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Kernel Density Estimation 
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 Kernel methods are often used for density estimation 

(actually, classical origin) 

 

 Assume random sample 

 

 Choice #1: empirical estimate? 

 

 Choice #2: as before, maybe we should use an estimator 

 

 

 Choice #3: again, consider kernel weightings instead 
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Kernel Density Estimation 
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 Popular choice = Gaussian kernel   Gaussian KDE 

 

 

 

 

 

 

 

 

 

 

 

From Hastie, Tibshirani, Friedman book 

Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 
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Multivariate KDE 
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 Risk grows as O(n-4/(4+d)) 

 Example: To ensure relative MSE < 0.1 at 0 when the density is 
a multivariate norm and optimal bandwidth is chosen 

 

 

 

 

 

 

 

 Always report confidence bands, which get wide with d 

 
 

 

 

Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Figure 83: Two-dimensional est imate for the aircraft data.
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Classificat ion and R egr ession Tr ees

If the aim is classificat ion the only changes in the algorithm

concern the criteria for split t ing nodes and pruning the t ree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj (T), defined in (112), within

(113), but this is not suitable for classificat ion.

For a node j , j = 1, ..., J , represent ing a region Rj with nj

observat ions est imate the node specific probabilit ies as

pj k =
1

nj
i :x i ∈R j

I (yi = k)

for k = 0, 1, ..., K − 1. This is simply the proport ion of class k

observat ions in node j . Any observat ions that fall into node j are

classified to class

k(j ) = arg maxk pj k ,

the majority class in node j .
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Regression Trees Overview 
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 An alternative adaptive regression technique 

 Conceptually simple 

 Powerful 

 

 Partition the covariate space into regions and then fit a simple 

model in each (e.g., constant) 

 

 How to partition? 

 

 

 

 

 

 

 

 

Recursive Binary Partitions 
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 To simplify the process and 

interpretability, consider 

recursive binary partitions 

 

 Described via a rooted tree 

 Every node of the tree 

corresponds to split decision 

 Leaves contain a subset of the 

data that satisfy the conditions 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 

2 1.00 4.31 

3 0.13 2.85 

… … … 

 Start with a list of d-dimensional points. 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 

3 0.13 2.85 

… … … 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

 Split the points into 2 groups by: 

 Choosing dimension dj and value tj (methods to be discussed…) 

 Separating the points into         > tj and         <= tj. 
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Recursive Binary Partitions 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 

Pt x1 x2 

1 0.00 0.00 

3 0.13 2.85 

… … … 
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Recursive Binary Partitions 

Pt x1 x2 

3 0.13 2.85 

… … … 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

Pt x1 x2 

1 0.00 0.00 

… … … 

x2 >.1 

NO 
YES 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 
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Recursive Binary Partitions 

 Continue splitting points in each set  

 creates a binary tree structure 

 Each leaf node contains a list of points 
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Resulting Model 

 Model the response as constant within each region 
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Basis Expansion Interpretation 

 Equivalent to a basis expansion 

 

 

 

 In this example: 
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Questions on Building the Tree 

 Which variable should we split on? 

 What threshold value should we consider? 

 When should we stop the process? 
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Building the Tree 
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 Assume the partition (R1,…RM) is given 

 If criterion is to minimize RSS, then 

 

 

 

 How do we find the partition (R1,…RM) ? 

 Finding the optimal tree that minimizes RSS is generally computationally 

infeasible 

 Consider a greedy algorithm instead 

 

 

 

Choosing a Split Decision 
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 Starting with all of the data, consider  

splitting on variable j at point s 

 Define 

 

 

 

 Our objective is 

 

 

 

 

 For any (j, s), the inner minimization is solved by 
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Choosing a Split Decision 
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 For each splitting variable j, finding 

the optimal s can be done efficiently 

 Why?  

