## Module 3: Bayesian Nonparametrics

Finite Mixture Models or density estimation

STAT/BIOSTAT 527, University of Washington Emily Fox
April 29 ${ }^{\text {th }}, 2014$

## Density Estimation

- Estimate a density based on $x_{1}, \ldots, x_{N}$




## Model Summary

- Prior on model parameters
$\square$ E.g., symmetric Dirichlet for $\pi$


Normal inverse Wishart prior for $\theta_{k}=\left\{\mu_{k}, \Sigma_{k}\right\}$
$\left\{\begin{array}{l}\{, \ldots, k\}\end{array}\right.$

- Sample observations as
$z_{i} \sim \pi \quad$ choose a cluster
$x_{i} \mid z_{i} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right) \quad$ sim ops. from
selected




## Clustering our Observations

- We must infer the cluster assignments from the observations

- Posterior probabilities of assignments to each cluster *given* model parameters:
$r_{i k}=p\left(z_{i}=k \mid x_{i}, \pi, \theta\right)=$ $=\frac{\pi_{k} N\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j} \pi_{j} N\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}$
motivates an iterative alg
C. Bishop Emply $_{\text {Pattearn Recognition \& Machine Learning }}$


## Posterior Computations

From our observations, we want to infer model prams

- MAP estimation can be done using expectation maximization (EM) algorithm: MAP version

$$
\hat{\theta}^{M A P}=\arg \max _{\theta} p(\theta \mid x) \quad \text { point estimation }
$$

- What if we want a full characterization of the posterior?
$\square$ Maintain a measure of uncertainty
$\square$ Estimators other than posterior mode (different loss functions) posterior
$\square$ Predictive distributions for future observations

$$
p\left(x_{N+1} \mid x_{1}, \ldots, x_{N}\right)=\int p\left(x_{N+1}\right.
$$

( $\theta) p\left(\theta \mid x_{1}, \ldots x_{N}\right) d \theta$

- Often no closed-form characterization (e.g., mixture models)
- Alternatives:

女 Markov chain Monte Carlo (MCMC) providing samples from posterior
Variational approximations to posterior

## Gibb Sampling

- Let $z$ indicate the set of all variables in the model: egg., cluster indicators and parameters
- Want draws:
- Construct Markov chain whose steady state distribution is $\pi(\eta)$
- Simplest case:

$$
\begin{aligned}
& \text { for } t=1, \ldots, \text { Niter } \\
& \text { for } i=1, \ldots, n \\
& z_{i}^{(t)} \sim \underbrace{\text { has closed form } * \text { can sample }}_{\text {Gib's sampling assumes that this }}
\end{aligned}
$$

## Gibbs Sampler for a 2D Gaussian


General Gibbs Sampler

$$
\begin{aligned}
z_{i}^{(t)} \sim p\left(z_{i} \mid z_{\backslash i}^{(t-1)}\right) & i=i(t) \\
z_{j}^{(t)}=z_{j}^{(t-1)} & j \neq i(t)
\end{aligned}
$$

Under mild conditions, converges assuming all variables are resampled infinitely often (order can be fixed or random)
C. Bishop $p_{\text {emily }}$ atterarn Recognition \& Machine Learning

## Example - GMM


want $\left\{\square\right.$ Cluster indicators: $z_{1}, \ldots, z_{N}$
$\square$ Parameters: $\pi, \theta_{k} \xrightarrow{\pi}=\left[\pi_{1}, \ldots, \pi_{K}\right]$
$\square$ Generative model:

$$
\begin{aligned}
\pi & \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) & z_{i} & \sim \pi \\
\left\{\mu_{k}, \Sigma_{k}\right\} & \sim \operatorname{NIW}(\lambda) & x_{i} \mid z_{i},\left\{\theta_{k}\right\} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Iteratively sample

$$
z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\} \quad i=1, \ldots, N
$$

