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Density Estimation
“

m Estimate a density based on x,,...,xy
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Density as Mixture of Gaussian%f
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" JEEE
m Prior on model parameters
0 E.g., symmetric Dirichlet for 77

Model Summary
(2)
9,

0 o

1 Normal inverse Wishart prior for Qk

m Sample observations as

Zi ~ T

x| zi ~ Nz, 2z,)
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m Mixture weights

™

m For each observation,

Model In Pictures
(&)
@,

Zy ~ T
x| 2 ~ N(phs, 22,)

©Emily Fox 2014 5

Clustering our Observations
" JEE—

m We must infer the cluster assignments from the observations

m Posterior probabilities of
1 assignments to each cluster
*given* model parameters:

rik =p(zi =k |z, 7, 0) =

" : “&‘\](XJ M|<,Zk>
0 ?“\] N(\L:l MJ,ZJB
0 0.5 i

. . -ve ala-
Soft assignments to clusters motiates on ireratn )

C. Bishop.Pattern Recognition & Machine Learning




Posterior Computations
* JEE—
m From our observations, we want to infermedelparams
m MAP estimation can be done using expectation
maximization (EM) algorithm:  pA? yesion ion
A~ . N /]
GMAP _ arg mgaxp(Q | x) ?om’c eshum#

m What if we want a full characterization of the posterior?
Maintain a measure of uncertainty
Estimators other than posterior mode (different loss functions)
Predictive distributions for future observations

m Often no closed-form characterization (e.g., mixture models)

m Alternatives:
Markov chain Monte Carlo (MCMC) providing samples from posterior
Variational approximations to posterior
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Gibb Sampling
"

m Let z indicate the set of all variables in the model: e.g.,
cluster indicators and parameters

m Want draws:

m Construct Markov chain whose steady state distribution is
m Simplest case:
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Gibbs Sampler for a 2D Gaussian

General Gibbs Sampler

2 e | 2Y) =)

zj(-t) = z](-tfl) J #i(t)

Under mild conditions,
converges assuming all

—
: variables are resampled
, infinitely often (order can be
| fixed or random)
1 %1

C. Bishop.Pattern Recognition & Machine Learning

Example — GMM

" S (@) | L8,
m Recall model K
Observations: T1,...,TN N
Cluster indicators: 21, ---, 2N
Parameters: T, O T =[m,...,TK]
Or = {pr, Xr}
Generative model:
m ~ Dir(ay,...,ax) Zj~ T
{118, S} ~ NIW()) 2| 20 {00} ~ N(piz,, 2,)

m lteratively sample
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Complete Conditional p(z: | 7, {0k}, {z:})
" S

= We have Zi ™~ T
Xy | Ziy {9147} ~ N(Mzw EZ'L)
m As before, we can compute the “responsibility” of each
cluster to the observation
(2 | Ok)

Zﬁil mep(zi | 6r)

m Sample each cluster indicator as

rik =p(zi =k | x;,m,0) =

0.5

0 0.5 1
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Complete Conditional p(r | {z})
" JEE
m Recall conjugate Dirichlet prior
7w ~ Dir(ay,...,ak) p(r| o) = Zkak H
k k

m Dirichlet posterior
Assume we condition on cluster indicators 2; ~ T
Count occurrences of 2; = k
Then,

p(W|Oé,Zl,...,ZN)O<

Conjugacy: This posterior has same form as prior
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Complete Conditional p(0x | {2}, {z:})
* JEE
m Recall NIW prior...Let’'s consider 1D example - N-IG

vy VoS
ot~ N0a0d) o ~1G (9,5

m Normal inverse gamma posterior
Consider observation indices i such that z; = k
For these observations, x; | z; = k ~ N (ug, 2Xk)
Then,

1 1
2 E : 2
12 Oy 1\ Rifs \Lig N|—— LTiy w0
k | k { } { } (Nk 1 R i Z\Tk 7,1 k)

zi=

vo+ N 050+ D x7 — (Ng + 7_1)_1(21':%:1@ zi)?
Ul% | {Zl}v{xl} ~1G ( 9 ) 9

Conjugacy: This posterior has same form as prior
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Standard Finite Mixture Sampler
" JEE
Given mixture weights 7(t=1) and cluster parameters {01(:_1) S | from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x; to one of the K clusters by sampling
the indicator variables z = {z;})¥, from the following multinomial distributions:

