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Module 3: Bayesian Nonparametrics 

Gaussian Processes 

n  Distribution on functions 
¨  f ~ GP(m,κ) 

n  m: mean function 
n  κ: covariance function 

¨ p(f(x1), . . . , f(xn)) ∼ Nn(µ, K) 
n  µ = [m(x1),...,m(xn)] 
n  Kij = κ (xi,xj) 

n  Idea: If xi, xj are similar according to the kernel, then f(xi) 
is similar to f(xj) 

,
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GPs for Regression 
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n  Noisy scenario: observe a noisy version of underlying function 

¨  Not required to interpolate, just come “close” to observed data 

 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 
 

n  Therefore,  
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GPs for Regression 
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n  For a single point x* 
 
 
so 
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Estimating Hyperparameters 
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n  How should we choose the kernel parameters? 

¨  Example: squared exponential kernel parameterization 

¨  Hyperparameters 
¨  As we saw before, can choose 

n  As in other nonparametric methods, choice can have large effect 

M = `�2I M = diag(`�2
1 , . . . , `�2
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Estimating Hyperparameters 
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n  Options: 
¨  #1: Define a grid of possible values and use cross validation 

¨  #2: Full Bayesian analysis: Place prior on hyperparameters and integrate 
over these as well in making predictions 

¨  #3: Maximize the marginal likelihood 

p(y | X, ✓) =

Z
p(y | f,X)p(f | X, ✓)df

log p(y | X, ✓) =
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Estimating Hyperparameters 
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¨  For short length-scale, the fit is good, but K is nearly diagonal 

¨  For large length-scale, the fit is bad, but K is almost all 1’s 

n  Can show: 

¨  Optimize to choose hyperparameters 
¨  Complexity is 
¨  Objective is non-convex, so local minima are a problem 
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Example of Estimating Hypers 
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Relating GPs to Kernel Methods 
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n  GPs as linear smoothers 
¨  Recall that the predictive posterior mean of a GP is 

 
n  In kernel regression, the weight function was derived from a 

smoothing kernel instead of a Mercer kernel 
¨  Clear that smoothing kernels have local support 
¨  Less clear for GPs since the weight function depends on the inverse of K 

n  For some GP kernels, can analytically derive equivalent kernel 
¨  As with smoothing kernels,  
¨  Computing a linear combination, but not a convex combination of yi’s 
¨  Interestingly, the weight function is local even when the GP kernel is not 
¨  Furthermore, the effective bandwidth of the GP equivalent kernel 

automatically decreases with n, where as in kernel smoothing such tuning 
must be done by hand 

f̄(x⇤) = k
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Effective Degrees of Freedom 
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n  For the training set, the fit is given by 

n  Since K is a positive definite Gram matrix, it has eigendecomp 

n  Using this, one can show that    has eigenvals 

n  Therefore, the effective degrees of freedom is  

n  Remember that this specifies how “wiggly” the curve is 
 

f̂ = K(K + �2
yIn)

�1y

K =
nX
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�iuiu
T
i
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Relating GPs to Splines 
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n  Recall smoothing spline objective 

n  Consider the following model 
 
 
where  

 
n  One can show that the MAP estimate of f(x) is a cubic 

smoothing spline when 

n  Penalty parameter λ is now given by  
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Relating GPs to Splines 
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n  The spline kernel leads to a smooth posterior mode/mean, but 
posterior samples are not smooth. 
¨  Again, as in lasso, regularizers do not always make good priors 

n  See Rasmussen and Williams 2006 for more details 

 

Figure from 
Rasmussen 
and Williams 

2006 
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GP Regression Recap 
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f ⇠ GP(0,(x, x0))

� ⇠ N(0,↵�1
IM )

f(x) =
MX

m=1

�m�m(x)

Prior 

Linear Basis 
Expansion 

Gaussian 
Process 

Distribution 
on x1, …, xn 

f ⇠ N(0,↵�1��T ) f ⇠ N(0,K)

Choices •  Choose M 
•  Choose bases 

•  Choose  
•  Choose covariance 

hyperparameters 

(x, x0)
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GP Regression Recap 
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(x, x0){�m(x)}

Linear Basis 
Expansion 

GP  
regression 
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Splines Kernels 
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Choice of Covariance Function 
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n  Definitions 
¨  Stationary kernel – only depends on 
¨  Isotropic kernel – furthermore only depends on 

n  Examples 
¨  Squared exponential – 

n  Kernel is infinitely differentiable à GP has mean square derivatives of all orders  
 à resulting functions are very smooth 