$$
\theta_{k} \mid \not X_{1}\left\{z_{i}\right\},\left\{X_{i}\right\}
$$

$$
k=1, \ldots k
$$

## Complete Conditional $p\left(z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\}\right)$

- We have
$z_{i} \sim \pi$
$x_{i} \mid z_{i},\left\{\theta_{k}\right\} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)$
- As before, we can compute the "responsibility" of each cluster to the observation

$$
r_{i k}=\underbrace{p\left(z_{i}=k \mid x_{i}, \pi, \theta\right)}_{\text {desired complete cond. }}=\frac{\pi_{k} p\left(x_{i} \mid \theta_{k}\right)}{\sum_{\ell=1}^{K} \pi_{\ell} p\left(x_{i} \mid \theta_{\ell}\right)}
$$

- Sample each cluster indicator as

$$
\begin{aligned}
& z_{i} \sim r_{-i} \quad i=1, \ldots, N \\
& r_{i}: \\
& {\left[r_{i 1}, \ldots, r_{i k}\right] }
\end{aligned}
$$



## Complete Conditional $p\left(\pi \mid\left\{z_{i}\right\}\right)$

- Recall conjugate Dirichlet prior

$$
\pi \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) \quad p(\pi \mid \alpha)=\frac{\Gamma\left(\sum_{k} \alpha_{k}\right)}{\prod_{k} \Gamma\left(\alpha_{k}\right)} \prod_{k} \pi_{k}^{\alpha_{k}-1}
$$

- Dirichlet posterior
$\square$ Assume we condition on cluster indicators $z_{i} \sim \pi$
$\square$ Count occurrences of $z_{i}=k$
$\square$ Then,
$N_{k}=\mid\left\{z_{i}=z_{i}=\sqrt{3}\right\}$
$p\left(\pi \mid \alpha, z_{1}, \ldots, z_{N}\right) \propto \prod_{i} p\left(z_{i} \mid \pi\right) p(\pi \mid \alpha)$


Conjugacy: This posterior has same form as prior

## Complete Conditional $p\left(\theta_{k} \mid\left\{z_{i}\right\},\left\{x_{i}\right\}\right)$

- Recall NIW prior...Let's consider 1D example $\rightarrow$ N-IG

$$
\left.\mu_{k} \left\lvert\, \sigma_{k}^{2} \sim N\left(0, \gamma \sigma_{k}^{2}\right) \quad \sigma_{k}^{2} \sim \overline{\operatorname{IG}\left(\frac{\nu_{0}}{2}, \frac{\nu_{0}}{2} S_{0}\right.}\right.\right)
$$

- Normal inverse gamma posterior
$\square$ Consider observation indices $i$ such that $z_{i}=k$
$\square$ For these observations, $x_{i} \mid z_{i}=k \sim N\left(\mu_{k}, \Sigma_{k}\right)$
$\square$ Then,
$\square$ Conjugacy: This posterior has same form as prior


## Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\left\{\theta_{k}^{(t-1)}\right\}_{k=1}^{K}$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the $N$ data points $x_{i}$ to one of the $K$ clusters by sampling the indicator variables $z=\left\{z_{i}\right\}_{i=1}^{N}$ from the following multinomial distributions:

$$
z_{i}^{(t)} \sim \frac{1}{Z_{i}} \sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right) \delta\left(z_{i}, k\right) \quad Z_{i}=\sum_{k=1}^{K} \pi_{k}^{(t-1)} f\left(x_{i} \mid \theta_{k}^{(t-1)}\right)
$$

2. Sample new mixture weights according to the following Dirichlet distribution:

$$
\pi^{(t)} \sim \operatorname{Dir}\left(N_{1}+\alpha / K, \ldots, N_{K}+\alpha / K\right) \quad N_{k}=\sum_{i=1}^{N} \delta\left(z_{i}^{(t)}, k\right)
$$