K K
1 - - _ -
2~ ST i |70 6 k) Zi=y m! Vi | 67Y)
! k=1 k=1

2. Sample new mixture weights according to the following Dirichlet distribution:

N
7™ ~ Dir(N, + /K, ..., N + a/K) Ne =Y 0" k)
i=1

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

0\ ~ p(6) | {zi | 2" =k}, \)

©Emily Fox 2014 14




Standard Sampler: 2 Iterations

log p(x I T, 6) = -539.17
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log p(x I , 6) = —497.77

log p(x I T, 6) = —404.18

ooooooooooooo

log p(x I 7, 6) = —454.15




Standard Sampler: 50 lterations

log p(x | , 6) = —397.40 log p(x | m, 6) = —442.89
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Mixtures Induce Partitions

is defined by assignment indicator variables:
Zi ™~ T

1

m  The number of ways of assigning N data
points to K mixture components is KN

m |f K > N thisis much larger than the

number of ways of partitioning that data:

L roprem— ()
m If our goal is clustering, the output grouping
a N

o

b & 8

N=3: 5 partitions versus 3% = 27
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Mixtures Induce Partitions
= JEE

m [f our goal is clustering, the output grouping
is defined by assignment indicator variables:

2y T

..........

m The number of ways of assigning N data > w A w» @
points to K mixture components is KN o T

m If K > N thisis much larger than the
number of ways of partitioning that data:

For any clustering, there is a
unique partition, but many ways to
label that partition’s blocks.

..........

D 4 ..'.. +* ..‘.. &
Courtesy
Wl;lgipedia

N=5: 52 partitions versus 55 = 3125
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Motivating Nonparametric GMM

m What if current model ] ®
doesn’t fit new data? \j ‘

m Bayesian nonparametric
approach:
Allows infinite # clusters
Uses sparse subset

Model complexity
adapts to observations

Mixture of Gaussians

0 o [ - 8 -

Nonparam. Model In Pictures

" S

m Mixture weights

\ )

1

m For each observation, draw

Zi ~ T

x|z ~ N(ps, 22,)
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Dirichlet Distributions

* JEE—
m The Dirichlet distribution is defined on the simplex
dw\o vk T ~Dir (e(\}‘.‘/o(KB

2) ZT\(’\

Moments: E,[ny] = %
K—-1
Vara[wk.] = m
Dirichlet Samples Balmi] = 1
" JEE —

m Samples are sparse for small values of ¢;

Samples from Dir (alpha=0.1) Samples from Dir (alpha=

+ _ I N —
- - —_
L-_wogp.__#
¥

05

Dlr(Tr| 0.1,0.1,0.1,0.1,0.1) Dir(7r| 1.0,1.0,1.0, 1.0, 1.0)
?\AKS MmesS  at ey uniferm

ooooooooooooo
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Stick-Breaking Process

m Start with stick of unit

LIV S probability mass
| o - m Repeatedly break
T2 3 4 Z, pO['tiOI’]S of the

remaining stick

Stick of unit
probability mass
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Stick-Breaking Process Summary

" JEE—
0. 0.
L BI » I_B/ ] 0.4} 0.4
v ¥ " 03 03
& Lo 1B ;o o3
n L] L} 0.1 01
T
‘?. B3 i 1—B3 . S 015 20 % s 10152
I T 1
TC 0.5 0
3 B4 1_B4 0.4 0.4
H_| 03 03
7[4 |_)-)5 g“02 F3‘0.2
0.1 01
. @
Tc-’ Y % 5 10 15 20 % 5 10 15 20
k k
L a=1 a=5
k—1 k—1 )
Tk = Bk H(l — Be) = B (1 — ’/Tg) Br ~ Beta‘(lL @)
=1 =1 p
E[fx] = ——
1+«
©Emily Fox 2014 26

13



Stick Breaks + Dirichlet Process

v Trzm
‘?”lrl"' o
12 3 4 el
‘l‘?lrl"'
01 02 03 04 ©
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Dirichlet Process Mixture Model