 
 

¨  Matern –  

n  When    :  squared exponential 

n  When   : exponential kernel 
    ** equal to Brownian motion in 1D **     
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Sample Paths using Matern Kernel 
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n  Can produce very rough sample paths 

 

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving
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⇣
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It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which
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(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Figure from Rasmussen and Williams 2006 
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Family of Gaussian Processes 
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Polynomial kernel = 
finite polynomial basis 

Matern (v=0.5) = 
Brownian motion 

Matern (v=0.5+p) 
= cont time AR(p) 

Squared 
exponential 
kernel 

RBF 
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Finite Mixture Models 
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n  Estimate a density based on x1,…,xN 

Density Estimation 
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Density Estimation 

Contour Plot of Joint Density 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Density as Mixture of Gaussians 

n  Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 

0 0.2 0.4 0.6 0.8 1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)
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Density as Mixture of Gaussians 

n  Approximate with density with a mixture of Gaussians 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 
Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

(b)
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Complete data labeled 
by true cluster assignments 
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Clustering our Observations 

n  Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 
by true cluster assignments 

(a)
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n  Introduce latent cluster 
indicator variable zi 

 

n  Then we have 
p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)
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Clustering our Observations 

n  We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

n  Posterior probabilities of 
assignments to each cluster 
*given* model parameters: 

Soft assignments to clusters 

(c)
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0.5

1

rik = p(zi = k | xi,⇡, ✓) =
⇡kp(xi | ✓k)PK
`=1 ⇡`p(xi | ✓`)
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n  Estimate a density based on x1,…,xN 

Summary of GMM Concept 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 

Complete data labeled 
by true cluster assignments 
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p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)
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Summary of GMM Components 
n  Observations 

n  Hidden cluster labels 

n  Hidden mixture means 

n  Hidden mixture covariances 

n  Hidden mixture probabilities 

xi 2 Rd
, i = 1, 2, . . . , N

µk 2 Rd, k = 1, 2, . . . ,K

zi 2 {1, 2, . . . ,K}, i = 1, 2, . . . , N

⌃k 2 Rd⇥d, k = 1, 2, . . . ,K

⇡k,
KX

k=1

⇡k = 1

Gaussian mixture marginal and conditional likelihood : 

p(xi | ⇡, µ,⌃) =
KX

zi=1

⇡ziN (xi | µzi ,⌃zi)

p(xi | zi,⇡, µ,⌃) = N (xi | µzi ,⌃zi)
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Generative Model 

n  We can think of sampling observations  
from the model 

n  For the GMM, define model parameters 
¨  Cluster means and covariances 
¨  Cluster weights 

n  For each observation i, 
¨  Sample a cluster assignment 

¨  Sample the observation from the  
selected Gaussian 

(a)
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A Bayesian GMM 

n  In a Bayesian approach, we place priors 
on the model parameters 

 
n  Conjugate priors are a computationally 

convenient choice 

n  Conjugate prior for  
¨  Known variance:  Gaussian prior on mean 
¨  Unknown mean & variance:   

normal inverse-Wishart 

n  Conjugate prior for     ???  

(a)
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The Simplex in 3D 

n  The simplex defines the hyperplane of vectors that sum to 1 
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Dirichlet Distributions 
n  The Dirichlet distribution is defined on the simplex 
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Dirichlet Probability Densities 

⇡ ⇠ Dir(↵1, . . . ,↵K)

Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation
(1,0,0) (0,0,1)

(1/2,1/2,0)(1/3,1/3,1/3) (1/4,1/4,1/2)

(0,1,0)

Come from a Dirichlet distribution
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Dirichlet Samples 

n  Samples are sparse for small values of  

Dir(✓ | 0.1, 0.1, 0.1, 0.1, 0.1)⇡

↵i

Dir(✓ | 1.0, 1.0, 1.0, 1.0, 1.0)⇡
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Model Summary 

n  Prior on model parameters 
¨  E.g., symmetric Dirichlet for 

 
¨  Normal inverse Wishart prior for    

n  Sample observations as  

(a)

0 0.5 1

0

0.5

1
0

0.5

1

0

0.5

1
0

5

10

15

α=0.10
p

zi ⇠ ⇡

xi | zi ⇠ N(µzi ,⌃zi)

⇡

✓k
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Samples Generated from GMM 
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