3. For each of the $K$ clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

$$
\theta_{k}^{(t)} \sim p\left(\theta_{k} \mid\left\{x_{i} \mid z_{i}^{(t)}=k\right\}, \lambda\right)
$$

## Standard Sampler: 2 Iterations


$\log p(x \mid \pi, \theta)=-539.17$


## Standard Sampler: 10 Iterations


$\log \mathrm{p}(\mathrm{x} \mid \pi, \theta)=-404.18$ better

$\log \mathrm{p}(\mathrm{x} \mid \pi, \theta)=-454.15$

## Standard Sampler: 50 Iterations


$\log p(x \mid \pi, \theta)=-442.89$
can get stuct for long fine...

## Mixtures Induce Partitions

- If our goal is clustering, the output grouping is defined by assignment indicator variables:

$$
z_{i} \sim \pi \quad \begin{array}{ll}
z_{1}, \ldots, z_{N} \\
& 15532114
\end{array}
$$

- The number of ways of assigning $N$ data points to $K$ mixture components is

$$
K^{N}
$$

- If $K \geq N$ this is much larger than the number of ways of partitioning that data:




## Mixtures Induce Partitions

- If our goal is clustering, the output grouping is defined by assignment indicator variables:

$$
z_{i} \sim \pi
$$

- The number of ways of assigning $N$ data points to $K$ mixture components is $K^{N}$
- If $K \geq N$ this is much larger than the number of ways of partitioning that data:

For any clustering, there is a unique partition, but many ways to label that partition's blocks.
Note: sampler can switch between eq

## Module 3: Bayesian Nonparametrics

## Infinite Mixture Models

going infinite

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 29th, 2014

## Motivating Nonparametric GMM

- What if current model doesn't fit new data?
- Bayesian nonparametric approach: $\quad k \rightarrow \infty$
$\square$ Allows infinite \# clusters
$\square$ Uses sparse subset
$\square$ Model complexity adapts to observations


Mixture of Gaussian $\leftarrow$ allows us to add in $\begin{array}{lllllllllll}\theta_{1} & \theta_{2} & \theta_{3} & \theta_{4} & \theta_{5} & \theta_{6} & \theta_{7} & \cdots & \begin{array}{c}\text { new mom pl } \\ \text { comp. }\end{array}\end{array}$

Nonparam. Model In Pictures

- Mixture weights
 $\left\{0_{k}\right\} \quad k=1,2, \ldots$
- For each observation, draw

$$
\begin{aligned}
& z_{i} \sim \pi \\
& x_{i} \mid z_{i} \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right) \\
& \text { How to define } \pi ?
\end{aligned}
$$



## Dirichlet Distributions

- The Dirichlet distribution is defined on the simplex


Dirichlet Samples
$\mathbb{E}_{\alpha}\left[\pi_{k}\right]=\frac{\alpha_{k}}{\alpha_{0}}$

- Samples are sparse for small values of $\alpha_{i}$

$\operatorname{Dir}(\pi \mid 0.1,0.1,0.1,0.1,0.1)$ puts mass @ corners





$\operatorname{Dir}(\pi \mid 1.0,1.0,1.0,1.0,1.0)$
uniform



## Stick-Breaking Process Summary




## Dirichlet Process Mixture Model

- Place Dirichlet process prior on weights and mixture parameters:

$$
G \sim \mathrm{DP}(\alpha, H)
$$

- For each observation, draw

$$
\begin{aligned}
z_{i} & \sim \pi \\
x_{i} \mid z_{i} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$



## Finite versus DP Mixtures

Finite Mixture DP Mixture
$\pi \sim \operatorname{Dir}\left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K}\right) \quad \pi \sim \operatorname{Stick}(\alpha)$

$$
\begin{array}{ll}
\text { sym. } & z_{i} \sim \pi \\
x_{i} \sim F\left(\theta_{z_{i}}\right)
\end{array} \text { e.g. } N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
$$



