Module 4: Coping with Multiple Predictors

Regression Trees

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 15th, 2014

©Emily Fox 2014

Recursive Binary Partitions
" I
m To simplify the process and

interpretability, consider
recursive binary partitions

———

m Described via a rooted tree

Every node of the tree -;
corresponds to sptit-decisian {{l 7
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Resulting Model
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m Model the response as constant within each region
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Figures from Hastie, Tibshirani, Friedman book
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Basis Expansion Interpretation
" JEE

m Equivalent to a basis expansion

- 3 X1
W (ﬂ'\g
m In this example: \ f‘\ ) Xz <ty
(@1, T Iy < ty)1 (29 < 1) (W
ho(x1,T2) = ,(xl < ty)I(ze > to) Ri  Rs
ha(w1,22) = I(xy > t1)1 (21 < t3)
ha(z1,22) = (21 > t1)1(z1 > t3)I (22 < t4)
hs (21, z2y= (21 > t1) (21 > t3)[ (72 > t4) ‘
*b(nsor product spline w/ Step (en loa515




Choosing a Split Decision

" JE
m Starting with all of the data, consider
splitting on variabl{j) at point/s)

-)”\ / SB S R.,/(
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m For any (j, ), the inner minimization is solved by
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Cost-Complexity Pruning
" JEE

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees
> | l12ed RSS inpexd
so ok nalite Infke &
. k i A& . .
m Define a subtree T C to be any tree obtalged by pruning T
prone = ollapse pn indernal nooe
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Cost-Complexity Pruning
- w,@uLnLL

Uim '50-"
@ CAT) =D nmQum(T) + AT
m=1

Successively collapse the internal node that
produces smallest increase in RSS X <ty
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"
e i %‘?
= Can find using weakest link pruning r"]_|
I
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Continue until at single-node (root) tree Xast X1 <t
Produces a finite sequence of subtrees,
which must contain T’

X2 <ty

See Breiman 1984) or Ripley (1996) R Rs Rs

s N
r 10-fold CV p)

m Choose A vi
m Final tree:
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Issues

" JEE
m Unordered categorical predictors KB (Ud?\

With unordered categorical predictors with g pessible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large q
Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?
Can discard
Can fill in, e.g., with mean of other variables
With trees, there are better approaches
-- Categorical predictors: maw
-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.

When examining observation with a missing predictor, when splitting on
that dimension, use top-most surrogate that is available instead

©Emily Fox 2014 8




Issues
" JdEE

m Binary splits
Could split into more regions at every node

However, this more rapidly fragments the data leaving insufficient data and
subsequent levels

Multiway splits can be achieved via a sequence of bina&\s’plits, S0 binary

splits are generally preferred
M= [
= Instability \

Can exhibit high variance

Small changes in the data = big changes in the tree
Errors in the top split propagates all the way down
Bagﬂing averages many trees to reduce variance

]

m Inference
Hard...need to account for stepwise search algorithm
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Issues
" JdEE

m Lack of smoothness
Fifs=piecewise constant models...unlikely to believe this structure
Ssaddress this issue (can view as modification to CART)
N \aber thig lectire
m Difficulty in capturing additive structure X Y,
Imagine true structure s =0

y =Bz <tr) + ol <tg) +¢ & Yich

No encouragement to find this structure Y4
?de&\ CH‘\
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Multiple Adaptive Regression Splines
" JEE
m MARS is an adaptive procedure for regression
Well-suited to high-dimensional covariate spaces R
‘CL» cVS o f\'\"’“s

Lirst

m Can be viewed as: ./

Generalization of step-wise linear regression

Modification of CART

'X/ \ ?\w w\se’ \"\€ ( o(g 0.2 0.4 t 06 0.8 1.0
\73\ k“o % From Hastie, leshlranl Friedman book
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Multiple Adaptive Regression Splines
" Xégd
m Take knots at all observed x;

€ ={(z; = ), (¢ - )}‘Céz*‘” i

If all locations are unique, then @@’@ba&s functlons
Treat each basis function as a function on x, ]Ijst varying with x;

@ (-0 &

m The resulting model has the form

f(x) = Bo+ Zﬁm@ L%E
C o

m Built in a forward stepwise manner in terms of this basis
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MARS Forward Stepwise

]
m Given a set of E;; estimation of /3,,, proceeds as with any linear
basis expansiolr(i.e., minimizing the RSS)

basis

m How do we choose the set of h,,,?

