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Recursive Binary Partitions
" I
m To simplify the process and

interpretability, consider
recursive binary partitions
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m Described via a rooted tree

Every node of the tree
corresponds to sptit-decisian

Leaves contain a subset of the
ata that satisfy the conditions
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Resulting Model
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Figures from Hastie, Tibshirani, Friedman book
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Basis Expansion Interpretation
" JEE

m Equivalent to a basis expansion

:mZZIBmhm(x) . ’tom«\olé Xy, <Ay

hi(z1,x2) = I( <t1)I(ze < ts)
ho(x1,22) = I(w <t1)I(xg > ta)
hs(z1,x2) = I(x1 > t1)(x1 < t3)
ha(z1,x0) = I(x1 > t1) (1 > t3) (12 < ty)
hs(z1,x2) = I(x1 > t1)I(x1 > t3)] (22 > t4)
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Choosing a Split Decision
" JEE

m Starting with all of the data, consider \
. 01 the data \ . )
Sp|I'F'[Ing on variable j at point s ¢ ) < Rv() ;S
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m For any (j, s) the i mner minimization is solved by
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Cost-Complexity Pruning
" JEE

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees
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m Define a subtree 1" C T{, to be any tree obtalged by pruning 7§
prene= ollapse an snernal no

and |T| = # of leal nodes fi=h, T,
wl(\(tl. o \1X GR i\
.o\’ m — A M
ﬂ'o\\O:Ls A~ \’A X2 <tz X4 §B<
5m N “"‘ y,LéQﬂ
Voum = 5 S )
= We examine & C omﬁTexﬁy criterion Bi Rz R (W
7|
=D 1 Qu(T) + N[T| N

m=1
©Emily Fox 2014 6




Cost-Complexity Pruning
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@ CAT) =D nmQum(T) + AT
m=1

Successively collapse the internal node that
produces smallest increase in RSS X <ty

Zﬂvm Q) |

M
= 9

m Can find using weakest link pruning r‘|]_|
Il

Continue until at single-node (root) tree Xast X1 <t
Produces a finite sequence of subtrees,
which must contain T’

X2 <ty

See Breiman et al. (1984) or Ripley (1996) R Rs Rs

~
= Choose A via 5- or 10-fold CV — X

m Final tree: Tg
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Issues
" JEE

m Unordered categorical predictors

With unordered categorical predictors with g possible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large q
Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?
Can discard
Can fill in, e.g., with mean of other variables
With trees, there are better approaches
-- Categorical predictors: make new category “missing”
-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.
When examining observation with a missing predictor, when splitting on
that dimension, use top-most surrogate that is available instead
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Issues
= JEE

m Binary splits
Could split into more regions at every node

However, this more rapidly fragments the data leaving insufficient data and
subsequent levels

Multiway splits can be achieved via a sequence of binary splits, so binary
splits are generally preferred

= [nstability
Can exhibit high variance
Small changes in the data - big changes in the tree
Errors in the top split propagates all the way down
Bagging averages many trees to reduce variance

m Inference
Hard...need to account for stepwise search algorithm
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Issues
= JEE

m Lack of smoothness

Fits piecewise constant models...unlikely to believe this structure
MARS address this issue (can view as modification to CART)

m Difficulty in capturing additive structure
Imagine true structure is

y=LF1l(xy <ty)+ Pol(ze <tz)+e

No encouragement to find this structure
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Multiple Adaptive Regression Splines
" I

m MARS is an adaptive procedure for regression
Well-suited to high-dimensional covariate spaces

m Can be viewed as:
Generalization of step-wise linear regression
Modification of CART

m Consider a basis expansion in terms of piecewise linear basis
functions (linear splines)

T N

Basis Function
0.0 0.1 02 03 04 05

0.0 0.2 0.4 t 0.6 0.8 1.0

From Hastie, Tibshirani, Friedman book

©Emily Fox 2014 11

Multiple Adaptive Regression Splines
" JEE
m Take knots at all observed x;
C={(z; —t)4, (t —x;)4+}
If all locations are unique, then 2*n*d basis functions
Treat each basis function as a function on x, just varying with x;

hm(x) =

m The resulting model has the form

f@)=B0+ > Bmhm(z)

m Built in a forward stepwise manner in terms of this basis
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MARS Forward Stepwise
" JE

m Given a set of h,, estimation of 3,,, proceeds as with any linear
basis expansion (i.e., minimizing the RSS)

m How do we choose the set of h,,,?

