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Recursive Binary Partitions 
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 To simplify the process and 

interpretability, consider 

recursive binary partitions 

 

 Described via a rooted tree 

 Every node of the tree 

corresponds to split decision 

 Leaves contain a subset of the 

data that satisfy the conditions 

 

 

 

 

 

 

 

 

 

 

Figures from Andrew Moore kd-tree tutorial 
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Resulting Model 

 Model the response as constant within each region 
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Figures from Hastie, Tibshirani, Friedman book 

Basis Expansion Interpretation 

 Equivalent to a basis expansion 

 

 

 

 In this example: 
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Choosing a Split Decision 
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 Starting with all of the data, consider  

splitting on variable j at point s 

 Define 

 

 

 

 Our objective is 

 

 

 

 

 For any (j, s), the inner minimization is solved by 

 

 

Cost-Complexity Pruning 
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 Searching over all subtrees and selecting using AIC or CV is not 

possible since there is an exponentially large set of subtrees 

 
 

 Define a subtree  to be any tree obtained by pruning 

 

and 

 

 

 

 

 We examine a complexity criterion 
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Cost-Complexity Pruning 
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 Can find using weakest link pruning 

 Successively collapse the internal node that 

produces smallest increase in RSS 

 

 

 Continue until at single-node (root) tree 

 Produces a finite sequence of subtrees, 

which must contain  

 See Breiman et al. (1984) or Ripley (1996) 

 

 Choose λ via 5- or 10-fold CV 

 Final tree:  

 

 

 

Issues 
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 Unordered categorical predictors 

 With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 

 Prohibitive for large q 

 Can deal with this for binary y…will come back to this in “classification” 

 

 Missing predictor values…how to cope? 

 Can discard 

 Can fill in, e.g., with mean of other variables 

 With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 

-- Split on observed data.  For every split, create an ordered list of 

“surrogate” splits (predictor/value) that create similar divides of the data.  

When examining observation with a missing predictor, when splitting on 

that dimension, use top-most surrogate that is available instead 
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Issues 
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 Binary splits 

 Could split into more regions at every node 

 However, this more rapidly fragments the data leaving insufficient data and 

subsequent levels 

 Multiway splits can be achieved via a sequence of binary splits, so binary 

splits are generally preferred 

 

 Instability 

 Can exhibit high variance 

 Small changes in the data  big changes in the tree 

 Errors in the top split propagates all the way down 

 Bagging averages many trees to reduce variance 

 

 Inference 

 Hard…need to account for stepwise search algorithm 

 

 

 

 

 

Issues 
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 Lack of smoothness 

 Fits piecewise constant models…unlikely to believe this structure 

 MARS address this issue (can view as modification to CART) 

 

 Difficulty in capturing additive structure 

 Imagine true structure is 

 

 

 No encouragement to find this structure 
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Multiple Adaptive Regression Splines 

©Emily Fox 2014 11 

 MARS is an adaptive procedure for regression 

 Well-suited to high-dimensional covariate spaces 
 

 Can be viewed as: 

 Generalization of step-wise linear regression 

 Modification of CART 
 

 Consider a basis expansion in terms of piecewise linear basis 

functions (linear splines) 

 

 

 

 

 

 

 

 

From Hastie, Tibshirani, Friedman book 

Multiple Adaptive Regression Splines 
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 Take knots at all observed xij 

 
 

 If all locations are unique, then 2*n*d basis functions 

 Treat each basis function as a function on x, just varying with xj 

 
 

 The resulting model has the form 

 

 

 

 

 

 Built in a forward stepwise manner in terms of this basis 
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MARS Forward Stepwise 
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 Given a set of hm, estimation of       proceeds as with any linear 

basis expansion (i.e., minimizing the RSS) 
 

 How do we choose the set of hm? 

