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Gaussian Processes £
" EEE——— B
m Distribution on functions &%/
f~ GP(m,k)
= m: mean function
m K: covariance function )<'
@ @ ¥ ana‘ any X, ,.., Xn
p(f(x1), ..., f(xn)) ~ Nn(M, K)
m U= [m(x1),...,m(Xn)] — \,J //4/
= Kij = K (Xi,Xj) \5 N ow

[~

m |dea: If x; x; are similar according to the kernel, then f(x))
is similar to f(x))

ooooooooooooo




GPs for Regression
"
m Noisy scenario: observe a noisy version of underlying function
y=f(z)+e e~N(0,0y)

Not required to interpolate, just come “close” to observed data

cov(y|X) = cov(£) + covle) = i 4—6‘;1,\ = K):

Kﬂw ’ r-)
m Training dataDy (s, y5),i=1,.
m Test data locations X* > predlctf* ,,.Q\' < hefore

Jointl h

= Jointly, we a%@ N @ﬁc

CWA,(\:;‘ ()(“/

5

m Therefore, p(f* | X*, X,y) = N(£* [ K 7 )’/ ’

Koo - b(,c K\, k&}
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GPs for Regression
" JEE
p(f* | X* X, y) = N(K] Ky, Koo — KK K)
m For a single point x*

P | X Xoy) = NETK g, b = KUK )

SO /\—J

J; y_ Zo( P\(x‘)xf)
?(ukw"“”' will sz ths |ater

ean
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Estimating Hyperparameters
* JEE

m How should we choose the kernel parameters?
Example: squared exponential kernel parameterization

1
k(z,2') —Qexp ( 5 (zp — xq)TM(:cp - )) +f_5pq
Hyperparameters 9 H 0& /6./ i =

As we saw before, can choose

M =072 M =diag(¢;?,...,0;%) M= AN +diag(¢;2,...,0,7%). ..
m As in other nonparametric methods, choice can have large effect
L+
-
T %
At
+
+
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Estimating Hyperparameters
“
m Options:
#1: Define a grid of possible values and use cross validation
can be slow. - -
#2: Full Bayesian analysis: Place prior on hyperparameters and integrate

over these as well in making predictions )
Some clwilmﬁés in practice

#3: Maximize the marginal likelihood

Py | X,6) = / oy | £, X)p(f | X.6)df

logp(y | X,0) =
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Estimating Hyperparameters
* JEE—
logply | X,6) =~y Ky 'y — 3 log|K,| ~ & log 2

For short length-scale, the fit is good, but K is nearly diagonal

For large length-scale, the fit is bad, but K is almost all 1's

m Can show:
o} 1 15)¢ 1 0K
—1 X, 0) = y'K 'YK Yy— —tr | K1 =Y

1 T 0K
=—tr ( (aa® — K1 Y

2 <( v) 90,
Optimize to choose hyperparameters
Complexity is
Objective is non-convex, so local minima are a problem
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Example of Estimating Hypers

" JEE——
logp(y | X, 4,07) o7 =1

”
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g g
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input, x
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Relating GPs to Kernel Methods
"

m GPs as linear smoothers
Recall that the predictive posterior mean of a GP is

F(a") = k(K +oyl) "y

m In kernel regression, the weight function was derived from a
smoothing kernel instead of a Mercer kernel
Clear that smoothing kernels have local support
Less clear for GPs since the weight function depends on the inverse of K

m For some GP kernels, can analytically derive equivalent kernel
As with smoothing kernels,
Computing a linear combination, but not a convex combination of y;'s
Interestingly, the weight function is local even when the GP kernel is not

Furthermore, the effective bandwidth of the GP equivalent kernel
automatically decreases with n, where as in kernel smoothing such tuning
must be done by hand
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Effective Degrees of Freedom
" JEE

m For the training set, the fit is given by

f=K(K+ orly) "y

Since K is a positive definite Gram matrix, it has eigendecomp
n

i=1
Using this, one can show that K (K + Uifn)_l has eigenvals

Therefore, the effective degrees of freedom is

Remember that this specifies how “wiggly” the curve is
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Relating GPs to Splines
* JEEE

m Recall smoothing spline objective

I’HIDZ f(x;)) —|—)\/f”

m Consider the foIIowmg model

f(x) = Bo + prx +r(x)

where

m One can show that the MAP estimate of f(x) is a cubic
smoothing spline when p(3;) « 1

m Penalty parameter A is now given by 0'5/0'?‘

©Emily Fox 2014 1

Relating GPs to Splines
* JEE—

m The spline kernel leads to a smooth posterior mode/mean, but
posterior samples are not smooth.
Again, as in lasso, regularizers do not always make good priors

Figure from
Rasmussen
| and Williams
’ 2006

-5 0 5 -5 0 5
input, x input, x
(a), spline covariance (b), squared exponential cov.

m See Rasmussen and Williams 2006 for more details
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GP Regression Recap
" JE
Linear Basis Gaussian
Expansion Process

Prior p~ N(O’Q_llM)
f ~ GP(0,k(z,2"))

