Module 3: Bayesian Nonparametrics

Gaussian Processes for Regression Wrapup

STAT/BIOSTAT 527, University of Washington
Emily Fox
April $24^{\text {th }}, 2014$

Gaussian Processes

- Distribution on functions
$\square f \sim \mathrm{GP}(\mathrm{m}, \mathrm{k})$
$\rightarrow _$m: mean function
\rightarrow - k : covariance function

$$
\Downarrow \text { iff } \forall n \text { and any } x_{1}, \ldots, x_{n}
$$

$\square \mathrm{p}\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, K)$

- $\mu=\left[m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right]$
- $\mathrm{K}_{\mathrm{ij}}=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$

- Idea: If x_{i}, x_{j} are similar according to the kernel, then $f\left(x_{i}\right)$ is similar to $f\left(x_{j}\right)$

GPs for Regression

- Noisy scenario: observe a noisy version of underlying function

$$
\bar{y}=f(x)+\epsilon \quad \epsilon \sim N\left(0, \sigma_{y}^{2}\right)
$$

Not required to interpolate, just come "close" to observed data

$$
\operatorname{cov}(y \mid X)=\operatorname{cov}(\underline{f})+\operatorname{cov}(\epsilon)=K+\sigma_{y}^{2} I_{n} \triangleq K_{y}
$$

- Training data $\mathcal{D} \stackrel{\sim}{=}\left\{\left(x_{i}, y_{i}\right), i=1, \ldots, n\right\}$
- Test data locations $X^{*} \rightarrow$ predict for simplicity as before
- Jointly, we have
- Therefore, $p\left(f^{*} \mid X^{*}, X, y\right)=\mathrm{N}\left(f^{*} \mid K_{*}^{\top} K_{y}^{-1} Y_{\text {, }}\right.$

$$
\left.\begin{array}{c}
\text { closed form fist. } \\
\text { pred dist, } \\
\text { cemprosersu }
\end{array} \quad K_{\omega}-K_{x}^{\top} K_{y}^{-1} K_{*}\right)_{s}
$$

GPs for Regression

$$
p\left(f^{*} \mid X^{*}, X, y\right)=N\left(K_{*}^{T} K_{y}^{-1} y, K_{* *}-K_{*}^{T} K_{y}^{-1} K_{*}\right)
$$

- For a single point x^{*}

Estimating Hyperparameters

- How should we choose the kernel parameters?
\square Example: squared exponential kernel parameterization
Very $\operatorname{xing} \kappa\left(x, x^{\prime}\right)=\sigma_{f}^{2} \exp \left(\frac{-1}{2}\left(x_{p}-x_{q}\right)^{T} \underline{\underline{M}}\left(x_{p}^{\prime}-x_{q}^{\prime}\right)\right)+\underline{\sigma}_{y}^{2} \delta_{p q}$
Hyperparameters
$\theta=\left\{M, \sigma_{f}^{2}, \sigma_{y}^{2}\right\}$
\square As we saw before, can choose
$M=\ell^{-2} I \quad M=\operatorname{diag}\left(\ell_{1}^{-2}, \ldots, \ell_{d}^{-2}\right) \quad M=\Lambda \Lambda^{\prime}+\operatorname{diag}\left(\ell_{1}^{-2}, \ldots, \ell_{d}^{-2}\right) \ldots$
- As in other nonparametric methods, choice can have large effect

Estimating Hyperparameters

- Options:
\square \#1: Define a grid of possible values and use cross validation
can be slow.. "
\square \#2: Full Bayesian analysis: Place prior on hyperparameters and integrate over these as well in making predictions
some challenges in practice
\square \#3: Maximize the marginal likelihood think of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ as params
$p(y \mid X, \theta)=\int p(y \mid f, X) p(f \mid X, \theta) d f$
$\prod_{i=1}^{n} N\left(y_{i} \mid f\left(x_{i}\right), \sigma_{y}^{2}\right)<N\left(f, 10, K_{0}\right)$
$\begin{aligned} & \log p(y \mid X, \theta)=N\left(y \mid 0, K_{y}\right) \\ &-\frac{1}{2} y^{\top} K_{y}^{-1} y-\frac{1}{2} \log \left|K_{y}\right|-\frac{n}{2} \log 2 \pi\end{aligned}$

Estimating Hyperparameters

$\log p(y \mid X, \theta)=-\frac{1}{2} y^{T} K_{y}^{-1} y-\frac{1}{2} \log \left|K_{y}\right|-\frac{n}{2} \log 2 \pi$
\square For short length-scale, the fit is good, but K is nearly diagonal ${ }^{\text {complent }}$ const

$$
\Rightarrow \log \left|K_{y}\right| \text { large }
$$

\square For large length-scale, the fit is bad, but K is almost all 1's

- Can show:

$$
\Rightarrow \log \left|K_{y}\right| \text { small }
$$

$$
\frac{\partial}{\partial \theta_{j}} \log p(y \mid X, \theta)=\frac{1}{2} y^{T} K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}} K_{y}^{-} y-\frac{1}{2} \operatorname{tr}\left(K_{y}^{-1} \frac{\partial K_{y}}{\partial \theta_{j}}\right)
$$

$$
=\frac{1}{2} \operatorname{tr}\left(\left(\alpha \alpha^{T}-K_{y}^{L-1}\right) \frac{\partial K_{y}}{\partial \theta_{j}}\right) \text { os defined } \begin{aligned}
& \text { before }
\end{aligned}
$$

