

Posterior Computations

- From our observations, we want to infer model params
- MAP estimation can be done using expectation maximization (EM) algorithm: MAP VPC 100

$$\hat{\theta}^{MAP} = \arg\max_{\theta} p(\theta \mid x)$$
 point estimation

- What if we want a full characterization of the posterior?
 - □ Maintain a measure of uncertainty
 - □ Estimators other than posterior mode (different loss functions)
 - □ Predictive distributions for future observations
- Often no closed-form characterization (e.g., mixture models)
- Alternatives:
 - ☐ Markov chain Monte Carlo (MCMC) providing samples from posterior
 - Variational approximations to posterior

©Emily Fox 2014

7

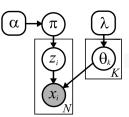
Gibb Sampling

- Let z indicate the set of all variables in the model: e.g., cluster indicators and parameters
- Want draws:
- Construct Markov chain whose steady state distribution is
- Simplest case:

©Emily Fox 201

Gibbs Sampler for a 2D Gaussian **General Gibbs Sampler** $z_i^{(t)} \sim p(z_i \mid z_{\backslash i}^{(t-1)}) \qquad i = i(t)$ $z_i^{(t)} = z_i^{(t-1)} \qquad j \neq i(t)$ Under mild conditions, converges assuming all variables are resampled infinitely often (order can be fixed or random) C. Bishop Pattern Recognition & Machine Learning

Example - GMM



- Recall model
 - \square Observations: x_1, \ldots, x_N
 - \square Cluster indicators: z_1,\ldots,z_N
 - \square Parameters: $\pi, heta_k$

$$\pi = [\pi_1, \dots, \pi_K]$$

$$\theta_k = \{\mu_k, \Sigma_k\}$$

□ Generative model:

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \qquad z_i \sim \pi$$

$$\{\mu_k, \Sigma_k\} \sim \text{NIW}(\lambda) \qquad x_i \mid z_i, \{\theta_k\} \sim N(\mu_{z_i}, \Sigma_{z_i})$$

Iteratively sample

Complete Conditional $p(z_i \mid \pi, \{\theta_k\}, \{x_i\})$

We have

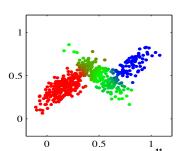
$$z_i \sim \pi$$

$$x_i \mid z_i, \{\theta_k\} \sim N(\mu_{z_i}, \Sigma_{z_i})$$

 As before, we can compute the "responsibility" of each cluster to the observation

$$r_{ik} = p(z_i = k \mid x_i, \pi, \theta) = \frac{\pi_k p(x_i \mid \theta_k)}{\sum_{\ell=1}^K \pi_\ell p(x_i \mid \theta_\ell)}$$

Sample each cluster indicator as



©Emily Fox 2014

Complete Conditional $p(\pi \mid \{z_i\})$

Recall conjugate Dirichlet prior

$$\pi \sim \operatorname{Dir}(\alpha_1, \dots, \alpha_K)$$
 $p(\pi \mid \alpha) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_k \pi_k^{\alpha_k - 1}$

- Dirichlet posterior
 - $_{\square}$ Assume we condition on cluster indicators $\,z_{i}\sim\pi\,$
 - $\ \square$ Count occurrences of $z_i=k$
 - □ Then

$$p(\pi \mid \alpha, z_1, \ldots, z_N) \propto$$

☐ Conjugacy: This **posterior** has same form as **prior**

©Emily Fox 2014

..

Complete Conditional $p(\theta_k \mid \{z_i\}, \{x_i\})$

■ Recall NIW prior...Let's consider 1D example → N-IG

$$\mu_k \mid \sigma_k^2 \sim N(0, \gamma \sigma_k^2) \quad \sigma_k^2 \sim \text{IG}\left(\frac{\nu_0}{2}, \frac{\nu_0 S_0}{2}\right)$$

- Normal inverse gamma posterior
 - $\ \square$ Consider observation indices \emph{i} such that $\ \emph{z}_{\emph{i}} = \emph{k}$
 - \square For these observations, $x_i \mid z_i = k \sim N(\mu_k, \Sigma_k)$
 - □ Then,

$$\mu_k \mid \sigma_k^2, \{z_i\}, \{x_i\} \sim N\left(\frac{1}{N_k + \gamma^{-1}} \sum_{i: z_i = k} x_i, \frac{1}{N_k + \gamma^{-1}} \sigma_k^2\right)$$

$$\sigma_k^2 \mid \{z_i\}, \{x_i\} \sim \text{IG}\left(\frac{\nu_0 + N_k}{2}, \frac{\nu_0 S_0 + \sum_{i:z_i = k} x_i^2 - (N_k + \gamma^{-1})^{-1}(\sum_{i:z_i = k} x_i)^2}{2}\right)$$