F@) =" Bndm(x)

Distribution f~N(©O,a '®dT)  f~ N(0,K)
on Xy, ..., X,

Choices + Choose M - Choose k(z,z")
* Choose bases » Choose covariance
hyperparameters
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GP Regression Recap
" JEE

Linear Basis GP Splines Kernels
Expansion regression
{om ()} k(z,2')

QL — K
QL —
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Choice of Covariance Function
" JEE
m Definitions
Stationary kernel — only dependson ' — x’
Isotropic kernel — furthermore only depends on | ’a} — x’| |

m Examples .
Squared exponential - ksg(r) = e 22
= Kernel is infinitely differentiable > GP has mean square derivatives of all orders
- resulting functions are very smooth

21—V 2ur ’ 2vr
Matern - Kpratern(r) = W <£> K, <€>

s When V — 0O : squared exponential

= When 1 = — :exponential kernel Kegp(T) =€ ¢
2 - equal to Brownian motion in 1D **
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Sample Paths using Matern Kernel
" JEE—

m Can produce very rough sample paths

covariance, k(r)
output, f(x)

1 2 -5 0 5
input distance, r input, x

(a) (b)

Figure from Rasmussen and Williams 2006
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Family of Gaussian Processes
" JEE

Squared
() exponential
Polynomial kefnel = kernel
finite polynomial basis
@ RBF

L)
Matern
Browni me AR(p)
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Density Estimation
" JEE—

m Estimate a density based on x;,...,xy

Density Estimation
" S

Contour Plot of Joint Density
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Density as Mixture of Gaussians

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians Contour Plot of Joint Density
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Density as Mixture of Gaussians

m Approximate density with a mixture of Gaussians

Mixture of 3 Gaussians

p(ﬂ?z ‘ ™, W, E) -
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Density as Mixture of Gaussians

m Approximate with density with a mixture of Gaussians
Our actual observations

Mixture of 3 Gaussians

0.5

C. Bishop.Pattern Recognition & Machine Learging

Clustering our Observations
* JEEE

m |Imagine we have an assignment of each x; to a Gaussian
Our actual observations

0.5 0.5

0 05 1 0 0.5 1
Complete data labeled

by true cluster assignments
C. Bishop.Pattern Recognition & Machine Learging
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Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian

m [ntroduce latent cluster
indicator variable z;

m Then we have

p(xz | Ziy Ty by Z) =

05

0 0.5 1
Complete data labeled

by true cluster assignments
C. Bishop.Pattern Recognition & Machine Learging

Clustering our Observations
" JEE—

m We must infer the cluster assignments from the observations

m Posterior probabilities of
1 assignments to each cluster
*given* model parameters:

rik =p(zi =k |z, 7, 0) =
05

0 0.5 1
Soft assignments to clusters

C. Bishop.Pattern Recognition & Machine Learging
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Summary of GMM Concept

m Estimate a density based on x;,...,xy

K
p(mi | Ty [y E) = Z ﬂ-ZiN(xi | luzi?zzi)

2’7;:1

05

0
0 0.5 1
Complete data labeled Surface Plot of Joint Density,
by true cluster assignments Marginalizing Cluster Assignments
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Summary of GMM Components
" S

m Observations r, €eRY i=1,2,...

m Hidden cluster labels z; € {1,2,..., K}, i=1,2,...

m Hidden mixture means pr €RY k=1,2,...

m Hidden mixture covariances ;. € RdXd, kE=1,2,...
K

m Hidden mixture probabilities Tk, Z T =
k=1

Gaussian mixture marginal and conditional likelihood :

K
plai | mpS) = m N(@ | pe,, 52,)

Zi:].

p(xl | Ziy T, [y Z) :N<xl | /’szzzz)
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Generative Model
= JEE

m We can think of sampling observations
from the model

m For the GMM, define model parameters
Cluster means and covariances
Cluster weights

m For each observation /,
Sample a cluster assignment

Sample the observation from the
selected Gaussian

©Emily Fox 2014

A Bayesian GMM
" S

m |n a Bayesian approach, we place priors
on the model parameters

m Conjugate priors are a computationally
convenient choice

= Conjugate prior for 6,
Known variance: Gaussian prior on mean

Unknown mean & variance:
normal inverse-Wishart

m Conjugate prior for 7 ??7?