.
'F as
1. Start with hg(z) =1 and M=0 J/
. Consider product of all h4in current model with reflected pairs in C
-- Add terms ofw \\ e A M
Brrahe(@T 04 + Bursahe(a)(t - ) 9 WL E s
B are €5t- 0Sing 'S + ql| other Yermss

-- Selec?the one that decreases the training error most - h\

- in Mo
Increment M and repeat ['\ "My« L s

4. Stop when preset M is hit

5. Typically end with a large (overfit) model, so backward delete
-- Remove term with smallest increase in RSS

-- Choose model based on generalized CV
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MARS Forward Stepwise Example
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m Add pair to the model and then consider including a pair like
B3hm () (xj = )1 + Bahm () (E = 25) 4
with choices for h,, being:
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Figure from Hastie, Tibshirani, Friedman book
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MARS Forward Stepwise

From
Hastie,
Tibshirani,
Friedman
book
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Why MARS?
* A

m Why these piecewise linear basis functions?
Ability to operate locally
= When multipliemzero only over small part of the input space
= Resulting regression surface has local components and only
where needed (spend parameters carefully in high dims)
Computations with linear basis are very efficient
= Naively, we consider fitting n reflected pairs for each input x;
- O(n?) operations
= Can exploit simple form of piecewise linear function (@05'(' lfk(

= Fit function with rightmost knot. As knot moves, basis functions CA&T\
differ by 0 over the left and by a constant over the right
- Can try every knot in O(n)

=
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Why MARS?
" J

m Why forward stagewise?

Hierarchical in that multiway products are built from terms already in model
(e.g., 4-way product exists only if 3-way already existed)

Higher order interactions tend to only exist if some of the lower order
interactions exist as well

Avojd ' po i , space(ile' ql\SubSQA

Each input camappea 3 once in a product...Prevents formation of
higher-order powers of an input

Can place limit on order of interaction. That is, one can allow pairwise
products, but not 3-way or higher.

(A
Limit of@é additive model @ QQCKQ 7(_ QC\( ’\'\\
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Connecting MARS and CART
" JEE

m MARS and CART have lots of similarities

m Take MARS procedure and make following madifications:
Replace piecewise linear with step functions ( ".(,7 0) ,L(X°{7 < 0‘

When a model term(h,) is involved in a multiplication by a Candldate term"\ C "
replace it by the interaction and is not available for further interaction

m Then, MARS forward procedure = CART tree-growing algorithm
Multiplying a step function by a pair of reflected step functions__— ®

= split node at the step
' +
WA 1 ()

Ttk e

2nd restriction = nod‘é may not be split more than once (binary tree)

m MARS doesn’t force tree structure - can capture additive effects

©Emily Fox 2014 18




What you need to know
" JE

m Regression trees provide an adaptive regression method

—

Fit constants (or simple models) to each region of a partition

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where

Grown in a greedy, forward-wi

Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits

©Emily Fox 2014 19

Readings
" A
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman — 9.2.1-9.2.2, 9.2.4, 9.4
m Wasserman —5.12

©Emily Fox 2014 20
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Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 15", 2014
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Rock Data
" JEE
m 48 rock samples from a petroleum reservoir

m Response = permeability
m Covariates = area of pores, perimeter, and shape

log permeability
log permeability

1\ From
. Wasserman
book

log permeability

|||||

0 200 400 600 800 1200
shape
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Generalized Additive Model
" JE
m Fita GAM:
permeability = f; (area) + fa(perimeter) + f3(shape) + €
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GAM vs. Local Linear Fits
= JEE

m Comparison to a 3-dimensional local linear fit
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Projection Pursuit

M
= (1, 2d) =t D fn(wy,)
m Applying projection pursuit with M = 3 yields m=1 A
wy = (.99,.07,.08)7 wy = (.43,.35,.83)T, w3 = (.74, .28, —.61)7 V
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Regression Trees
]
m Fit a regression tree to the rock data
m Note that the variable “shape” does not appear in the tree
@ 1403
rea £ 1068 e < 3967
| IO o l 91 i)en < .194$i
1 1
7.746 8.407 8.678 8.893 8.985 8.099 8.339
From Wasserman book
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Module 5: Classification

A First Look at
Classification: CART

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 15", 2014
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=

<ty
Ri  Ro Rs (W

Ry Rs X1

m So far, we have assumed continuous responses y and looked at
regression tree models:
M

uuuuuuuuuuuuu
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Classification Trees
= JEE

m What if our response y is categorical and our goal is
lassification? [~ (
classification \1 ¢ £\CMRI\ “Span > - 201’3
1ege .. .63
NN

m Can we still use these tree structures? w
m Recall our node impurity measure

QnlT) == 3 (5= Bu)” [R59)

z;,€ERm,
Used this for growing the tree

min [ SN -2+ D> wi- 52)2]
’ z;€R1(4,s) - z; €R2(j,s)
T

As well as pruning
C( Z M Qum(T) + AT

m Clearly, squared-error is not the right metric for classification

©Emily Fox 2014 29

Classification Trees

T /\

" o/ S A
A iR Yot cs’ cs’ ho)
S L i X o’\bo’\bo \O/\b ol
= ‘}} =
m First, what is our?dgl:is?on ydrelat éach"iéa?f" ? 3 A

Estimate probability of each class given data at leaf node:
. I - \
Pmk = — i [ k‘\\/\(