□ Conjugacy: This **posterior** has same form as **prior**

©Emily Fox 2014

13

Standard Finite Mixture Sampler

Given mixture weights $\pi^{(t-1)}$ and cluster parameters $\{\theta_k^{(t-1)}\}_{k=1}^K$ from the previous iteration, sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points x_i to one of the K clusters by sampling the indicator variables $z = \{z_i\}_{i=1}^N$ from the following multinomial distributions:

$$z_i^{(t)} \sim \frac{1}{Z_i} \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)}) \, \delta(z_i, k) \qquad \qquad Z_i = \sum_{k=1}^K \pi_k^{(t-1)} f(x_i \mid \theta_k^{(t-1)})$$

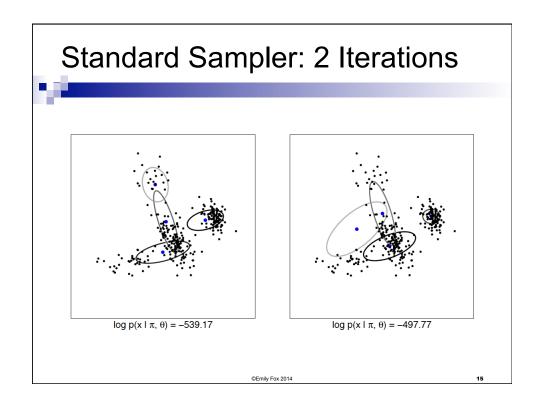
2. Sample new mixture weights according to the following Dirichlet distribution:

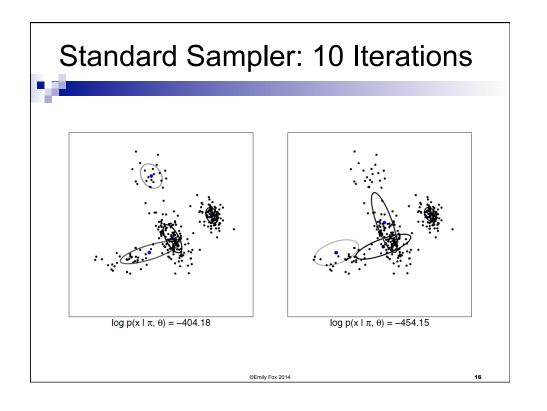
$$\pi^{(t)} \sim \operatorname{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$$
 $N_k = \sum_{i=1}^N \delta(z_i^{(t)}, k)$

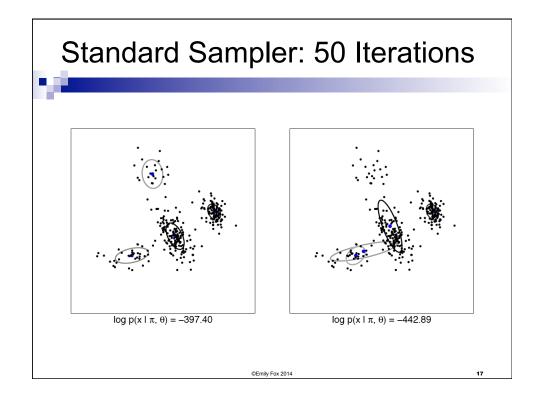
3. For each of the K clusters, independently sample new parameters from the conditional distribution implied by those observations currently assigned to that cluster:

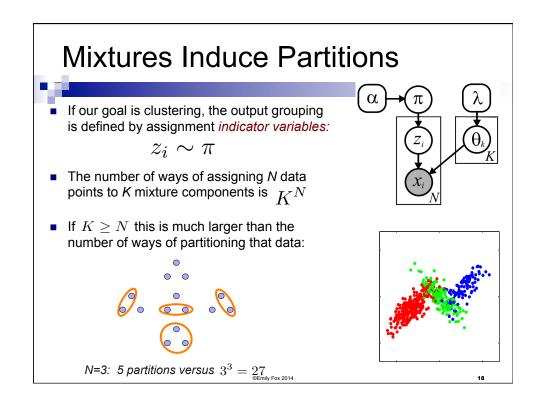
$$\theta_k^{(t)} \sim p(\theta_k \mid \{x_i \mid z_i^{(t)} = k\}, \lambda)$$