THEOREM: For any measureable function $f$, as $K \rightarrow \infty$

$$
\begin{aligned}
& \quad \int_{\Theta} f(\theta) d G^{K}(\theta) \xrightarrow[k-\infty]{\mathcal{D}} \int_{\Theta} f(\theta) d G(\theta) \\
& G^{K}(\theta)=\sum_{k=1}^{K} \pi_{k}^{K} \delta_{\theta_{k}}(\theta) \\
& \Pi^{k} \sim \operatorname{sir}\left(\frac{\alpha}{k}, \cdots, \frac{\alpha}{k}\right)
\end{aligned}
$$

## Induced Partitions

- Recall that mixture models induce partitions of the data

$$
z_{i} \sim \pi
$$

- For a given prior on mixture weights, some partitions are more likely than others apriori
$\square$ Example 1: $\pi \sim \operatorname{Dir}(1, \ldots, 1)$


Example 2: $\pi \sim \operatorname{Dir}(0.01, \ldots, 0.01)$


## Induced Partitions

- Recall that mixture models induce partitions of the data

$$
z_{i} \sim \pi
$$

- For a given prior on mixture weights, some partitions are more likely than others aprioriExample 3 (DP mix): $\pi \sim \operatorname{Stick}(\alpha)$





- What is the induced distribution on $z_{1}, \ldots, z_{N}$ ? Answer:
$\square$ Do we expect many unique clusters?


## Chinese Restaurant Process (CRP)

- Distribution on induced partitions described via the CRP
- Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant:
 randomly select a table according to:iorm \# of unique clustass in in $^{\mathrm{N}}$





## Finite GMM Sampler

- Recall model
$\square$ Observations: $x_{1}, \ldots, x_{N}$
$\underset{\text { these }}{\substack{\text { wt }}} \begin{aligned} & \square \text { Cluster indicators: } z_{1}, \ldots, z_{N} \\ & \square \text { Parameters: } \pi, \theta_{k} \xrightarrow{\square} \pi=\left[\pi_{1}, \ldots, \pi_{K}\right] \\ & \Delta \theta_{k}=\left\{\mu_{k}, \Sigma_{k}\right\}\end{aligned}$

$\square$ Generative model:

$$
\begin{aligned}
\pi & \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right) & z_{i} & \sim \pi \\
\left\{\mu_{k}, \Sigma_{k}\right\} & \sim \operatorname{NIW}(\lambda) & x_{i} \mid z_{i},\left\{\theta_{k}\right\} & \sim N\left(\mu_{z_{i}}, \Sigma_{z_{i}}\right)
\end{aligned}
$$

- Iteratively sample

$$
\begin{aligned}
& Z_{i} \mid \pi,\left\{\theta_{k}\right\},\left\{x_{i}\right\} \quad i=1, \ldots, N
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{k} \mid X\left\{x_{i}\right\},\left\{x_{i}\right\} \quad k=1, \ldots K
\end{aligned}
$$

## Collapsed DP Mixture Sampler

- Can't sample $\pi$ directly

- Integrate out all infinite-dimensional prams $\pi, 96\}$

$$
P\left(z_{i: N}, x_{i}: N\right)=\int_{\pi} \int_{\theta_{1,}, z_{2} \ldots} \frac{P(\pi \mid \alpha)}{\infty} \prod_{k=1}^{\infty} P\left(\theta_{k} \mid k\right) \prod_{i=1}^{N} P\left(z_{i} \mid \pi\right) P\left(x_{i} \mid \theta_{z_{i}}\right)
$$



- Iteratively sample théctuster indicators "likelihood"

$$
\begin{aligned}
& \left.z_{i}^{(t)} \sim p\left(z_{i}^{r}=k \mid z_{i i}^{(t-1)}, \alpha\right) p\left(x_{i}^{\left(x \mid\left\{x_{j}\right.\right.} ; z_{j}=k, i \neq j\right\}\right)
\end{aligned}
$$

