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Gaussian Processes £
" SN B
m Distribution on functions &%/
f~ GP(m,K)
—Y = m: mean function
-3 m K: covariance function )<'
:U: @ ¥ ana‘ any X, ,.., Xn
p(f(x1), ..., f(xn)) ~ Nn(M, K)
m U= [m(x1),...,m(Xn)] — \,J //4/
= Kij = K (Xi,Xj) \5 N ow

[0

m |dea: If x; x; are similar according to the kernel, then f(x))
is similar to f(x))

ooooooooooooo




GPs for Regression
" JEE
m Noisy scenario: observe a noisy version of underlying function
y=f(z)+e e~N(0,0y)

1 Not required to interpolate, just come “close” to observed data

cov(y|X) = cov(£) + covle) = i 4—6‘;1,\ = K):

kﬂw ’ r-)
m Training dataDy {(zi,y:),i=1,.
m Test data locations X* > predlctf* ,,.Q\' < hefore
= Jointly, we ha%@ N @ﬁc

CWA,(\:;‘ ()(“/

5 bt
m Therefore, p(f* |X(—‘* X,y) = N T K 7 )’/ ’
form
’°“§n4 dist- Kuw - K2 %y M

GPs for Regression
" JEEE——
p(f* | X* X, y) = N(K] Ky, Koo — KK K)
m For a single point x*

PUST X Xo) = Ntk K g e = Ko K )

SO ﬁ

|-t ZQwer))
L il sez this laker

or dickve "\

7,2 )

gof ‘I-W
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Estimating Hyperparameters
" JE

m How should we choose the kernel parameters?
Example: squared exponential kernel parameterization

1
V z, a2’ —Ufexp< 5 (zp, —xg)T M(x), -z, )) —1—.(151,,1
Hyperparameters B_ H Up ,6./ i -

As we saw before, can choose

M =072 M =diag(¢;?,...,0;%) M= AN +diag(¢;2,...,0,7%). ..
m As in other nonparametric methods, choice can have large effect
L+
-
T %
At
+
+

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Estimating Hyperparameters
“
m Options:
#1: Define a grid of possible values and use cross validation
can be slow. - -
#2: Full Bayesian analysis: Place prior on hyperparameters and integrate

over these as well in making predictions )
Some clwilmﬁés in practice

#3: Maximize the '@E@J&@}O&ML of £04,), C()(,,\ as povom S
Py X.0) = [ oy] £.X)p(F | X,0)df

W(S 50 ) N(g\o,\(e\

= NL\]\O/ K‘/B
logp(y | X,0) = ~}.1\[Tk{lY’\*ml0ﬂ\K1\ 'Qi(of)m
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Estimating Hyperparameters
" JEE
1 + 1 n
logp(y | X.0) = —5y K,y — 5 log|Ky| — 5 log 2m
R— fit LN MP‘Q @\7 /L.mp\s‘k
0 For short length-scale, the fit is good, but K is nearly diagonal

\
. ‘ogthef “ .

0 For large length-scal is bad, but Kis almost all 1's

= Al .
) \boj\l(yf Sm \Q"\vgu
= Can show: "‘
9 Lrgea Ky 1 (0K,
a7 lomply | X.0) = 5" I,y = 5o (Ky o )
- 1tr ((aaT — Ky_l)aKy> A;F"‘
2 R’ 00; \o’f""'

1 Optimize to choose hyperparameters .
0 Complexity is D(‘\ ) for K'l / O(n*) Fer %m;‘m/kypef

1 Objective is non-convex, so local mlnlma are a problem
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Example of Estimating Hypers
" JEE

2 2
6\5" logp(y | X? E? Ju) Of = 1
s ? .
') 5 A . \N
= 10 'g'_
3 E
V5
Ik -
% 1 -5 -0 5
.g 10 input, x
"y
. {\"\
':': \n . ’ * "
\Uq)(\ﬂ. characteristic lengthscale > 1/—
e T
é’ﬂu \ergthsed o 4

is inke/po ":\Zr/ T )
. 1 Input, X
S0 J\?U‘SL
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Relating GPs to Kernel Methods
"
m GPs as linear smoothers / [(K“'J;I.\-k}

Recall that the predictive posterior mean of a GP is

f@") ::fééﬁfi;tgiiff)'_ly ) f;(x*)y& —

m In kernel regression, the weight function was derived from a
smoothing kernel instead of a Mercer kernel
Clear that smoothing kernels have local support
Less clear for GPs since the weight function depends on the inverse of K

A

m For some GP kernels, can anal tL ally derive equivalent kernel
As with smoothing kernels, 27)(;‘)‘ [ bt e L) can <D
Computing a linear combination, but pot a convex combination of y;'s
Interestingly, the weight function is local even when the GP kernel is not

