$$\hat{p}(x_0) = \frac{1}{n\lambda} \sum_{i=1}^{n} K_{\lambda}(x_0, x_i)$$

■ In R^d, assuming a product kernel,

$$\hat{p}(x_0) = \frac{1}{n\lambda_1 \cdots \lambda_d} \sum_{i=1}^n \left\{ \prod_{j=1}^d K_{\lambda_j}(x_{0j}, x_{ij}) \right\}$$

■ Typical choice = Gaussian RBF

Emily Fox 2014

Multivariate KDE

$$\hat{p}(x_0) = \frac{1}{n\lambda_1 \cdots \lambda_d} \sum_{i=1}^n \left\{ \prod_{j=1}^d K_{\lambda_j}(x_{0j}, x_{ij}) \right\}$$

- Risk grows as $O(n^{-4/(4+d)})$
- Example: To ensure relative MSE < 0.1 at 0 when the density is a multivariate norm and optimal bandwidth is chosen

Always report confidence bands, which get wide with d

@F--II- F--- 004

5

Multivariate KDE Example

- Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
- Examine first 2 principle components of the data
- Perform KDE with independent kernels

Emily Fox 2014

Multivariate KDE Example Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) Examine first 2 principle components of the data Perform KDE with independent kernels

Basis Expansion Interpretation

Equivalent to a basis expansion

Equivalent to a basis expansion
$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x) \\ \text{indicators} \\ \text{or each or each or each one each one$$

In this example:

$$\begin{array}{l} h_1(x_1,x_2) = I(x_1 \leq t_1)I(x_2 \leq t_2) \\ h_2(x_1,x_2) = I(x_1 \leq t_1)I(x_2 > t_2) \\ h_3(x_1,x_2) = I(x_1 > t_1)I(x_1 \leq t_3) \\ h_4(x_1,x_2) = I(x_1 > t_1)I(x_1 > t_3)I(x_2 \leq t_4) \\ h_5(x_1,x_2) = I(x_1 > t_1)I(x_1 > t_3)I(x_2 > t_4) \end{array}$$

Questions on Building the Tree

- Which variable should we split on?
- What threshold value should we consider?
- When should we stop the process?

Building the Tree

- Assume the partition $(R_1, ..., R_M)$ is given
- If criterion is to minimize RSS, then

erion is to minimize RSS, then
$$\hat{\beta}_{m} = \text{avg}(\forall i \mid \forall i \in R_{m})$$

$$(\forall \forall m)$$

- How do we find the partition $(R_1, ... R_M)$?
 - ☐ Finding the optimal tree that minimizes RSS is generally computationally infeasible
 - □ Consider a greedy algorithm instead

Choosing a Split Decision

- Starting with all of the data, consider splitting on variable j at point s
- $(R_1(i,s))$ $(R_2(i,s))$ XiEs

Define

$$R_1(j, s) = \{x \mid x_j \le s\}$$

 $R_2(j, s) = \{x \mid x_j > s\}$

Our objective is

For any (j, s), the inner minimization is solved by $\begin{cases} k = avg & \forall i \forall i \in \mathbb{R} \\ k = 1/2 \end{cases}$

Choosing a Split Decision

$$\min_{j,s} \left[\sum_{x_i \in R_1(j,s)} (y_i - \hat{\beta}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{\beta}_2)^2 \right]$$

$$\hat{\beta}_1 = \operatorname{avg}(y_i \mid x_i \in R_1(j, s))$$

$$\hat{\beta}_2 = \operatorname{avg}(y_i \mid x_i \in R_2(j, s))$$

- For each splitting variable *j*, finding the optimal s can be done efficiently
 - Start at one end - obj. only changes passes an
- Max of *d*(*n*-1) partitions to consider
- So, determining (*j*,*s*) is feasible

Choosing a Split Decision

- Conditioning on the best split just found, we recurse on each of the two regions
- Repeat on all resulting regions
- When do we stop recursing?

How Large of a Tree?

- Tree size is a tuning parameter that governs model complexity Optimal tree size should be chosen adaptively from the data
- Stopping criterion
 - Stop when decrease in RSS due to a split falls below some threshold Shortsighted blc splits later on the
 - □ Stop when a minimum node size (e.g., 5) is reached. Go back and prune.