## Collapsed Sampler Intuition

- Previously, $p\left(z_{i}=k \mid x_{i}, \pi, \underline{\theta}\right) \propto \pi_{k} p\left(x_{i} \mid \theta_{k}\right)$
- If you're not told $\pi, \theta_{k}$

Approx $\pi$ by CRP
$\rightarrow$ "prior" is based on cluster occupancy

Approx $\theta_{k}$
$\rightarrow$ "likelihood" based on obs. already assigned to cluster


## Predictive Likelihood Term

- Recall NIW prior...Let's consider 1D example $\rightarrow$ N-IG

$$
\mu_{k} \left\lvert\, \sigma_{k}^{2} \sim N\left(0, \gamma \sigma_{k}^{2}\right) \quad \sigma_{k}^{2} \sim \operatorname{IG}\left(\frac{\nu_{0}}{2}, \frac{\nu_{0} S_{0}}{2}\right)_{\text {el }}\right. \text { lihood }
$$

- Normal inverse gamma posterior $\rightarrow$ Student $t$ predictive likelihood $p\left(x_{i} \mid\left\{x_{j}: z_{j}=k, j j_{i}\right\}\right)=\int p\left(x_{i} \mid \theta_{k}\right) p\left(\theta_{k} \mid\left\{x_{j}: z_{j}-k, j \neq i\right\}\right) d \theta_{k}$ $p\left(x \mid\left\{x_{j} \mid z_{j}=k, j \neq i\right\}\right)=t_{\nu_{0}+N_{k}^{-i}}\left(\frac{1}{\gamma^{-1}+N_{k}^{-i}} \sum_{j: z_{j}=k, j \neq i} x_{j}\right.$,

$$
\left.\frac{N_{k}^{-i}+\gamma^{-1}+1}{\left(N_{k}^{-i}+\gamma^{-1}\right)\left(\nu_{0}+N_{k}^{-i}\right)}\left(\nu_{0} S_{0}+\sum_{j: z_{j}=k, j \neq i} x_{j}^{2}-\left(N_{k}+\gamma^{-1}\right)^{-1}\left(\sum_{j: z_{j}=k, j \neq i} x_{j}\right)^{2}\right)\right)
$$

$\square$ Conjugacy: This integral is tractable

## Collapsed DP Mixture Sampler

1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1, \ldots, N\}$.
2. Set $\alpha=\alpha^{(t-1)}$ and $z=z^{(t-1)}$. For each $i \in\{\tau(1), \ldots, \tau(N)\}$, resample $z_{i}$ as follows:
(a) For each of the $K$ existing clusters, determine the predictive likelihood

$$
f_{k}\left(x_{i}\right)=p\left(x_{i} \mid\left\{x_{j} \mid z_{j}=k, j \neq i\right\}, \lambda\right)
$$

Also determine the likelihood $f_{\bar{k}}\left(x_{i}\right)$ of a potential new cluster $\bar{k}$

$$
p\left(x_{i} \mid \lambda\right)=\int_{\Theta} f\left(x_{i} \mid \theta\right) h(\theta \mid \lambda) d \theta
$$

(b) Sample a new cluster assignment $z_{i}$ from the following $(K+1)$-dim. multinomial:

$$
z_{i} \sim \frac{1}{Z_{i}}\left(\alpha f_{\bar{k}}\left(x_{i}\right) \delta\left(z_{i}, \bar{k}\right)+\sum_{k=1}^{K} N_{k}^{-i} f_{k}\left(x_{i}\right) \delta\left(z_{i}, k\right)\right) \quad Z_{i}=\alpha f_{\bar{k}}\left(x_{i}\right)+\sum_{k=1}^{K} N_{k}^{-i} f_{k}\left(x_{i}\right)
$$

$N_{k}^{-i}$ is the number of other observations currently assigned to cluster $k$.
(c) Update cached sufficient statistics to reflect the assignment of $x_{i}$ to cluster $z_{i}$. If $z_{i}=\bar{k}$, create a new cluster and increment $K$.
3. Set $z^{(t)}=z$.
4. If any current clusters are empty $\left(N_{k}=\underset{\text { ©Emiy }}{0}\right.$ ) , rex 2014 move them and decrement $K$ accordingly.