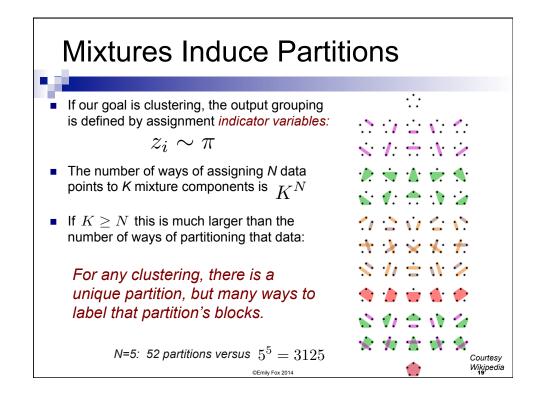
Emily Fox 2014

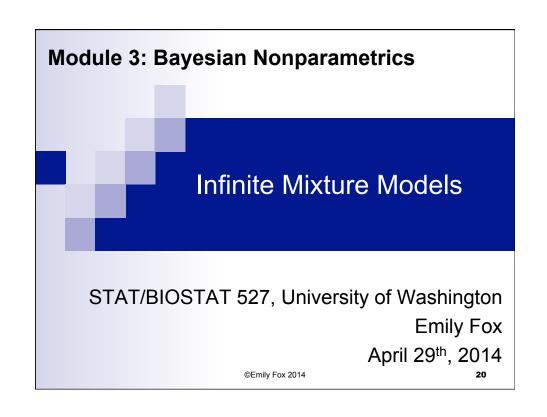


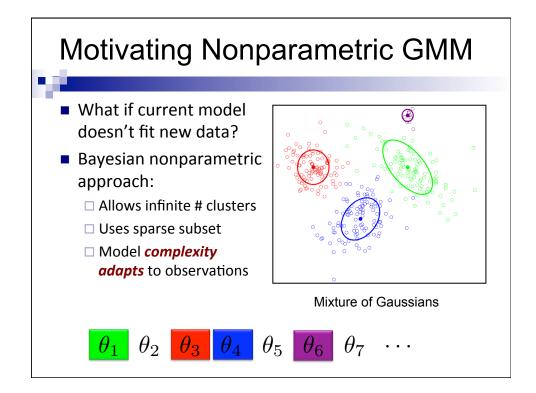


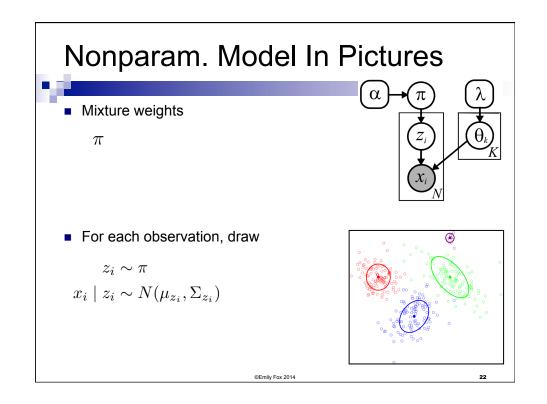


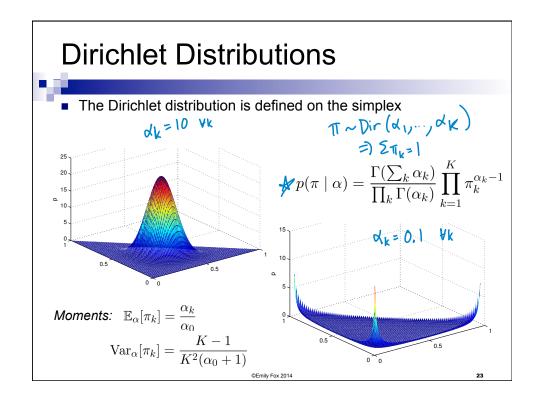


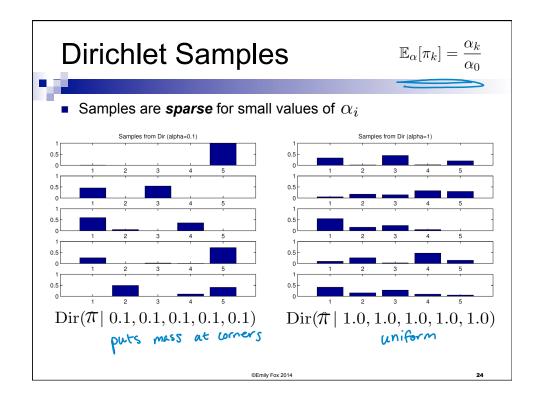


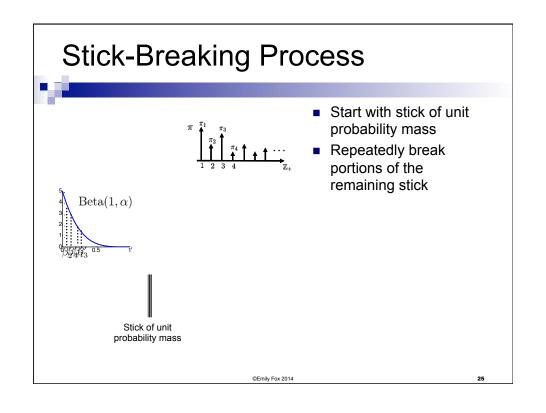


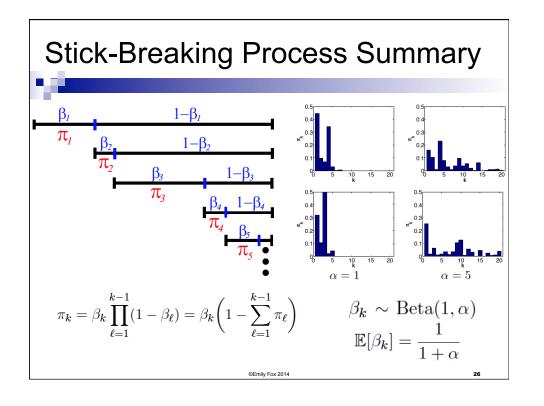


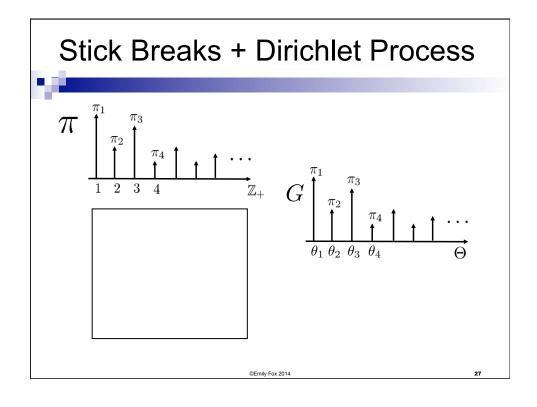










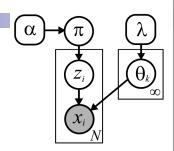


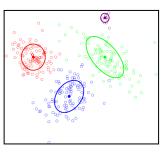
$$G \sim \mathrm{DP}(\alpha, H)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k} \qquad \frac{\pi}{\theta_k}$$

■ For each observation, draw

$$z_i \sim \pi$$
$$x_i \mid z_i \sim N(\mu_{z_i}, \Sigma_{z_i})$$



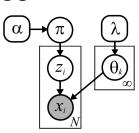


©Emily Fox 2014

Finite versus DP Mixtures

DP Mixture

$$\pi \sim \text{Dir}\left(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}\right) \qquad \pi \sim \text{Stick}(\alpha)$$
$$z_i \sim \pi$$
$$x_i \sim F(\theta_{z_i})$$