Cost-Complexity Pruning

- Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees look at penalized RSS
- $\begin{array}{c} \blacksquare \text{ Define a subtree } T \subset T_0 \text{ to be any tree obtained by pruning } T_0 \\ \text{ if full five } \left(\text{prune}^{\sharp} \operatorname{collapse} \overset{\text{an intervalual}}{\underset{t_1 \leq t_1}{\text{total properties of the prune}}} \right) \\ \text{and } |T| = \operatorname{Head} \left(\operatorname{prune}^{\sharp} \operatorname{collapse} \overset{\text{an intervalual}}{\underset{t_1 \leq t_1}{\text{total properties of the prune}}} \right) \\ \end{array}$

and
$$|T| = \# \text{ of leaf nodes}$$
 $n_m = \# \text{ of pts. in leaf node}$

$$C_{\lambda}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \lambda |T| \qquad \qquad \begin{vmatrix} & & & & \\$$

Cost-Complexity Pruning

$$C_{\lambda}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \lambda |T|$$
For a given λ , want to find $T_{\lambda} \subset T_0$ to minimize $C_{\lambda}(T)$

Tuning parameter λ governs tradeoff between tree size and goodness of fit to the data

$$Large \lambda \Rightarrow C_{mall} |Tree|$$

For each λ , can show that there is a unique smallest subtree T_{λ}

 R_4

Comments on Regression Trees

- Partition is not specified apriori, so regression trees provide a locally adaptive technique
- Effectively performs variable selection by discovering the relevant interaction terms
 Implicit in the process
- In the construction, we are assuming that
 - □ Error terms are uncorrelated
 - □ Constant variance

> RSS is right
minim.
metri

©Emily Fox 2014

27

Example: Prostate Cancer

- Fit binary regression tree to log PSA with splits based on eight covariates
- Grow tree with condition of at least 3 observation per leaf
- Results in a tree with 27 splits
- Run weakest-link pruning for each candidate λ, with λ chosen according to CV

©Emily Fox 2014

Issues

- Unordered categorical predictors
 - $\ \square$ With unordered categorical predictors with q possible values, there are 2^{q-1} -1 possible choices of partition points to consider for each variable
 - □ Prohibitive for large q
 - □ Can deal with this for binary *y*...will come back to this in "classification"
- Missing predictor values...how to cope?
 - Can discard
 - □ Can fill in, e.g., with mean of other variables
 - □ With trees, there are better approaches
 - -- Categorical predictors: make new category "missing"
 - -- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

©Emily Fox 2014

Issues

Binary splits

- □ Could split into more regions at every node
- However, this more rapidly fragments the data leaving insufficient data and subsequent levels
- Multiway splits can be achieved via a sequence of binary splits, so binary splits are generally preferred

Instability

- □ Can exhibit high variance
- $\hfill\Box$ Small changes in the data \Rightarrow big changes in the tree
- □ Errors in the top split propagates all the way down
- □ **Bagging** averages many trees to reduce variance

Inference

□ Hard...need to account for stepwise search algorithm

©Emily Fox 2014

31

Issues

Lack of smoothness

- □ Fits piecewise constant models...unlikely to believe this structure
- MARS address this issue (can view as modification to CART)

Difficulty in capturing additive structure

☐ Imagine true structure is

$$y = \beta_1 I(x_1 < t_1) + \beta_2 I(x_2 < t_2) + \epsilon$$

□ No encouragement to find this structure

©Emily Fox 2014

What you need to know

- Regression trees provide an adaptive regression method
- Fit constants (or simple models) to each region of a partition
- Relies on estimating a binary tree partition
 - □ Sequence of decisions of variables to split on and where
 - ☐ Grown in a greedy, forward-wise manner
 - □ Pruned subsequently
- Implicitly performs variable selection
- MARS is a modification to CART allowing linear fits

©Emily Fox 2014

33

Readings

- Wakefield 12.7
- Hastie, Tibshirani, Friedman 9.2.1-9.2.2, 9.2.4, 9.4
- Wasserman 5.12

©Emily Fox 2014