## Collapsed DP Sampler: 2 Iterations



## Collapsed DP Sampler: 10 Iterations


$\log p(x \mid \pi, \theta)=-398.32$
$\log p(x \mid \pi, \theta)=-399.08$

## Collapsed DP Sampler: 50 Iterations



$\log p(x \mid \pi, \theta)=-397.67$
$\log p(x \mid \pi, \theta)=-396.71$





## Poisson Integer-Valued - Autoregressions



Poisson new customers


Thinning of customers previously in queue Rate of arrivals in location i

- Cluster regions based on rate of arriving crimes
- Pool info within clusters
- Unknown number of clusters $\rightarrow$ Dirichlet process

[^0]

## Acknowledgements

Slides based on parts of the lecture notes of Erik Sudderth for "Applied Bayesian Nonparametrics" at Brown University

## CRPs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of $N$ customers is



## CRPs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of $N$ customers is independent of the order they enter the restaurant:

$\square$ Denominator terms: $\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
$\square$ Number of new tables: $K$
Numerator term for each new table: $\alpha$
Combined:



## CRTs \& Exchangeable Partitions

$p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)$

- The probability of a seating arrangement of $N$ customers is independent of the order they enter the restaurant:

$\square$ Denominator terms: $\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
$\square$ New table numerator terms: $\alpha^{K}$Customers joining $k^{\text {th }}$ occupied table: $1 \cdot 2 \cdots\left(N_{k}-1\right)=\left(N_{k}-1\right)|=|\left(N_{k}\right)$ Talveady I person sitting © p able $_{\text {th }}^{\text {th }}$


## CRTs \& Exchangeable Partitions

$$
p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)
$$

- The probability of a seating arrangement of $N$ customers is independent of the order they enter the restaurant:

$\square$ Denominator terms: $\frac{1}{1+\alpha} \cdot \frac{1}{2+\alpha} \cdots \frac{1}{N-1+\alpha}=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)}$
$\square$ New table numerator terms: $\alpha^{K}$
$\square$ Customers joining $k^{\text {th }}$ occupied table:

$$
1 \cdot 2 \cdots\left(N_{k}-1\right)=\left(N_{k}-1\right)!=\Gamma\left(N_{k}\right)
$$

## CRPs \& Exchangeable Partitions

$$
p\left(z_{N+1}=z \mid z_{1}, \ldots, z_{N}, \alpha\right)=\frac{1}{\alpha+N}\left(\sum_{k=1}^{K} N_{k} \delta(z, k)+\alpha \delta(z, \bar{k})\right)
$$

- The probability of a seating arrangement of $N$ customers is independent of the order they enter the restaurant:

$p\left(z_{1}, \ldots, z_{N} \mid \alpha\right)=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^{K} \prod_{k=1}^{K} \Gamma\left(N_{k}\right)$
- Thus, the CRP is a prior on an infinitely exchangeable sequence


## Finite versus CRP Partitions



## Chinese Restaurant Process:

$$
p\left(z_{1}, \ldots, z_{N} \mid \alpha\right)=\frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \alpha^{K_{+}} \prod_{k=1}^{K_{+}}\left(N_{k}-1\right)!
$$



- Probability of Dirichlet indicators approach zero as $K \rightarrow \infty$
- Probability of Dirichlet partition approaches CRP as


[^0]:    Aldor-Noiman, Brown, Fox, and Stine, arXiv:1304.5642, April 2013