THEOREM: For any measureable function f, as $K \to \infty$

$$\int_{\Theta} f(\theta) dG^{K}(\theta) \xrightarrow{\mathcal{D}} \int_{\Theta} f(\theta) dG(\theta)$$

$$G^{K}(\theta) = \sum_{k=1}^{K} \pi_{k} \delta_{\theta_{k}}(\theta) \qquad G \sim \mathrm{DP}(\alpha, H)$$

©Emily Fox 2014

29

Induced Partitions

- Recall that mixture models induce partitions of the data $z_i \sim \pi$
- For a given prior on mixture weights, some partitions are more likely than others apriori
 - \square Example 1: $\pi \sim \mathrm{Dir}(1,\ldots,1)$

 \square Example 2: $\pi \sim \mathrm{Dir}(0.01,\ldots,0.01)$

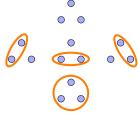
Emily Fox 2014

Induced Partitions

Recall that mixture models induce partitions of the data

$$z_i \sim \pi$$

- For a given prior on mixture weights, some partitions are more likely than others apriori
 - \square Example 3 (DP mix): $\pi \sim \operatorname{Stick}(\alpha)$



- What is the induced distribution on z_1, \ldots, z_N ?
 - □ Do we expect many unique clusters?