5" Furthermore, the effective bandwidth of the GP equivalent kernel
automatically decreases with n, where as in kernel smoothing such tuning
must be done by hand
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Effective Degrees of Freedom
" JEE—

m For the training set, the fit is given by

f: K(K + Usln)_ly

L
Since K is a positive definite Gram matrix, it has eigendecomp
n

i=1
m Using this, one can show that K (K + aj[n)_l has eigenvals
A ool
T o
m Therefore, the effective c]egrees of freedom is cen 05;&\‘1
Vet ((rorsy') d 2, | Winws
“’ ( ( \L "0\' S-AB . 2 Ly‘l

Remember that this specifies how “wig urve is
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Relating GPs to Splines
* JEE

m Recall smoothing spline objective

mmZ fz))? + A / ' (z)?dx
m Consider the foIIowmg model
f(z) = Bo+ bz +r(x)
where ¢ o ([0, 07 Ke (x,x’\)

\
[N ’_
\/\;9(1,\!’) s So()("ﬁt ()‘ ")y‘}u
m One can show that the MAP estimate of f(x) is a cubic

smoothing spline when p(j3;) o 1 for eu\xt‘;u-r Jar s/t
7 ‘ "~ 0(-\ » \$¥ 6
9

m Penalty parameter A is now given by 02/(7f

©Emily Fox 2014 1

Relating GPs to Splines

" JEE
m The spline kernel leads to a smooth posterior mode/mean, but
posterior samples are not smooth.
Again, as in lasso, regularizers do not always make good priors

Figure from
\ Rasmussen
| and Williams

v 2006

-5 0 5 -5 0 5
input, x input, x
(a), spline covariance (b), squared exponential cov.

m See Rasmussen and Williams 2006 for more details
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GP Regression Recap .. o
| 596‘5"‘\ ot Lo/
%o*i'/s‘ 2 Linear Basis ¢ ——— Gaussian
" Expansion Process
Prior B~ N(0, 07 )
M & f ~ GP(0, k(z, "))
flz) = Z Bindm () G \S\’“&(
fen m=1 ﬂ")’\ fen
Specky Toasis y Lt
Distribution f ~ N(O,Oé_lq)q)T) f ~ N(O, K)
On X1, nnny Xn = p—
Choices « Choose M « Choose k(z,z")
* Choose bases » Choose covariance
hyperparameters
GP Regression Recap
" JEE
Linear Basis GP Splines Kernels
Expansion regression .
e _ pomple ,Ag“’-\
o(a” m fof) ! of
W‘wl {Cf’ (z)} VW‘\Y k(x,z") \,Bﬁ Vﬂr\@
~\)\L .«(“"‘"
pso? Clewo™ 4 o 4
0" f N\M\WM f (,\ ( Q(ﬁﬁ ,') wﬁw|£\|’,\
(o 6) \\[C(d ,'?) Y Lw;oS" ’
™ f
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Choice of Covariance Function
" JE
m Definitions
Stationary kernel — only dependson ' — x’
Isotropic kernel — furthermore only depends on | ’a} — x’| |

m Examples .
Squared exponential - ksg(r) = e 22
= Kernel is infinitely differentiable > GP has mean square derivatives of all orders
- resulting functions are very smooth

21—V 2ur ’ 2vr
Matern - Kpratern(r) = W <£> K, <€>

s When V — 0O : squared exponential

= When 1 = — :exponential kernel Kegp(T) =€ ¢
2 - equal to Brownian motion in 1D **
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Sample Paths using Matern Kernel
* JEE—

m Can produce very rough sample paths

covariance, k(r)
output, f(x)

1 2 -5 0 5
input distance, r input, x

(a) (b)

Figure from Rasmussen and Williams 2006
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Family of Gaussian Processes

12
i @
Squared
\' @ exponential
Polynomial kefnel = g kernel
finite polynomial basis
@ RBF

Matern

Browni me AR(p)

co side,
HM\\[ Prou_smf we Knew moAq_\c we P

un bt ?0551 as 6Fs
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Module 3: Bayesian Nonparametrics
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Density Estimation
" JEE—

m Estimate a density based on x;,...,xy

X\/'"I X" ” ? /\}
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Density Estimation

Xxe\%z

Contour Plot of Joint Density
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0.25 \L
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hirds eye view
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Density as Mixture of Gaussians

m Approximaje density with a mixture of Gaussians

Mixture of 3 Gaussians Contour Plot of Joint Density

0.751

0.7

0.651

0.551

0.25 \g

{ L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Coch Gaussion has we,ical«rk Ty w Sr.-l
hape por :
ané jrape params §/"‘t,iug
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0 0.2 0.4 0.6 0.