LAF' .
Majority vote: +u ¢ M

k(m) = at Pk
6\( 7 W\ ? W\ Figures from Andrew Moore kd-tree tutorial
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Classification Trees
= JEE
e®e . . / \

d/\b /\

& £ 4o \b\ba(ﬁ

Ev 8y 4

m How do we measure node impurity for this f|t/deC|S|o§ rule’>

Misclassification error: ( Z
—

Nm
€ Ra

Gini index: i ?Mk? " - i ew\k(“?mk\

kr
Cross- entropy Or eV|ance
i {nk ‘° fmk

Flgures from Andrew Moore kd-tree tutorial
31

‘P )

Classification Trees wxaés
AW

" JEE Y
[ ] hd [ ] i [ ] °
From
Hastie,
Tibshirani,
Friedman

book

m How do we measure node impurity for thig fit/decision rule? '“\
Misclassification error (K=2): A - f ?

\ maxX (Q) @\ ) e c\as
Gini index (K=2): (LQU'?\ Q\\o"[(l \D\

Cross-entropy or deviance (K=2): — €\° P "
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Notes on Impurity Measures /&/KGG,
« EE— :

m Impurity measures
Misclassification error 1- ﬁmk(m)

Gini index: mek pmk

Cross- entropy or dewance — E pmk log pmk From Hastie, Tibshirani,
el Friedman book

= Comments:
Differentiability G iny+ < ross- Cy\-\’WP\{
Sensitivity to changes in node probabilities \ (‘L\\ C\qsg.

O @ 6 %00\ + (36t(00
(be L\oo\ /—) ( % \ 36 ) >a rq_\csorzg
— (').0(3 L\ob\«(’ (’L()b/ \'\Qure f“k H\S
(x4 eatrepd ace |,

Often use Gini or cross-entropy for growing tree, and misclass. for prunlng ﬂ

R g

©Emily Fox 2014

Notes on Impurity Measures
" 3

m Impurity measures
Misclassification error 1- ﬁmk(m)

Gini index: mek(l = k)
k=1

Cross-entropy or deviance: — E pmk log pmk From Hastie, Tibshirani,
1 Friedman book

m Other interpretations of Gini index:
Instead of majority vote, classify observation slass k with prob. pmk

Eccor= i , QMk W clags it k\
gk \ . ok \«Sﬁk

Code each observation as 1 for class k and 0 otherW|se

= Variance: \ g\jq\hs"’ Q\\ ?W\\\ \ VW\E\

= Summing over k gives the G|n| index
©Emily Fox 2014 34
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Classification Tree Issues
=

m Unordered categorical predictors
With unordered categorical predictors with g possible values, there are
29-1-1 possible choices of partition points to consider for each variable
For binary (0-1) outcomes, can order predictor classes according to
proportion falling in outcome class 1 and then treat as ordered predictor

= Gives optimal split in terms of cross-entropy or Gini index

Also holds for quantitative outcomes and square-error loss...order
predictors by in@ing mean of the outcome
No results for multi-category outcomes

m Loss matrix
In some cases, certain mlsclassmcatlon are worse than others \})
im ﬁ M d15ease B\ seae
Introduce loss matrix . more on thls soon
See Tibshirani, Hastie and Friedman for how to incorporate into CART
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Classification Tree Spam Example
" JE

m Example: predicting spam
m Response variable: email or spam
m 57 predictors:

48 quantitative — percentage of words in email that match a give word such
as “business”, “address”, “internet”,

6 quantitative — percentage of characters in the email that match a given
character (;,[!'$#)

The average length of uninterrupted capital letters: CAPAVE
The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT

m Data from UCI repository

» o«

©Emily Fox 2014 36
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Classification Tree Spam Example
" JE

m Used cross-entropy to grow tree and misclassification to prune
il

m 10-fold CV to choose tree size
CV indexed by A

Sizes refer to| T} |
Error rate flattens out sl ¥
around a tree of size 17 \
2 Qo “
= i¥
- KT
S R L' R
=
0 10 2‘0 30 40
Tree Size
From Hastie, Tibshirani, Friedman book
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Classification Tree Spam Example
" JE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree -

11 of these overlap with the 16 significant
predictors from the additive model
previously explored

From Hastie,
Tibshirani,
Friedman book

o7
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Classification Tree Spam Example
" JE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

11 of these overlap with the 16 significant
predictors from the additive model
previously explored

m Overall error rate (9.3%) is
higher than for additive model

Predicted From Hastie,

Tibshirani,
Friedman book

.0/0 .
5.3% 33.4%
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What you need to know
" JE
m Classification trees are a straightforward modification to the
regression tree setup

m Just need new definition of node impurity for growing and
pruning tree —

m Decision at the leaves is a simple majority-vote rule

©Emily Fox 2014 40
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Readings
= JEE
m Wakefield — 10.3.2, 10.4.2, 12.8.4
m Hastie, Tibshirani, Friedman —9.2.3, 9.2.5, 2.4

a1
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