Optimize to choose hyperparameters
Complexity is $O\left(n^{3}\right)$ for $K_{y}^{-1}, O\left(n^{2}\right)$ for gradient
Objective is non-convex, so local minima are a problem

Example of Estimating Hypers

Relating GPs to Kernel Methods

- GPs as linear smoothers
\square Recall that the predictive posterior mean of a GP is

$$
\left[\left(K+\sigma_{y}^{2} I_{n}\right)^{-1} k_{+}\right]_{j}
$$ $\bar{f}\left(x^{*}\right)=\underbrace{k_{*}^{T}\left(K+\sigma_{y}^{2} I_{n}\right.})^{-1} y=\sum_{i} l_{i}\left(x^{*}\right) y_{i}$

- In kernel regression, the weight function was derived from a smoothing kernel instead of a Mercer kernel
\square Clear that smoothing kernels have local support
\square Less clear for GPs since the weight function depends on the inverse of K
- For some GP kernels, can analytically derive equivalent kernel
\square As with smoothing kernels, $\sum l_{i}\left(x^{*}\right)=1$ but some $l_{i}\left(x^{+}\right)$can <0
\square Computing a linear combination, but not a convex combination of y_{i} 's
\square Interestingly, the weight function is local even when the GP kernel is not
* Furthermore, the effective bandwidth of the GP equivalent kernel automatically decreases with n, where as in kernel smoothing such tuning must be done by hand

Effective Degrees of Freedom

- For the training set, the fit is given by

$$
\hat{f}=\underbrace{K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1}}_{L} y
$$

- Since K is a positive definite Gram matrix, it has eigendecomp

$$
K=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}
$$

- Using this, one can show that $K\left(K+\sigma_{y}^{2} I_{n}\right)^{-1}$ has eigenvals

$$
\frac{\lambda_{i}}{\lambda_{i}+\sigma_{0}^{2}} \operatorname{can}^{\operatorname{an} \text { grow win }}
$$

- Therefore, the effective degrees of freedom is

- Remember that this specifies how "wiggly" the curve is

Relating GPs to Splines

- Recall smoothing spline objective

$$
\min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int f^{\prime \prime}(x)^{2} d x
$$

- Consider the following model

$$
f(x)=\beta_{0}+\beta_{1} x+r(x)
$$

where

$$
\begin{gathered}
r \sim G P\left(0, \sigma_{f}^{2} k_{s p}\left(x, x^{\prime}\right)\right) \\
k_{s p}\left(x, x^{\prime}\right) \triangleq \int_{0}^{1}(x-u)_{+}\left(x^{\prime}-u\right)_{+} d u
\end{gathered}
$$

- One can show that the MAP estimate of $f(x)$ is a cubic smoothing spline when $p\left(\beta_{j}\right) \propto 1$

$$
\beta_{0}^{\top} \beta_{1}
$$

- Penalty parameter λ is now given by $\sigma_{y}^{2} / \sigma_{f}^{2}$

Relating GPs to Splines

- The spline kernel leads to a smooth posterior mode/mean, but posterior samples are not smooth.
\square Again, as in lasso, regularizes do not always make good priors

(a), spline covariance

(b), squared exponential cove.
- See Rasmussen and Williams 2006 for more details

Choice of Covariance Function

- Definitions
\square Stationary kernel - only depends on $x-x^{\prime}$
\square Isotropic kernel - furthermore only depends on $\left\|x-x^{\prime}\right\|$
- Examples
\square Squared exponential - $\kappa_{S E}(r)=e^{-\frac{r}{2 \ell^{2}}}$
- Kernel is infinitely differentiable \rightarrow GP has mean square derivatives of all orders \rightarrow resulting functions are very smooth

Matern $-\quad \kappa_{\text {Matern }}(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} K_{v}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)$

- When $\nu \rightarrow \infty$: squared exponential
- When $\nu=\frac{1}{2} \quad: \begin{gathered}\text { exponential kernel } \kappa_{\exp }(r)=e^{-\frac{r}{\ell}} \text { equal to Brownian motion in 1D ** }\end{gathered}$

Sample Paths using Matern Kernel

- Can produce very rough sample paths

(a)

(b)

Figure from Rasmussen and Williams 2006

Family of Gaussian Processes

Sow (his exp ing kernel)
(G incite rank

Polynomial kernel = finite polynomial basis

Matern $(v=0.5)=$ Brownian motion

Many processes we know + models we consider can be posed as GPs

Module 3: Bayesian Nonparametrics

Finite Mixture Models

for density estimation

STAT/BIOSTAT 527, University of Washington Emily Fox
April 24 ${ }^{\text {th }}, 2014$