©Emily Fox 2014

31

Chinese Restaurant Process (CRP)

- Distribution on induced partitions described via the CRP
- Visualize clustering as a sequential process of customers sitting at tables in an (infinitely large) restaurant:

customers

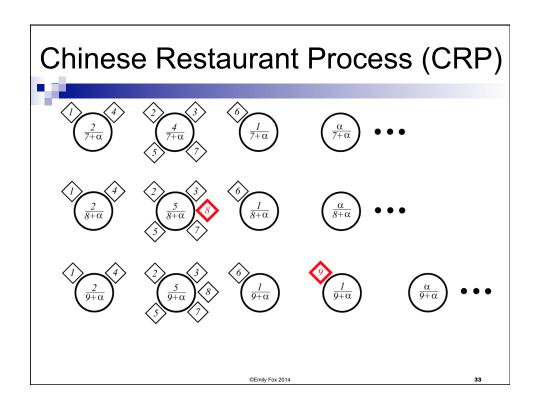
observed data to be clustered tables

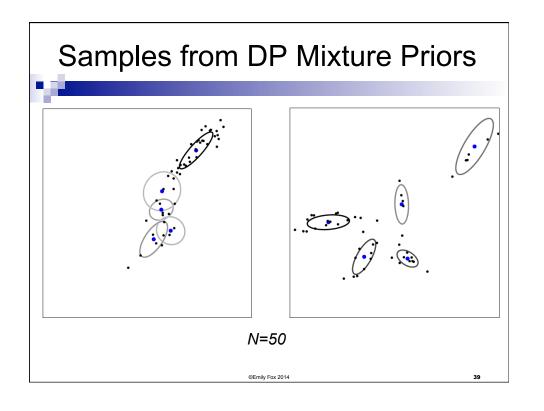
distinct clusters

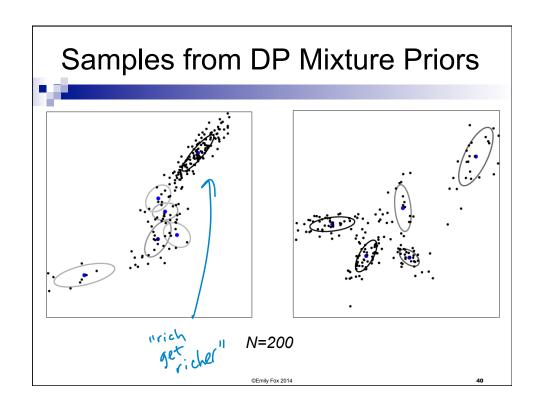
■ The first customer sits at a table. Subsequent customers randomly select a table according to:

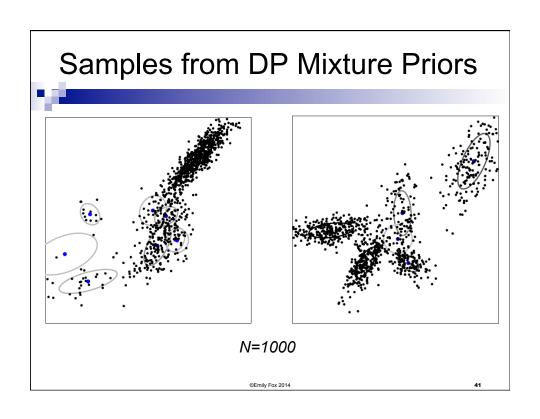
$$p(z_{N+1} = z \mid z_1, \dots, z_N, \alpha) = \frac{1}{\alpha + N} \left(\sum_{k=1}^K N_k \delta(z, k) + \alpha \delta(z, \bar{k}) \right)$$