 

 

 

 Max of d(n-1) partitions to consider 

 So, determining (j,s) is feasible 

 

 

Choosing a Split Decision 
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 Conditioning on the best split just found, we recurse on 

each of the two regions 

 

 Repeat on all resulting regions 

 

 When do we stop recursing? 
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How Large of a Tree? 
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 Large tree, like partitioning until each node has one observation 

  

 

 Small tree   

 

 Tree size is a tuning parameter that governs model complexity 

 Optimal tree size should be chosen adaptively from the data 

 

 Stopping criterion 

 Stop when decrease in RSS due to a split falls below some threshold 

 

 

 Stop when a minimum node size (e.g., 5) is reached.  Go back and prune. 

 

 

 

Cost-Complexity Pruning 
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 Searching over all subtrees and selecting using AIC or CV is not 

possible since there is an exponentially large set of subtrees 

 
 

 Define a subtree  to be any tree obtained by pruning 

 

and 

 

 

 

 

 We examine a complexity criterion 

 

 

 



13 

Cost-Complexity Pruning 
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 For a given λ, want to find       to minimize   
 

 Tuning parameter λ governs tradeoff between 

tree size and goodness of fit to the data 

 Large λ   

 λ = 0   

 

 For each λ, can show that there is a 

unique smallest subtree   

 

 

 

 

Cost-Complexity Pruning 
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 Can find using weakest link pruning 

 Successively collapse the internal node that 

produces smallest increase in RSS 

 

 

 Continue until at single-node (root) tree 

 Produces a finite sequence of subtrees, 

which must contain  

 See Breiman et al. (1984) or Ripley (1996) 

 

 Choose λ via 5- or 10-fold CV 

 Final tree:  
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Comments on Regression 

Trees 
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 Partition is not specified apriori, so regression trees provide a 

locally adaptive technique 

 

 Effectively performs variable selection by discovering the 

relevant interaction terms 

 Implicit in the process 

 

 In the construction, we are assuming that 

 Error terms are uncorrelated 

 Constant variance 

 

 

 

 

 

Example: Prostate Cancer 
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 Fit binary regression tree to log PSA with splits based on 

eight covariates 

 

 Grow tree with condition of at least 3 observation per leaf 

 

 Results in a tree with 27 splits 

 

 Run weakest-link pruning for each candidate λ, with λ chosen 

according to CV  
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Example: Prostate Cancer 
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 Compare results to LASSO 

 lcavol most “important” 

 Then lweight and svi 

 

 

 

 

 

Issues 
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 Unordered categorical predictors 

 With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 

 Prohibitive for large q 

 Can deal with this for binary y…will come back to this in “classification” 

 

 Missing predictor values…how to cope? 

 Can discard 

 Can fill in, e.g., with mean of other variables 

 With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 

-- Split on observed data.  For every split, create an ordered list of 

“surrogate” splits (predictor/value) that create similar divides of the data.  

When examining observation with a missing predictor, when splitting on 

that dimension, use top-most surrogate that is available instead 
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Issues 
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 Binary splits 

 Could split into more regions at every node 

 However, this more rapidly fragments the data leaving insufficient data and 

subsequent levels 

 Multiway splits can be achieved via a sequence of binary splits, so binary 

splits are generally preferred 

 

 Instability 

 Can exhibit high variance 

 Small changes in the data  big changes in the tree 

 Errors in the top split propagates all the way down 

 Bagging averages many trees to reduce variance 

 

 Inference 

 Hard…need to account for stepwise search algorithm 

 

 

 

 

 

Issues 
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 Lack of smoothness 

 Fits piecewise constant models…unlikely to believe this structure 

 MARS address this issue (can view as modification to CART) 

 

 Difficulty in capturing additive structure 

 Imagine true structure is 

 

 

 No encouragement to find this structure 
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What you need to know 

 Regression trees provide an adaptive regression method 

 

 Fit constants (or simple models) to each region of a partition 

 

 Relies on estimating a binary tree partition 

 Sequence of decisions of variables to split on and where 

 Grown in a greedy, forward-wise manner 

 Pruned subsequently 

 

 Implicitly performs variable selection 

 

 MARS is a modification to CART allowing linear fits 
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Readings 

 Wakefield – 12.7 

 Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 

 Wasserman – 5.12 
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