1. Start with ho(xz) =1 and M=0

2. Consider product of all h,, in current model with reflected pairs in C
-- Add terms of the form

Brrrhe(@) (x5 — )4 + Brrohe(@)(t — 25) 4

-- Select the one that decreases the training error most
3. Increment M and repeat
4. Stop when preset M is hit

5. Typically end with a large (overfit) model, so backward delete
-- Remove term with smallest increase in RSS
-- Choose model based on generalized CV
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MARS Forward Stepwise Example
" J

Barahe(@) () — )4 + Bavahe(x)(t — )+

m At the first stage, add term of form ()K

Bi(zj — 1)y + Ba(t — wj)+
with the optimal pair being

m Add pair to the model and then consider including a pair like

Bahm (2)(2j = )4 + Bahm (2)(t = 2;5)+
with choices for h,, being:

Figure from Hastie, Tibshirani, Friedman book
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MARS Forward Stepwise

m |n pictures...

From
Hastie,
Tibshirani,
Friedman
book
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Why MARS?
* JE

m Why these piecewise linear basis functions?
Ability to operate locally
= When multiplied, non-zero only over small part of the input space
= Resulting regression surface has local components and only
where needed (spend parameters carefully in high dims)
Computations with linear basis are very efficient
= Naively, we consider fitting n reflected pairs for each input x;
- O(n?) operations
= Can exploit simple form of piecewise linear function

= Fit function with rightmost knot. As knot moves, basis functions
differ by 0 over the left and by a constant over the right
- Can try every knot in O(n)
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Why MARS?
" J

m Why forward stagewise?

Hierarchical in that multiway products are built from terms already in model
(e.g., 4-way product exists only if 3-way already existed)

Higher order interactions tend to only exist if some of the lower order
interactions exist as well

Avoids search over exponentially large space

= Notes:

Each input can appear at most once in a product...Prevents formation of
higher-order powers of an input

Can place limit on order of interaction. That is, one can allow pairwise
products, but not 3-way or higher.

Limit of 1 = additive model
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Connecting MARS and CART
" JEE

m MARS and CART have lots of similarities

m Take MARS procedure and make following modifications:
Replace piecewise linear with step functions

When a model term h,, is involved in a multiplication by a candidate term,
replace it by the interaction and is not available for further interaction

m Then, MARS forward procedure = CART tree-growing algorithm

Multiplying a step function by a pair of reflected step functions
= split node at the step

2nd restriction = node may not be split more than once (binary tree)

m MARS doesn’t force tree structure - can capture additive effects
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What you need to know
" JE

m Regression trees provide an adaptive regression method

Fit constants (or simple models) to each region of a partition

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where
Grown in a greedy, forward-wise manner
Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits
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Readings
" A
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman — 9.2.1-9.2.2, 9.2.4, 9.4
m Wasserman —5.12
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Module 4: Coping with Multiple Predictors

A Short Case Study

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 15", 2014
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Rock Data
" JEE
m 48 rock samples from a petroleum reservoir

m Response = permeability
m Covariates = area of pores, perimeter, and shape
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Generalized Additive Model
" JE
m Fita GAM:
permeability = f; (area) + fa(perimeter) + f3(shape) + €
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GAM vs. Local Linear Fits
" JEE
m Comparison to a 3-dimensional local linear fit
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Projection Pursuit M
» o 1, T0) = ot ) fn(wna)
m Applying projection pursuit with M = 3 yields m=1
wy = (.99,.07,.08)7 wy = (.43,.35,.83)T, w3 = (.74, .28, —.61)7
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Regression Trees
" JEE
m Fit a regression tree to the rock data
m Note that the variable “shape” does not appear in the tree

area < 1403
area < 1068 I—- area < 3967 —I
area < 3967 peri < .1949
peri < .1991 I I I
1 1
7.746 8.407 8.678 8.893 8.985 8.099 8.339

From Wasserman book
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Module 5: Classification

A First Look at
Classification: CART

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 15", 2014
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=
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m So far, we have assumed continuous responses y and looked at
regression tree models:
M
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Classification Trees
= JEE

m What if our response y is categorical and our goal is
classification?