Density as Mixture of Gaussians

bwr‘-l)
m Approximate density with a mixture of Gaussians l’“g's i \:‘;:
Mixture of 3 Gaussians /"‘\ ’ $ M Je 4
?,—, '.K OL.S,
p(xK’L ‘ URy 2 X) = Wiee ‘E“
|,
Z_’ll'k N(X\\ Mk,jlc)
kA
t
. ka0
‘n 1D: [ ¢ 63“;““{

i"‘t’ \
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Density as Mixture of Gaussians

m Approximate with density with a mixture of Gaussians
Our actual observations

Mixture of 3 Gaussians

0 Ls esk

C. Bishop.Pattern Recogn/t/on & Machine Learging

Clustering our Observations
* JEEE

m |Imagine we have an assignment of each x; to a Gaussian
Our actual observations

\&L 1 1
wovm
s'\t(
w55 05
‘;‘.. [ ]
0 0
0 05 1 0 05 r
Complete data labeled incomplese date

by true cluster assignments
C. Bishop.Pattern Recognition & Machine Learging
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Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian

m [ntroduce latent cluster
indicator variable z;

1 ZAé?.\
?r(%“k) m,

m Then we have

sk
p(xz | Ry Ty [y E) -
=

0 NG ;. Zz;)

05

sk k
0 0.5 1 ?ﬂfa‘m 28, s Qag S
Complete data labeled Weve 13 S 2 A uovP“S into
by true cluster assignments (anss- est

C. Bishop.Pattern Recognition & Machme Learging

Clustering our Observations
" JEE

m We must infer the cluster assignments from the observations

m Posterior probabilities of
1 assignments to each cluster
*given* model parameters:

rik =p(zi =k |z, 7, 0) =

- o8 : T[‘(N(XR‘MK/Z“>
0 ?“\] N(\L:l MJ,ZJB
0 05 i

. . -ve ala-
Soft assignments to clusters motiates on ireratn )

C. Bishop.Pattern Recognition & Machine Learging
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Summary of GMM Concept

“
m Estimate a density based on x;,...,xy

intoductng 37 ke K
p(l‘i | ™ [, E) = Z FZiN(xi | luzi?zzi)

2’7;:1

2S¢ b(; P ﬁlasj'l

05

0 C ks oY
" q’c«\” e s s
0 0.5 1
Complete data labeled Surface Plot of Joint Density,
by true cluster assignments Marginalizing Cluster Assignments
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Summary of GMM Components
" S

m Observations r, eRY i=1,2,...,
m Hidden cluster labels z; € {1,2,..., K}, i=1,2,...,
m Hidden mixture means pr €RY k=1,2,...,
m Hidden mixture covariances X, € R¥*?4 =12, ...,
K
m Hidden mixture probabilities Tk, Z T =
k=1

Gaussian mixture marginal and conditional likelihood :

K
plai | mpS) = m N(@ | pe,, 52,)

Zi:].

p(xl | Ziy T, [y Z) :N<xl | /’szzzz)
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Generative Model
= JEE

m We can think of sampling observations
from the model

m For the GMM, define model parameters
Cluster means and covariances iMk'Zk g

Cluster weights v ):Tl “K]
(VALY

m For each observation /,

Sample a cluster assignment
2~
! vs ches “'JM
Sample the observation from the
selected Gaussian

Y \ziw N (%A T,,)

©Emily Fox 2014

A Bayesian GMM
" JEE—
m |n a Bayesian approach, we place priors
on the model parameters

m Conjugate priors are a computationally
convenient choice

m Conjugate prior for 6}, = ‘{MK,ZkE
Known variance: Gaussian prior on mean

Unknown mean & variance:
normal inverse-Wishart ( N \ W)

m Conjugate prior for 7 ??7?

©Emily Fox 2014
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The Simplex in 3D
" S

m The simplex defines the hyperplane of vectors that sum to 1

1)
OX 4 ﬂ/(\\:"’
(’\'Dl‘_\\ 'al N
0<fr <1
0 2221 0. =1
>
B,
Lo\ P)
W3 &~ U’IO’\/3
Dirichlet Distributions
" JEE
m The Dirichlet distribution is defined on the simplex
>0 Ve T ~Dir («\,.4‘,0‘0
o ;) i‘“k"'\
= o) = D(Y ) 1 k=1
A Frirle) =g, L
g Rz 0.1 Yk

Moments: E,[my] = Sk
Qo
K—-1
Varelmd = g, )
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Dirichlet Probability Densities
« N

]
oL
‘:\Qof 0 ¢S 'L(\b'\"
W ‘M'(’u\
m ~ Dir(aq,...,ax)
(1,0,0) (0,0,1) (0,1,0)
7r~Dir(';‘.1,1) 7 ~ Dir (4 ) sl
NgS’ (ABABAB) (/4114172  (1/2,1/2,0)
o P
L SRR
[\rauﬁ G Vit
T~ Dir(’:l" 9,7) T~ Dir((},;O.Q, 0.2) )
©Emily Fox 2014
. Qg
Dirichlet Samples Ealm] =
“ JE _

m Samples are sparse for small values of ¢;

Samples from Dir (alpha=0.1) Samples from Dir (alpha=

°5+ L -] L— - —J

L- - — { 02}  —— ’_?J

L— e mm

S I

Dir(@] 0.1,0.1,0.1,0.1,0.1)  Dir(7r| 1.0,1.0,1.0,1.0. 1.0)
?wcs mesS  at Lrers uniferm

ooooooooooooo
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Model Summary
" JEE

m Prior on model parameters
E.g., symmetric Dirichlet for 7T

Normal inverse Wishart prior for 9k:

m Sample observations as
Zi ~ T
wi | 2i ~ N(piz;, 22,)
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