" JEE—
m Place Dirichlet process prior on

weights and mixture parameters:

0 Db ©

1

> (*)
G = Zﬂ'k(SQk T N
k=1

O

m For each observation, draw
Zi ~ T

X | Z N(:uzmzzi)

ooooooooooooo
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Finite versus DP Mixtures

" JEE
Finite Mixture DP Mixture
~Dir(Z, ... % ~ Stick /‘
T 1r<K KZ> s ick(a) a y Oo
. ~ T

THEOREM: For any measureable function f,as K — oo

/ £(6) dGX(0) 2 / £(6) dG(9)
© ©
G (0) =) mida, () G ~ DP(o, H)
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Induced Partitions
= JEEE

m Recall that mixture models induce partitions of the data
Z; T
m For a given prior on mixture weights, some partitions are more
likely than others apriori

Example 1: 7 ~ Dir(1,...,1) °

o O

o
O @ @ O
Example 2: 7 ~ Dir(0.01,...,0.01)

©Emily Fox 2014 30
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Induced Partitions
= JEE

m Recall that mixture models induce partitions of the data
Z; ™~ T
m For a given prior on mixture weights, some partitions are more
likely than others apriori
Example 3 (DP mix): 7 ~ Stick(c)

m What is the induced distribution on z, ..., z,?
Do we expect many unique clusters?
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Chinese Restaurant Process (CRP)
" JE

m Distribution on induced partitions described via the CRP

m Visualize clustering as a sequential process of customers
sitting at tables in an (infinitely large) restaurant:

customers ==y oObserved data to be clustered
tables = distinct clusters

m The first customer sits at a table. Subsequent customers
randomly select a table according to:

K
1 _
p(zN+1:Z|217~"7zN7a)_ (E Nk5(z7k)+a5(zvk))
k=1

_a+N

' ' e
&Y &Y \epy
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Chinese Restaurant Process (CRP)

O~ O~ &

gD o
O~ O~ &

o o
O~ O~ & &
o D o
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Samples from DP Mixture Priors

©Emily Fox 2014
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Finite GMM Sampler

" JEE (z) | |6
m Recall model K

Observations: L1,...,TN N
W i Cluster indicators: 21, - - - ZN
et Parameters: T, Hkmﬂ =[m1,...,TK]

k= {1, Sk}
Generative model:
7w ~ Dir(ay,...,ak) 2~ T
{1k, i} ~ NIW(X) i | 2i, {0k} ~ N(pz;, Xz,)

m [teratively sample
2, 1%, 188, 3 &N
w | i?ﬁ;ﬁ,M,M
O %’ g, 1%l kel
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Collapsed DP Mixture Sampler

" JEE
m Can’t sample T directly
)| 148)

m Integrate out all infinite-dimensional params

/ 0

N|

m [teratively sample the cluster indicators

©Emily Fox 2014 43
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Collapsed Sampler Intuition
* JEE

m Previously, p(zi =k | 24, m,0) oc mpp(w; | Ok)

= If you're nottold T, 0

©Emily Fox 2014
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Predictive Likelihood Term

* JEE—
m Recall NIW prior...Let’'s consider 1D example > N-IG

vy 1S
et~ NO.30D) af 16 (0

m Normal inverse gamma posterior
-> Student t predictive likelihood

o 1
oo ol = ki 2 ) =t (. X
v ko jizj=k,ji

N+t +1 2 —1y—1
e =[S+ D @ - Wk Y
(N "+ H o + N ) Jizj=k,j#i jizj=k,j#i

Conjugacy: This integral is tractable

©Emily Fox 2014
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Collapsed DP Mixture Sampler
" JEEE

1. Sample a random permutation 7(-) of the integers {1,...,N}.

2. Set @ = '™V and z = 2(!"1). For each i € {7(1),...,7(N)}, resample z; as follows:

(a) For each of the K existing clusters, determine the predictive likelihood

Also determine the likelihood f3(z;) of a potential new cluster k

i |3) = [ fGai 1000 |2 a0
©
(b) Sample a new cluster assignment z; from the following (X + 1)-dim. multinomial:

K K
i ~ %(afze(ﬂii)ﬂzi,l_f)+ZN;§ifk(ﬂfi)5(Zuk)) Zi = afp(z) + Y N frlx)
v k=1 k=1

N, i is the number of other observations currently assigned to cluster k.

