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Kernel Density Estimation 

©Emily Fox 2014 2 

 Kernel methods are often used for density estimation 

(actually, classical origin) 

 

 Assume random sample 

 

 Choice #1: empirical estimate? 

 

 Choice #2: as before, maybe we should use an estimator 

 

 

 Choice #3: again, consider kernel weightings instead 
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Kernel Density Estimation 
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 Popular choice = Gaussian kernel   Gaussian KDE 

 

 

 

 

 

 

 

 

 

 

 

From Hastie, Tibshirani, Friedman book 

Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 
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Multivariate KDE 
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 Risk grows as O(n-4/(4+d)) 

 Example: To ensure relative MSE < 0.1 at 0 when the density is 
a multivariate norm and optimal bandwidth is chosen 

 

 

 

 

 

 

 

 Always report confidence bands, which get wide with d 

 
 

 

 

Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Multivariate KDE Example 
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 Data on 6 characteristics of aircraft (Bowman and Azzalini 1998) 

 Examine first 2 principle components of the data 

 Perform KDE with independent kernels 
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Figure 83: Two-dimensional est imate for the aircraft data.
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Classifi cat ion and R egr ession Tr ees

If the aim is classificat ion the only changes in the algorithm

concern the criteria for split t ing nodes and pruning the t ree.

For regression we used the residual sum of squares within each

node as the impurity measure Qj (T), defined in (112), within

(113), but this is not suitable for classificat ion.

For a node j , j = 1, ..., J , represent ing a region Rj with nj

observat ions est imate the node specific probabilit ies as

pj k =
1

nj
i :x i ∈R j

I (yi = k)

for k = 0, 1, ..., K − 1. This is simply the proport ion of class k

observat ions in node j . Any observat ions that fall into node j are

classified to class

k(j ) = arg maxk pj k ,

the majority class in node j .
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Regression Trees 
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Regression Trees Overview 
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 An alternative adaptive regression technique 

 Conceptually simple 

 Powerful 

 

 Partition the covariate space into regions and then fit a simple 

model in each (e.g., constant) 

 

 How to partition? 

 

 

 

 

 

 

 

 

Recursive Binary Partitions 
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 To simplify the process and 

interpretability, consider 

recursive binary partitions 

 

 Described via a rooted tree 

 Every node of the tree 

corresponds to split decision 

 Leaves contain a subset of the 

data that satisfy the conditions 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 

2 1.00 4.31 

3 0.13 2.85 

… … … 

 Start with a list of d-dimensional points. 
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Recursive Binary Partitions 

Pt x1 x2 

1 0.00 0.00 

3 0.13 2.85 

… … … 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

 Split the points into 2 groups by: 

 Choosing dimension dj and value tj (methods to be discussed…) 

 Separating the points into         > tj and         <= tj. 
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Recursive Binary Partitions 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 

Pt x1 x2 

1 0.00 0.00 

3 0.13 2.85 

… … … 
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Recursive Binary Partitions 

Pt x1 x2 

3 0.13 2.85 

… … … 

x1 >.5 

Pt x1 x2 

2 1.00 4.31 

… … … 

YES NO 

Pt x1 x2 

1 0.00 0.00 

… … … 

x2 >.1 

NO 
YES 

 Consider each group separately and possibly split again 

(along same/different dimension). 
 Stopping criterion to be discussed… 
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Recursive Binary Partitions 

 Continue splitting points in each set  

 creates a binary tree structure 

 Each leaf node contains a list of points 
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Resulting Model 

 Model the response as constant within each region 
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Basis Expansion Interpretation 

 Equivalent to a basis expansion 

 

 

 

 In this example: 
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Questions on Building the Tree 

 Which variable should we split on? 

 What threshold value should we consider? 

 When should we stop the process? 
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Building the Tree 
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 Assume the partition (R1,…RM) is given 

 If criterion is to minimize RSS, then 

 

 

 

 How do we find the partition (R1,…RM) ? 

 Finding the optimal tree that minimizes RSS is generally computationally 

infeasible 

 Consider a greedy algorithm instead 

 

 

 

Choosing a Split Decision 
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 Starting with all of the data, consider  

splitting on variable j at point s 

 Define 

 

 

 

 Our objective is 

 

 

 

 

 For any (j, s), the inner minimization is solved by 
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Choosing a Split Decision 
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 For each splitting variable j, finding 

the optimal s can be done efficiently 

 Why?  