1. Start with                    and M=0 

2. Consider product of all hm in current model with reflected pairs in C  

 -- Add terms of the form 

 

 

  

 -- Select the one that decreases the training error most 

3. Increment M and repeat 

4. Stop when preset M is hit 

5. Typically end with a large (overfit) model, so backward delete 

 -- Remove term with smallest increase in RSS 

 -- Choose model based on generalized CV 

 

 

MARS Forward Stepwise Example 
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 At the first stage, add term of form 
 

 

with the optimal pair being 

 

 Add pair to the model and then consider including a pair like 

 
 

with choices for hm being: 

 

Figure from Hastie, Tibshirani, Friedman book 
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MARS Forward Stepwise 
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 In pictures… 

From 

Hastie, 

Tibshirani, 

Friedman 

book 

Why MARS? 
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 Why these piecewise linear basis functions? 

 Ability to operate locally 

 When multiplied, non-zero only over small part of the input space 

 Resulting regression surface has local components and only 

where needed (spend parameters carefully in high dims) 

 Computations with linear basis are very efficient 

 Naively, we consider fitting n reflected pairs for each input xj  

 O(n2) operations 

 Can exploit simple form of piecewise linear function 

 Fit function with rightmost knot.  As knot moves, basis functions 

differ by 0 over the left and by a constant over the right  

 Can try every knot in O(n) 

 

 



9 

Why MARS? 
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 Why forward stagewise? 

 Hierarchical in that multiway products are built from terms already in model 

(e.g., 4-way product exists only if 3-way already existed) 

 Higher order interactions tend to only exist if some of the lower order 

interactions exist as well 

 Avoids search over exponentially large space 

 

 Notes: 

 Each input can appear at most once in a product…Prevents formation of 

higher-order powers of an input 

 Can place limit on order of interaction.  That is, one can allow pairwise 

products, but not 3-way or higher.   

 Limit of 1  additive model 

 

Connecting MARS and CART 
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 MARS and CART have lots of similarities 
 

 Take MARS procedure and make following modifications: 
 Replace piecewise linear with step functions 

 

 When a model term hm is involved in a multiplication by a candidate term, 
replace it by the interaction and is not available for further interaction 

 

 Then, MARS forward procedure = CART tree-growing algorithm 
 Multiplying a step function by a pair of reflected step functions 

= split node at the step 

 

 

 

 2nd restriction  node may not be split more than once (binary tree) 
 

 MARS doesn’t force tree structure  can capture additive effects 
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What you need to know 

 Regression trees provide an adaptive regression method 

 

 Fit constants (or simple models) to each region of a partition 

 

 Relies on estimating a binary tree partition 

 Sequence of decisions of variables to split on and where 

 Grown in a greedy, forward-wise manner 

 Pruned subsequently 

 

 Implicitly performs variable selection 

 

 MARS is a modification to CART allowing linear fits 
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Readings 

 Wakefield – 12.7 

 Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 

 Wasserman – 5.12 
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STAT/BIOSTAT 527, University of Washington 

Emily Fox 

May 15th, 2014 
©Emily Fox 2014 

Module 4: Coping with Multiple Predictors 

21 

Rock Data 
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 48 rock samples from a petroleum reservoir 

 Response = permeability 

 Covariates = area of pores, perimeter, and shape 

 

 

 

From 

Wasserman 

book 
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Generalized Additive Model 
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 Fit a GAM: 

 

 

 

 

From 

Wasserman 

book 

GAM vs. Local Linear Fits 
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 Comparison to a 3-dimensional local linear fit 

 

 

 

 

From 

Wasserman 

book 
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Projection Pursuit 

 Applying projection pursuit with M = 3 yields 

 

 

 

From 

Wasserman 

book 

Regression Trees 
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 Fit a regression tree to the rock data 

 Note that the variable “shape” does not appear in the tree 

 

 

 

 

 

 

 

 

From Wasserman book 
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Module 5: Classification 
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Regression Trees 

 So far, we have assumed continuous responses y and looked at 

regression tree models: 

28 ©Emily Fox 2014 

Figures from Hastie, Tibshirani, Friedman book 
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Classification Trees 
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 What if our response y is categorical and our goal is 
classification? 

 

 

 Can we still use these tree structures? 

 Recall our node impurity measure 
 

 

 

 Used this for growing the tree 

 

 

 

 As well as pruning 

 

 Clearly, squared-error is not the right metric for classification 

Classification Trees 
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 First, what is our decision rule at each leaf? 

