

Choosing a Split Decision

- Starting with all of the data, consider splitting on variable at point s
- Define

$$R_1(j,s) = \{x \mid x_j \le s\}$$

 $R_2(j,s) = \{x \mid x_j > s\}$

Our objective is

■ For any (*j*, s), the inner minimization is solved by

Cost-Complexity Pruning

Searching over all subtrees and selecting using AIC or CV is not possible since there is an exponentially large set of subtrees

look at penalized RSS instead

Define a subtree $T \subset T$ to be any tree obtained by pruning T_0 prune = collapse an internal node

and |T| = # of leaf nodes $n_m = |\{\chi_i \in R_m\}|$

- We examine a complexity criterion

Issues

- Unordered categorical predictors
 - □ With unordered categorical predictors with q possible values, there are 2^{q-1} -1 possible choices of partition points to consider for each variable
 - □ Prohibitive for large *q*
 - □ Can deal with this for binary *y*...will come back to this in "classification"
- Missing predictor values...how to cope?
 - Can discard
 - □ Can fill in, e.g., with mean of other variables
 - □ With trees, there are better approaches
 - -- Categorical predictors: make new category "missing"
 - -- Split on observed data. For every split, create an ordered list of "surrogate" splits (predictor/value) that create similar divides of the data. When examining observation with a missing predictor, when splitting on that dimension, use top-most surrogate that is available instead

©Emily Fox 201

Issues

Binary splits

- □ Could split into more regions at every node
- □ However, this more rapidly fragments the data leaving insufficient data and subsequent levels
- □ Multiway splits can be achieved via a sequence of binary splits, so binary splits are generally preferred

Instability

- □ Can exhibit high variance
- □ Small changes in the data → big changes in the tree
- ☐ Errors in the top split propagates all the way down
- Bagging averages many trees to reduce variance

Inference

☐ Hard...need to account for stepwise search algorithm

©Emily Fox 2014

Issues

Lack of smoothness

- □ Fits piecewise constant models...unlikely to believe this structure
- □ (MARS address this issue (can view as modification to CART)

Difficulty in capturing additive structure

- - ☐ Imagine true structure is

$$y = \beta_1 I(x_1 < t_1) + \beta_2 I(x_2 < t_2) + \epsilon$$

- hard who sufficient data

- hard who sufficient data

- this is just who 2 additive

effects. Harder to happen

or emptor 2014 □ No encouragement to find this structure

Multiple Adaptive Regression Splines MARS is an adaptive procedure for regression Well-suited to high-dimensional covariate spaces Can be viewed as: Generalization of step-wise linear regression Modification of CART Consider a basis expansion in terms of piecewise linear basis functions (linear splines) CART ART From Hastle, Tibshirani, Friedman book

MARS Forward Stepwise

- Given a set of n_m estimation of β_m proceeds as with any linear basis expansion (i.e., minimizing the RSS)
- How do we choose the set of h_m ?
- Start with $h_0(x) = 1$ and M=0
- Consider product of all h_{α} in current model with reflected pairs in C

-- Add terms of the form

$$\hat{\beta}_{M+1}h_{\ell}(x)(x_j-t)_+ + \hat{\beta}_{M+2}h_{\ell}(x)(t-x_j)_+ \quad \text{ in \mathcal{E} Model β_{M+1}, β_{M+2} are est-using \mathbb{L} $+411$ other terms $--$ Select the one that decreases the training error most$$

- Increment M and repeat M=M+2
- Stop when preset M is hit
- Typically end with a large (overfit) model, so backward delete
 - -- Remove term with smallest increase in RSS
 - -- Choose model based on generalized CV

MARS Forward Stepwise Example

 $\beta_3 h_m(x)(x_j - t)_+ + \beta_4 h_m(x)(t - x_j)_+$

with choices for h_m being:

Figure from Hastie, Tibshirani, Friedman book

Why MARS?

- Why forward stagewise?
 - ☐ Hierarchical in that multiway products are built from terms already in model (e.g., 4-way product exists only if 3-way already existed)
 - □ Higher order interactions tend to only exist if some of the lower order interactions exist as well

□ Avoids search over exponentially large space

Notes:

- ☐ Each input can appear at most once in a product...Prevents formation of higher-order powers of an input
- Can place limit on order of interaction. That is, one can allow pairwise products, but not 3-way or higher.
- □ Limit of 1 → additive model

Rpackage: "earth

Connecting MARS and CART

- MARS and CART have lots of similarities
- Take MARS procedure and make following modifications:
 - □ Replace piecewise linear with step functions