 

 

 

 Max of d(n-1) partitions to consider 

 So, determining (j,s) is feasible 

 

 

Choosing a Split Decision 
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 Conditioning on the best split just found, we recurse on 

each of the two regions 

 

 Repeat on all resulting regions 

 

 When do we stop recursing? 
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How Large of a Tree? 
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 Large tree, like partitioning until each node has one observation 

  

 

 Small tree   

 

 Tree size is a tuning parameter that governs model complexity 

 Optimal tree size should be chosen adaptively from the data 

 

 Stopping criterion 

 Stop when decrease in RSS due to a split falls below some threshold 

 

 

 Stop when a minimum node size (e.g., 5) is reached.  Go back and prune. 

 

 

 

Cost-Complexity Pruning 
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 Searching over all subtrees and selecting using AIC or CV is not 

possible since there is an exponentially large set of subtrees 

 
 

 Define a subtree  to be any tree obtained by pruning 

 

and 

 

 

 

 

 We examine a complexity criterion 
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Cost-Complexity Pruning 
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 For a given λ, want to find       to minimize   
 

 Tuning parameter λ governs tradeoff between 

tree size and goodness of fit to the data 

 Large λ   

 λ = 0   

 

 For each λ, can show that there is a 

unique smallest subtree   

 

 

 

 

Cost-Complexity Pruning 
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 Can find using weakest link pruning 

 Successively collapse the internal node that 

produces smallest increase in RSS 

 

 

 Continue until at single-node (root) tree 

 Produces a finite sequence of subtrees, 

which must contain  

 See Breiman et al. (1984) or Ripley (1996) 

 

 Choose λ via 5- or 10-fold CV 

 Final tree:  
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Comments on Regression 

Trees 
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 Partition is not specified apriori, so regression trees provide a 

locally adaptive technique 

 

 Effectively performs variable selection by discovering the 

relevant interaction terms 

 Implicit in the process 

 

 In the construction, we are assuming that 

 Error terms are uncorrelated 

 Constant variance 

 

 

 

 

 

Example: Prostate Cancer 
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 Fit binary regression tree to log PSA with splits based on 

eight covariates 

 

 Grow tree with condition of at least 3 observation per leaf 

 

 Results in a tree with 27 splits 

 

 Run weakest-link pruning for each candidate λ, with λ chosen 

according to CV  

 

 

 

 

 



15 

Example: Prostate Cancer 
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 Compare results to LASSO 

 lcavol most “important” 

 Then lweight and svi 

 

 

 

 

 

Issues 
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 Unordered categorical predictors 

 With unordered categorical predictors with q possible values, there are 

2q-1-1 possible choices of partition points to consider for each variable 

 Prohibitive for large q 

 Can deal with this for binary y…will come back to this in “classification” 

 

 Missing predictor values…how to cope? 

 Can discard 

 Can fill in, e.g., with mean of other variables 

 With trees, there are better approaches 

-- Categorical predictors: make new category “missing” 

-- Split on observed data.  For every split, create an ordered list of 

“surrogate” splits (predictor/value) that create similar divides of the data.  

When examining observation with a missing predictor, when splitting on 

that dimension, use top-most surrogate that is available instead 
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Issues 
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 Binary splits 

 Could split into more regions at every node 

 However, this more rapidly fragments the data leaving insufficient data and 

subsequent levels 

 Multiway splits can be achieved via a sequence of binary splits, so binary 

splits are generally preferred 

 

 Instability 

 Can exhibit high variance 

 Small changes in the data  big changes in the tree 

 Errors in the top split propagates all the way down 

 Bagging averages many trees to reduce variance 

 

 Inference 

 Hard…need to account for stepwise search algorithm 

 

 

 

 

 

Issues 
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 Lack of smoothness 

 Fits piecewise constant models…unlikely to believe this structure 

 MARS address this issue (can view as modification to CART) 

 

 Difficulty in capturing additive structure 

 Imagine true structure is 

 

 

 No encouragement to find this structure 
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What you need to know 

 Regression trees provide an adaptive regression method 

 

 Fit constants (or simple models) to each region of a partition 

 

 Relies on estimating a binary tree partition 

 Sequence of decisions of variables to split on and where 

 Grown in a greedy, forward-wise manner 

 Pruned subsequently 

 

 Implicitly performs variable selection 

 

 MARS is a modification to CART allowing linear fits 
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Readings 

 Wakefield – 12.7 

 Hastie, Tibshirani, Friedman – 9.2.1-9.2.2, 9.2.4, 9.4 

 Wasserman – 5.12 

©Emily Fox 2014 34 