 Estimate probability of each class given data at leaf node: 

 

 

 Majority vote: 

 

Figures from Andrew Moore kd-tree tutorial 
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Classification Trees 
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 How do we measure node impurity for this fit/decision rule? 

 Misclassification error: 

 
 Gini index: 

 
 Cross-entropy or deviance: 

Figures from Andrew Moore kd-tree tutorial 

Classification Trees 
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 How do we measure node impurity for this fit/decision rule? 

 Misclassification error (K=2): 

 
 Gini index (K=2): 

 
 Cross-entropy or deviance (K=2): 

From 

Hastie, 

Tibshirani, 

Friedman 

book 
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Notes on Impurity Measures 
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 Impurity measures 

 Misclassification error: 

 

 Gini index: 

 

 Cross-entropy or deviance: 

 

 Comments: 

 Differentiability 

 Sensitivity to changes in node probabilities 

 

 

 

 

 

 Often use Gini or cross-entropy for growing tree, and misclass. for pruning 

From Hastie, Tibshirani, 

Friedman book 

Notes on Impurity Measures 
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 Impurity measures 

 Misclassification error: 

 

 Gini index: 

 

 Cross-entropy or deviance: 

 

 Other interpretations of Gini index: 

 Instead of majority vote, classify observations to class k with prob. 

 

 

 
 Code each observation as 1 for class k and 0 otherwise 

 Variance: 

 

 Summing over k gives the Gini index 

From Hastie, Tibshirani, 

Friedman book 
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Classification Tree Issues 
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 Unordered categorical predictors 

 With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 

 For binary (0-1) outcomes, can order predictor classes according to 

proportion falling in outcome class 1 and then treat as ordered predictor 

 Gives optimal split in terms of cross-entropy or Gini index 

 Also holds for quantitative outcomes and square-error loss…order 

predictors by increasing mean of the outcome 

 No results for multi-category outcomes 

 

 Loss matrix 

 In some cases, certain misclassifications are worse than others 

 

 Introduce loss matrix …more on this soon 

 See Tibshirani, Hastie and Friedman for how to incorporate into CART 

Classification Tree Spam Example 

 Example: predicting spam 

 

 Data from UCI repository  

 

 Response variable: email  or  spam 

 57 predictors: 

 48 quantitative – percentage of words in email that match a give word such 

as “business”, “address”, “internet”,… 

 6 quantitative – percentage of characters in the email that match a given 

character ( ; , [ ! $ # ) 

 The average length of uninterrupted capital letters: CAPAVE 

 The length of the longest uninterrupted sequence of capital letters: CAPMAX 

 The sum of the length of uninterrupted sequences of capital letters: CAPTOT 
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 Used cross-entropy to grow tree and misclassification to prune 

 

 10-fold CV to choose tree size 

 CV indexed by λ 

 Sizes refer to 

 Error rate flattens out 

around a tree of size 17  

From Hastie, Tibshirani, Friedman book 
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Classification Tree Spam Example 

 Resulting tree of size 17  

 

 Note that there are 13 distinct covariates 

split on by the tree 

 11 of these overlap with the 16 significant 

predictors from the additive model 

previously explored 

From Hastie, 

Tibshirani, 

Friedman book 
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Classification Tree Spam Example 
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 Resulting tree of size 17  

 

 Note that there are 13 distinct covariates 

split on by the tree 

 11 of these overlap with the 16 significant 

predictors from the additive model 

previously explored 

 

 Overall error rate (9.3%) is  

higher than for additive model 

From Hastie, 

Tibshirani, 

Friedman book 
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Classification Tree Spam Example 

What you need to know 

 Classification trees are a straightforward modification to the 

regression tree setup 

 

 Just need new definition of node impurity for growing and 

pruning tree 

 

 Decision at the leaves is a simple majority-vote rule 
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Readings 

 Wakefield – 10.3.2, 10.4.2, 12.8.4 

 Hastie, Tibshirani, Friedman – 9.2.3, 9.2.5, 2.4 
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