m Can we still use these tree structures?
m Recall our node impurity measure

Qn(T) = ni Z (yi — Bm)2

m z;,€ERm,
Used this for growing the tree

11;1131 Z (vi — B + Z (4 — B2)?
" |wi€Ri(9) z;€R2(j,5)
|7

As well as pruning
C( Z Nn Qo (T) + AT

m Clearly, squared-error is not the right metric for classification
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Classification Trees

T A
T /\) A\

J e | degbgo of({bb

m First, what is our decision rule at each leaf?
Estimate probability of each class given data at leaf node:

ﬁmk: -
Majority vote:
k(m) =

Figures from Andrew Moore kd-tree tutorial
©Emily Fox 2014 30
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Classification Trees

ST A xS

J et SeLe Lo Op

m How do we measure node impurity for this fit/decision rule?
Misclassification error:

Gini index:

Cross-entropy or deviance:

Figures from Andrew Moore kd-tree tutorial
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Classification Trees

From
Hastie,

Friedman
book

m How do we measure node impurity for this fit/decision rule?
Misclassification error (K=2):

Gini index (K=2):

Cross-entropy or deviance (K=2):
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Notes on Impurity Measures

" J
m Impurity measures
Misclassification error: 1 — ﬁmk(m)

02 03 04 05

K
Gini index: E Pk(1 = Prnkc) .
k=1 K i
Cross-entropy or deviance: — g Dk 10g Pk From Hastie, Tibshirani,
el Friedman book

m Comments:
Differentiability
Sensitivity to changes in node probabilities

Often use Gini or cross-entropy for growing tree, and misclass. for pruning
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Notes on Impurity Measures

" JEE
m Impurity measures
Misclassification error: 1 — ﬁmk(m)

03 04 05

K
Gini index: > Dk(1=Pmr)
k=1 K i v
Cross-entropy or deviance: — E Dk 10g Dk From Hastie, Tibshirani,
1 Friedman book

m Other interpretations of Gini index:
Instead of majority vote, classify observations to class k with prob. ﬁmk

Code each observation as 1 for class k and 0 otherwise
= Variance:

= Summing over k gives the Gini index
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Classification Tree Issues
=

m Unordered categorical predictors

With unordered categorical predictors with q possible values, there are
29-1-1 possible choices of partition points to consider for each variable

For binary (0-1) outcomes, can order predictor classes according to
proportion falling in outcome class 1 and then treat as ordered predictor
= Gives optimal split in terms of cross-entropy or Gini index

Also holds for quantitative outcomes and square-error loss...order
predictors by increasing mean of the outcome

No results for multi-category outcomes

m Loss matrix
In some cases, certain misclassifications are worse than others

Introduce loss matrix ...more on this soon
See Tibshirani, Hastie and Friedman for how to incorporate into CART

©Emily Fox 2014 35

Classification Tree Spam Example
" JE

m Example: predicting spam
m Data from UCI repository

m Response variable: email or spam

m 57 predictors:

48 quantitative — percentage of words in email that match a give word such

as “business”, “address”, “internet”,...

6 quantitative — percentage of characters in the email that match a given
character (;,[!'$#)

The average length of uninterrupted capital letters: CAPAVE
The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT
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Classification Tree Spam Example
" JE

m Used cross-entropy to grow tree and misclassification to prune

m 10-fold CV to choose tree size
CV indexed by A

Sizes refer to| T} |
Error rate flattens out sl ¥
around a tree of size 17 \
2 Qo “
= i¥
- ¥
S e — e
=
0 10 2‘0 30 40
Tree Size
From Hastie, Tibshirani, Friedman book
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Classification Tree Spam Example
" JEE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

11 of these overlap with the 16 significant
predictors from the additive model
previously explored

From Hastie,
Tibshirani,
Friedman book

o7
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Classification Tree Spam Example
" JE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

11 of these overlap with the 16 significant
predictors from the additive model
previously explored

m Overall error rate (9.3%) is
higher than for additive model

Predicted From Hastie,

Tibshirani,
Friedman book

.0/0 .
5.3% 33.4%
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What you need to know
" JE
m Classification trees are a straightforward modification to the
regression tree setup

m Just need new definition of node impurity for growing and
pruning tree

m Decision at the leaves is a simple majority-vote rule
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Readings
= JEE
m Wakefield — 10.3.2, 10.4.2, 12.8.4
m Hastie, Tibshirani, Friedman —9.2.3, 9.2.5, 2.4
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