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Kernel Density Estimation
" JE

m Kernel methods are often used for density estimation
(actually, classical origin)

m Assume random sample X\,~.-, )(n ~ p A
?

N
m Choice #1: empirical estimate? ?9%\ Z gx; I ” ‘l“ | | |
m Choice #2: as before, maybe we should use an estimator a\
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m Choice #3: again, consider kernel weightings instead
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Kernel Density Estimation
" JE

m Popular choice = Gaussian kernel - Gaussian KDE
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Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book
mily F

Multivariate KDE
= JEE

m Inld 1 «
p(xo) = J;K/\(xo,l'i)

= In RY, assuming a product kernel,

n d
pzo) = ﬁ > {H K, (l’op%)}

i=1 | j=1

m Typical choice = Gaussian RBF




Multivariate KDE
" J
P(xo) = ﬁ Z H K, (wowﬁij)}
m Risk grows as O(n#/(#+d) o

m Example: To ensure relative MSE < 0.1 at O when the density is
a multivariate norm and optimal bandwidth is chosen

m Always report confidence bands, which get wide with d
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Multivariate KDE Example
" J
m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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Multivariate KDE Example
S

m Data on 6 characteristics of aircraft (Bowman and Azzalini 1998)
m Examine first 2 principle components of the data
m Perform KDE with independent kernels
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Regression Trees Overview
" JE

m An alternative adaptive regression technique

Conceptually simple
Powerful

m Partition the covariate space into regions and then fit a simple
model in each (e.g., constant)

m How to partition?

X2
X2

X4 X4
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Recursive Binary Partitions
" I

m To simplify the process and

interpretability, consider A I Y
recursive binary partitions g .
m Described via a rooted tree 1T
Every node of the tree e s .

corresponds to split decision
Leaves contain a subset of the

data that satisfy the conditions /O\
O
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Recursive Binary Partitions

Pt X1 X,
1 | 0.00 | 0.00
2 (100 ]| 431
3 (013 | 2.85

m Start with a list of d-dimensional points.
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Recursive Binary Partitions

m Split the points into 2 groups by:

Choosing dimension d; and value t; (methods to be discussed...)
Separating the points into Z;q;>tand Tid<=1t;.
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NO / \YES
Pt X Xy Pt | X3 | X,
1 |0.00|0.00 2 100|431
3 013|285




Recursive Binary Partitions

NO / \YES
Pt Xy Xy Pt | X; | X;
1 |0.00|0.00 2 [1.00|4.31
3 |0.13|2.85

m Consider each group separately and possibly split again

(along same/different dimension).
Stopping criterion to be discussed...
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Recursive Binary Partitions

Pt

2.85

m Consider each group separately and possibly split again
(along same/different dimension).

Stopping criterion to be discussed...
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Recursive Binary Partitions
" S

N

O

<N /\

SiRe d’d/\b\b d/d/\b\b of d/\b\b

m Continue splitting points in each set
creates a binary tree structure

m Each leaf node contains a list of points

Resulting Model

&

<ty
Ri  Rs Rs (W

Ry Rs X

m Model the response as constant within each region
M

f@) =" Bml(z € Ry)




Basis Expansion Interpretation
" JE

m Equivalent to a basis expansion Xist

M
f(z) = Z Brnhim () Xo <ty X1 <ty
m=1

m In this example:

Questions on Building the Tree
" JEE
m Which variable should we split on?

m What threshold value should we consider?
m When should we stop the process?
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Building the Tree
" JE
fl@) =Y BmI(z € Ry)

m Assume the partition (R,,...Ry) is given
m If criterion is to minimize RSS, then

Bm:

m How do we find the partition (R,,...R) ?

Finding the optimal tree that minimizes RSS is generally computationally
infeasible

Consider a greedy algorithm instead
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Choosing a Split Decision
" JEE

m Starting with all of the data, consider
splitting on variable | at point s

m Define
Rl(j,s):{x‘xjgs} % ° . °
RZ(];S):{CC‘ZUJ >3} .....

= Our objective is oo o .

m For any (j, s), the inner minimization is solved by
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Choosing a Split Decision

min
J.s

B = avg(y: | w; € Ri(j,s))
By = avg(y | z; € Ra(j, 5))
m For each splitting variable j, finding

Z (yi — B1) +

-TiER] (j75)

Z (yi — 32)2

miER2 (j,S)

the optimal s can be done efficiently o

Why?

m Max of d(n-1) partitions to consider
m So, determining (j,s) is feasible

21

Choosing a Split Decision

m Conditioning on the best split just found, we recurse on

each of the two regions
m Repeat on all resulting regions

m When do we stop recursing?