Density Estimation

- Estimate a density based on x_{1}, \ldots, x_{N}

Density Estimation

Density as Mixture of Gaussians

- Approximate with density with a mixture of Gaussians

Mixture of 3 Gaussians

C. Bishop $p_{\text {emly }}$ atterarn Recognition \& Machine Learning

Clustering our Observations

- Imagine we have an assignment of each x_{i} to a Gaussian

- Introduce latent cluster indicator variable z_{i}

$$
Z_{i} \in\{1, \ldots, K\}
$$

$$
\operatorname{Pr}\left(z_{i}=k\right)=\pi_{k}
$$

- Then we have

$N\left(x_{i} \mid M_{z_{i}}, \sum_{z_{i}}\right)$
param. est. is easy if we
have $\left\{z_{i}\right\} \Rightarrow$ decouples into decouples. est
K
Gauss.
C. Bishop $p_{\text {exit }}$ Pattern Recognition \& Machine Learning

Clustering our Observations

- We must infer the cluster assignments from the observations

Soft assignments to clusters

- Posterior probabilities of assignments to each cluster *given* model parameters:
$r_{i k}=p\left(z_{i}=k \mid x_{i}, \pi, \theta\right)=$ $=\frac{\pi_{k} N\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j} \pi_{j} N\left(x_{i}, \mu_{j}, \Sigma_{j}\right)}$
motivates an iterative alg
C. Bishop $p_{\text {\&f ll }}$ Pattern Recognition \& Machine Learning

Summary of GMM Concept

- Estimate a density based on x_{1}, \ldots, x_{N}

Summary of GMM Components

- Observations

$$
x_{i} \in \mathbb{R}^{d}, \quad i=1,2, \ldots, N
$$

- Hidden cluster labels $z_{i} \in\{1,2, \ldots, K\}, \quad i=1,2, \ldots, N$
- Hidden mixture means

$$
\mu_{k} \in \mathbb{R}^{d}, \quad k=1,2, \ldots, K
$$

- Hidden mixture covariances $\quad \Sigma_{k} \in \mathbb{R}^{d \times d}, \quad k=1,2, \ldots, K$
- Hidden mixture probabilities

$$
\pi_{k}, \quad \sum_{k=1}^{K} \pi_{k}=1
$$

Gaussian mixture marginal and conditional likelihood :

$$
\begin{aligned}
& p\left(x_{i} \mid \pi, \mu, \Sigma\right)=\sum_{z_{i}=1}^{K} \pi_{z_{i}} \mathcal{N}\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right) \\
& p\left(x_{i} \mid z_{i}, \pi, \mu, \Sigma\right) \underset{\text { cemiverex } 24}{\mathcal{N}}\left(x_{i} \mid \mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Generative Model

- We can think of sampling observations from the model
- For the GMM, define model parameters

\square Cluster means and covariances $\left\{\mu_{k}, \Sigma_{k}\right\}$
\square Cluster weights $\pi=\left[\pi_{1}, \ldots, \pi_{k}\right]$
- For each observation i,
\square Sample a cluster assignment

$$
z_{i} \sim \pi \quad \frac{1}{\text { us lifa sulten }}
$$

\square Sample the observation from the

$$
\left.\begin{array}{l}
\text { selected Gaussian } \\
\qquad X_{i} \mid z_{i} \sim N\left(X_{i} \mid M_{z_{i}}, \sum_{z_{i}}\right) \\
\text { @mily fox 2014 }
\end{array}\right)
$$

A Bayesian GMM

- In a Bayesian approach, we place priors on the model parameters
- Conjugate priors are a computationally
 convenient choice
- Conjugate prior for $\theta_{k}=\left\{\mu_{k}, \mathcal{Z}_{k}\right\}$
\square Known variance: Gaussian prior on mean
\square Unknown mean \& variance: normal inverse-Wishart
- Conjugate prior for π ???

The Simplex in 3D

- The simplex defines the hyperplane of vectors that sum to 1

Dirichlet Distributions

- The Dirichlet distribution is defined on the simplex

Moments: $\quad \mathbb{E}_{\alpha}\left[\pi_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}}$

$$
\operatorname{Var}_{\alpha}\left[\pi_{k}\right]=\frac{K-1}{K^{2}\left(\alpha_{0}+1\right)}
$$

$\not \not p p(\pi \mid \alpha)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1}$
${ }^{15} \quad \alpha_{k}=0.1 \quad \forall k$

©Emily Fox 2014

Dirichlet Samples
$\mathbb{E}_{\alpha}\left[\pi_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}}$

- Samples are sparse for small values of α_{i}

$\operatorname{Dir}(\pi \mid 0.1,0.1,0.1,0.1,0.1)$
puts mass at corners

$\operatorname{Dir}(\pi \mid 1.0,1.0,1.0,1.0,1.0)$ uniform

Model Summary

- Prior on model parameters
\square E.g., symmetric Dirichlet for π

\square Normal inverse Wishart prior for θ_{k}
- Sample observations as

$$
\begin{aligned}
z_{i} & \sim \pi \\
x_{i} \mid z_{i} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

Samples Generated from GMM

Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