©Emily Fox 2014
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The Simplex in 3D
" I

m The simplex defines the hyperplane of vectors that sum to 1

A
‘91
0<60,<1
2221 O =1
P
‘92
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Dirichlet Distributions
= JEEE

m The Dirichlet distribution is defined on the simplex

0 o0

Moments: E,[my] = Sk
Qo
K—-1
Vara[m] = K2%(ap+ 1)
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Dirichlet Probability Densities

m ~ Dir(aq,...,ax)
‘ (1,0,0) (0,0,1) (0,1,0)
T~ Dir(’;‘. 1,1) T~ Dir:m, 1) .}
(ABABAB) (/4114172  (1/2,1/2,0)
[¢]
T~ Dir(’:l" 9,7) T~ Dir(O,;O.Q. 0.2)
©Emily Fox 2014 33
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Dirichlet Samples Ealm] = 2o
@0

m Samples are sparse for small values of ¢;

Samples from Dir (alpha=0.1)

1
OIS}’ -]
; 1 2 3 4 5
; 1 2 3 4 5
: .
] 1 2 3 4 5
] _ N
] 1 2 3 4 5
0
1 2 3 4 5

Dir(7r] 0.1,0.1,0.1,0.1,0.1)
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Samples from Dir (alpha=1)

L— — 5 |
Dir(7r] 1.0,1.0,1.0, 1.0, 1.0)
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Model Summary
" JEE

m Prior on model parameters
E.g., symmetric Dirichlet for 7T

Normal inverse Wishart prior for 9k:

m Sample observations as
Zi ~ T
wi | 2i ~ N(piz;, 22,)

©Emily Fox 2014
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Posterior Computations
" SN

m From our observations, we want to infer model params
m MAP estimation can be done using expectation
maximization (EM) algorithm:

OMAP — arg maaxp(ﬁ | x)

m What if we want a full characterization of the posterior?
Maintain a measure of uncertainty
Estimators other than posterior mode (different loss functions)
Predictive distributions for future observations

m Often no closed-form characterization (e.g., mixture models)

m Alternatives:

Markov chain Monte Carlo (MCMC) providing samples from posterior
Variational approximations to posterior
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Gibb Sampling
" S

m Let z indicate the set of all variables in the model: e.g.,
cluster indicators and parameters

m Want draws:

m Construct Markov chain whose steady state distribution is
m Simplest case:

©Emily Fox 2014 38
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Gibbs Sampler for a 2D Gaussian

General Gibbs Sampler

2 e | 2Y) =)

A0 =20 A

J J
Under mild conditions,
converges assuming all
variables are resampled
infinitely often (order can be
fixed or random)

C. Bishop,

ly

ny

1

attern Recognition & Machine Learging

Example — GMM

" S (@) | L8
K
m Recall model 4
Observations: T1,...,TN N
Cluster indicators: 21, ---, 2N
Parameters: T, Hk T=[r1,...,TK]
Or = {pr, Xr}
Generative model:
m ~ Dir(ay,...,ax) Zj~ T

{1k, X} ~ NIW(A)

m lteratively sample

Z; | Zis {gk} ~ N(Mzia Zzz)

©Emily Fox 2014 40
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Complete Conditional p(z: | 7, {0k}, {z:})

" J—
= We have Zi ™~ T
Xy | Ziy {9147} ~ N(Mzw EZ'L)
m As before, we can compute the “responsibility” of each
cluster to the observation
(2 | Ok)

Zﬁil mep(zi | 6r)

rik =p(zi =k | x;,m,0) =

m Sample each cluster indicator as

0.5

0 0.5 1
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Complete Conditional p(r | {z})
" JEE
m Recall conjugate Dirichlet prior
7w ~ Dir(ay,...,ak) p(r| o) = Zkak H
k k

m Dirichlet posterior
Assume we condition on cluster indicators 2; ~ T
Count occurrences of 2; = k
Then,

p(W|Oé,Zl,...,ZN)O<

Conjugacy: This posterior has same form as prior

©Emily Fox 2014 42
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Complete Conditional p(0x | {2}, {z:})
* JEE
m Recall NIW prior...Let’'s consider 1D example - N-IG

vy VoS
ot~ N0a0d) o ~1G (9,5

m Normal inverse gamma posterior
Consider observation indices i such that z; = k
For these observations, x; | z; = k ~ N (ug, 2Xk)
Then,

1 1
2 E : 2
12 Oy 1\ Rifs \Lig N|—— LTiy w0
k | k { } { } (Nk 1 R i Z\Tk 7,1 k)

zi=

vo+ N 050+ D x7 — (Ng + 7_1)_1(21':%:1@ zi)?
Ul% | {Zl}v{xl} ~1G ( 9 ) 9

Conjugacy: This posterior has same form as prior

©Emily Fox 2014 43

Standard Finite Mixture Sampler
" JEE
Given mixture weights 7(t=1) and cluster parameters {01(:_1) S | from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x; to one of the K clusters by sampling
the indicator variables z = {z;})¥, from the following multinomial distributions:

K K
1 - - _ -
2~ ST i |70 6 k) Zi=y m! Vi | 67Y)
! k=1 k=1

2. Sample new mixture weights according to the following Dirichlet distribution:

N
7™ ~ Dir(N, + /K, ..., N + a/K) Ne =Y 0" k)
i=1

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

0\ ~ p(6) | {zi | 2" =k}, \)
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Standard Sampler: 2 Iterations

log p(x I T, 6) = -539.17

©Emily Fox 2014

log p(x I , 6) = —497.77

log p(x I T, 6) = —404.18

ooooooooooooo

log p(x I 7, 6) = —454.15
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Standard Sampler: 50 lterations
* JEE

log p(x | , 6) = —397.40 log p(x | m, 6) = —442.89
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