22
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How Large of a Tree?
" JE
m Large tree, like partitioning until each node has one observation
9

m Small tree >

m Tree size is a tuning parameter that governs model complexity
Optimal tree size should be chosen adaptively from the data

m Stopping criterion
Stop when decrease in RSS due to a split falls below some threshold

Stop when a minimum node size (e.g., 5) is reached. Go back and prune.
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Cost-Complexity Pruning
" JEE

m Searching over all subtrees and selecting using AIC or CV is not
possible since there is an exponentially large set of subtrees
9

m Define a subtree 1" C T;, to be any tree obtained by pruning 7

and |T| = Xi<u,
T/I\/m - Xo <ty X; <3
5m =
Qm (T) - Xo <ty
m We examine a complexity criterion Bi Rz Rs (W
T
CAT) = D nnQun(T) + AT I
m=1
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Cost-Complexity Pruning
" S
|T|
CA(T) = D nmQu(T) + AT

m Foragiven A, wantto find 7, C T, to minimize C(7')

m Tuning parameter A governs tradeoff between *: <’
tree size and goodness of fit to the data
Large A >
A=0->

X2 < t2 X1 <t3

m For each A, can show that there is a

unique smallest subtree T’ fu fe M (W
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Cost-Complexity Pruning
: T

CA(T) = Z anm(T) + )‘|T|

m Can find using weakest link pruning

Successively collapse the internal node that
produces smallest increase in RSS X, <t

X2 <tz X1 <t3

Continue until at single-node (root) tree
Produces a finite sequence of subtrees,
which must contain T’

See Breiman et al. (1984) or Ripley (1996) R R. Rs (W

m Choose A via 5- or 10-fold CV
m Final tree:
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Comments on Regression

i1 —

m Partition is not specified apriori, so regression trees provide a
locally adaptive technique

m Effectively performs variable selection by discovering the
relevant interaction terms
Implicit in the process

m |n the construction, we are assuming that
Error terms are uncorrelated
Constant variance
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Example: Prostate Cancer
" JEE
m Fit binary regression tree to log PSA with splits based on
eight covariates
m Grow tree with condition of at least 3 observation per leaf

m Results in a tree with 27 splits

m Run weakest-link pruning for each candidate A, with A chosen
according to CV
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Example: Prostate Cancer
" J

m Compare results to LASSO loavol 2.462

Icavol most “important”
Then Iweight and svi

Icavol< -0.4786

3.765
n=21

hi(x) = I(lcavol < —0.4786)
hap(x) = I(Icavol < —0.4786)
h3(x) = I(lcavol < —9.4786)
ha(x) = I(lcavol < —9.4786)

I(Iweight < 3.689)
I(Iweight < 3.689)
I(lweight  3.689)

I(svi <0.5)
I(svi > 0.5)

0.6017 Iweightx 3.689

n=9

hs(x) = I(lcavol  2.462).

—8— lcaval
—0— Iweight

5 10 15 20 25
©Emily Fox 2014
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Issues
" JE

m Unordered categorical predictors

With unordered categorical predictors with g possible values, there are
29-1-1 possible choices of partition points to consider for each variable

Prohibitive for large q
Can deal with this for binary y...will come back to this in “classification”

m Missing predictor values...how to cope?

Can discard

Can fill in, e.g., with mean of other variables

With trees, there are better approaches

-- Categorical predictors: make new category “missing”

-- Split on observed data. For every split, create an ordered list of
“surrogate” splits (predictor/value) that create similar divides of the data.
When examining observation with a missing predictor, when splitting on
that dimension, use top-most surrogate that is available instead
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Issues
= JEE

m Binary splits
Could split into more regions at every node

However, this more rapidly fragments the data leaving insufficient data and
subsequent levels

Multiway splits can be achieved via a sequence of binary splits, so binary
splits are generally preferred

= [nstability
Can exhibit high variance
Small changes in the data - big changes in the tree
Errors in the top split propagates all the way down
Bagging averages many trees to reduce variance

m Inference
Hard...need to account for stepwise search algorithm
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Issues
= JEE

m Lack of smoothness

Fits piecewise constant models...unlikely to believe this structure
MARS address this issue (can view as modification to CART)

m Difficulty in capturing additive structure
Imagine true structure is

y=LF1l(xy <ty)+ Pol(ze <tz)+e

No encouragement to find this structure
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What you need to know
" JE

m Regression trees provide an adaptive regression method

Relies on estimating a binary tree partition
Sequence of decisions of variables to split on and where
Grown in a greedy, forward-wise manner
Pruned subsequently

Implicitly performs variable selection

MARS is a modification to CART allowing linear fits

©Emily Fox 2014

Fit constants (or simple models) to each region of a partition
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Readings
" A
m Wakefield — 12.7
m Hastie, Tibshirani, Friedman — 9.2.1-9.2.2, 9.2.4, 9.4
m Wasserman —5.12
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