- \square When a model term h_m is involved in a multiplication by a candidate term h_m h_m replace it by the interaction and is not available for further interaction
- Then, MARS forward procedure = CART tree-growing algorithm

□ Multiplying a step function by a pair of reflected step functions = split node at the step

- □ 2nd restriction → node may not be split more than once (binary tree)
- MARS doesn't force tree structure → can capture additive effects

©Emily Fox 2014

What you need to know

- Regression trees provide an adaptive regression method
- Fit constants (or simple models) to each region of a partition
- Relies on estimating a binary tree partition
 - □ Sequence of decisions of variables to split on and where
 - ☐ Grown in a greedy, forward-wise manner
 - □ Pruned subsequently
- Implicitly performs variable selection
- MARS is a modification to CART allowing linear fits

©Emily Fox 2014

19

Readings

- Wakefield 12.7
- Hastie, Tibshirani, Friedman 9.2.1-9.2.2, 9.2.4, 9.4
- Wasserman 5.12

©Emily Fox 2014

Projection Pursuit
$$f(x_1,\ldots,x_d)=\alpha+\sum_{m=1}^M f_m(w_m^Tx)$$
• Applying projection pursuit with $M=3$ yields
$$w_1=(.99,.07,.08)^T,\ w_2=(.43,.35,.83)^T,\ w_3=(.74,-.28,-.61)^T\ V_{\text{M}}$$

$$v_1=0.99\text{ are } v_1=0.99\text{ are } v_2=0.43,.35,.83$$
From Wasserman book vasserman book vas

Classification Trees

- What if our response y is **categorical** and our goal is classification? $\forall \epsilon \in \text{[email]} \text{[span]} \Rightarrow \text{[colored]}$
- Can we still use these tree structures?

 Recall our *node impurity* measure

$$Q_m(T) = \frac{1}{n_m} \sum_{x_i \in R_m} (y_i - \hat{\beta}_m)^2 \left(\text{RSS} \right)$$

□ Used this for growing the tree

$$\min_{j,s} \left[\sum_{x_i \in R_1(j,s)} (y_i - \hat{\beta}_1)^2 + \sum_{x_i \in R_2(j,s)} (y_i - \hat{\beta}_2)^2 \right]$$

$$\square \text{ As well as pruning } C_{\lambda}(T) = \sum_{m=1}^{|T|} n_m Q_m(T) + \lambda |T|$$

- Clearly, squared-error is not the right metric for classification

Classification Trees

- First, what is our decision rule at each lea
 - ☐ Estimate probability of each class given data at leaf node:

$$\hat{p}_{mk} = \sum_{\mathbf{n}} \mathbf{n} \mathbf{n}$$

■ Majority vote:

Classification Tree Issues

- Unordered categorical predictors
 - \Box With unordered categorical predictors with q possible values, there are 2^{q-1}-1 possible choices of partition points to consider for each variable
 - For binary (0-1) outcomes, can order predictor classes according to proportion falling in outcome class 1 and then treat as ordered predictor
 - Gives optimal split in terms of cross-entropy or Gini index
 - Also holds for quantitative outcomes and square-error loss...order predictors by increasing mean of the outcome
 - □ No results for multi-category outcomes
- Loss matrix
 - ☐ In some cases, certain misclassifications are worse than others

- □ Introduce *loss matrix* ...more on this soon
- □ See Tibshirani, Hastie and Friedman for how to incorporate into CART

©Emily Fox 2014

35

Classification Tree Spam Example

- Example: predicting spam
- Data from UCI repository

- Response variable: email or spam
- 57 predictors:
 - 48 quantitative percentage of words in email that match a give word such as "business", "address", "internet",...
 - 6 quantitative percentage of characters in the email that match a given character (;, [! \$ #)
 - □ The average length of uninterrupted capital letters: CAPAVE
 - ☐ The length of the longest uninterrupted sequence of capital letters: CAPMAX
 - □ The sum of the length of uninterrupted sequences of capital letters: CAPTOT

©Emily Fox 2014

Classification Tree Spam Example Used cross-entropy to grow tree and misclassification to prune 10-fold CV to choose tree size CV indexed by $\frac{\lambda}{2}$ Sizes refer to $|T_{\lambda}|$ Error rate flattens out around a tree of size 17 From Hastie, Tibshirani, Friedman book

What you need to know

- Classification trees are a straightforward modification to the regression tree setup
- Just need new definition of node impurity for growing and pruning tree
- Decision at the leaves is a simple majority-vote rule

©Emily Fox 2014

Readings

- Wakefield 10.3.2, 10.4.2, 12.8.4
- Hastie, Tibshirani, Friedman 9.2.3, 9.2.5, 2.4

©Emily Fox 2014