(c) Update cached sufficient statistics to reflect the assignment of z; to cluster z;. If
z; = k, create a new cluster and increment K.

3. Set z(") = 2.
4. If any current clusters are empty (N = 0), remove them and decrement K accordingly.
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Collapsed DP Sampler: 2 Iterations

TN ORS
o et o\
‘ . d .
)\ ) . ‘ot
. LV . Mot
o g vt T2
' At s'
,: . -. S .. ...
. e SN
s 4 s : '-._.,':
log p(x I 7, 6) = —462.25 log p(x I T, 8) = —-399.82
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Collapsed DP Sampler: 10 lterations

log p(x | 7, ©) = —398.32 log p(x | , ©) = —399.08

©Emily Fox 2014

log p(x | 7, ©) = —397.67 log p(x I , 8) = —396.71

ooooooooooooo
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DP vs. Finite Mixture Samplers

log p(x I m, 8)

50

— . .
.
@ as0f .-
& L
%
a
=3 L
8 -500
-550
=== Dirichlet Process Mixture|
= Finite Mixture
-600

Iteration
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Iteration

50

DP Mixture Size

W
T

DP Posterior Number of Clusters

(=2}
T

w
T

S
T

0.8r

o
o

I
~
:

Posterior Probability

0.2

Iteration
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3 4 5 6
DP Mixture Size

51
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DC Violent Crime Data

= JEE
iyra g e 7') m 188 census tracts
ramer/ | m Weekly crime counts from

Riversale W 2001-2008

Bladensburg /
ar

m Violent crime types:
ADW, arson, robbery, rape

Ronald Reagan
> Washington
iley's National Airport
S 7 . . e e o .

© — wse e @ o o ® oo

't — e@eccomme an coms Som comnm sne o

n
-
pd
D e 00 MBS e ®BO® e ess o
o
(@]

Time series = crime counts _ |== = =———="—"

T T T T T
0 100 200 300 400

WEEK

DC Violent Crime Data

" JEEE
Average Weekly
Crime Counts

Average Crime Count

(1.665,2.641]
(1.381,1.665]
(1.155,1.381]
(1.032,1.155]
(0.9077,1.032]
(0.8223,0.9077]
(0.7368,0.8223]
(0.6203,0.7368]
(0.5085,0.6203]
(0.4087,0.5085]
(0.3307,0.4087]
(0.229,0.3307]
(0.07365,0.229]
(0.009569,0.07365]

EEEEEODODODOCCERDN

Goal: Forecast next week’s map
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DC Violent Crime Data

* JE—
Average Weekly
Crime Counts

Average Crime Count

(1.665,2.641]
(1.381,1.665]
(1.155,1.381]
(1.032,1.155]
(0.9077,1.032]
(0.8223,0.9077]
(0.7368,0.8223]
(0.6203,0.7368]
(0.5085,0.6203]
(0.4087,0.5085]
(0.3307,0.4087]
(0.229,0.3307]
(0.07365,0.229]
(0.009569,0.07365]

ENEEECODOODOOEEN

Similar behavior in spatially disjoint tracts
= Cluster census tracts

Poisson Integer-Valued

. Aulgregressions.

Cusbemewsbs in

Ai = 92‘ tpearatititntre t

Poisson new
customers

yz'/,t = O Y -1 T € t(\)

Thinning of customers
previously in queue Rate of arrivals
in location i

m Cluster regions based on rate
of arriving crimes

m Pool info within clusters

m Unknown number of clusters
- Dirichlet process

Aldor-Noiman, Brown, Fox, and Stine, arXiv:1304.5642, April 2013
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Prediction Results
'_

1.2

& Simple Poisson
Process

0.7217 H Conditional Least
Squares PoINAR

DP PoINAR

Mean Square Error (MSE)
o
(e}

Aldor-Noiman, Brown, Fox, and Stine, arXiv:1304.5642, April 2013
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