©Emily Fox 2014

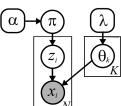




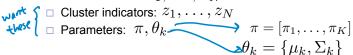




Finite GMM Sampler



- Recall mode
 - \square Observations: x_1,\ldots,x_N



□ Generative model:

$$\pi \sim \text{Dir}(\alpha_1, \dots, \alpha_K) \qquad z_i \sim \pi$$

$$\{\mu_k, \Sigma_k\} \sim \text{NIW}(\lambda) \qquad x_i \mid z_i, \{\theta_k\} \sim N(\mu_{z_i}, \Sigma_{z_i})$$

Iteratively sample

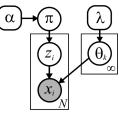
2; | π, {θκ}, {x;} i=1,...,N

π | {z; 5, 20π, 1) κ |
Θκ | χ, 1z; β, 1 χ; κ=1,... Κ

42

Collapsed DP Mixture Sampler

- Can't sample π directly
- Integrate out all infinite-dimensional params

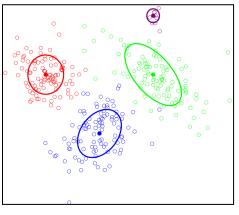


Iteratively sample the cluster indicators

©Emily Fox 2014

Collapsed Sampler Intuition

- Previously, $p(z_i = k \mid x_i, \pi, \theta) \propto \pi_k p(x_i \mid \theta_k)$
- If you're not told π, θ_k



©Emily Fox 2014

44

Predictive Likelihood Term

■ Recall NIW prior…Let's consider 1D example → N-IG

$$\mu_k \mid \sigma_k^2 \sim N(0, \gamma \sigma_k^2) \quad \sigma_k^2 \sim \text{IG}\left(\frac{\nu_0}{2}, \frac{\nu_0 S_0}{2}\right)$$

Normal inverse gamma posterior
 → Student t predictive likelihood

$$p(x \mid \{x_j | z_j = k, j \neq i\}) = t_{\nu_0 + N_k^{-i}} \left(\frac{1}{\gamma + N_k^{-i}} \sum_{j: z_j = k, j \neq i} x_j, \frac{N_k^{-i} + \gamma^{-1} + 1}{(N_k^{-i} + \gamma^{-1})(\nu_0 + N_k^{-i})} \left(\nu_0 S_0 + \sum_{j: z_j = k, j \neq i} x_j^2 - (N_k + \gamma^{-1})^{-1} (\sum_{j: z_j = k, j \neq i} x_j)^2 \right) \right)$$

□ Conjugacy: This integral is tractable

©Emily Fox 2014

Collapsed DP Mixture Sampler

- 1. Sample a random permutation $\tau(\cdot)$ of the integers $\{1,\ldots,N\}$.
- 2. Set $\alpha = \alpha^{(t-1)}$ and $z = z^{(t-1)}$. For each $i \in \{\tau(1), \dots, \tau(N)\}$, resample z_i as follows:
 - (a) For each of the K existing clusters, determine the predictive likelihood

$$f_k(x_i) = p(x_i \mid \{x_j \mid z_j = k, j \neq i\}, \lambda)$$

Also determine the likelihood $f_{\bar{k}}(x_i)$ of a potential new cluster \bar{k}

$$p(x_i \mid \lambda) = \int_{\Theta} f(x_i \mid \theta) h(\theta \mid \lambda) d\theta$$

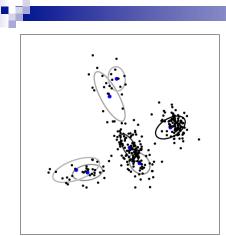
(b) Sample a new cluster assignment z_i from the following (K+1)-dim. multinomial:

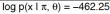
$$z_i \sim \frac{1}{Z_i} \left(\alpha f_{\bar{k}}(x_i) \delta(z_i, \bar{k}) + \sum_{k=1}^K N_k^{-i} f_k(x_i) \delta(z_i, k) \right) \qquad Z_i = \alpha f_{\bar{k}}(x_i) + \sum_{k=1}^K N_k^{-i} f_k(x_i)$$

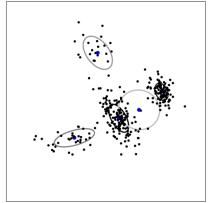
 N_k^{-i} is the number of other observations currently assigned to cluster k.

- (c) Update cached sufficient statistics to reflect the assignment of x_i to cluster z_i . If $z_i = \bar{k}$, create a new cluster and increment K.
- 3. Set $z^{(t)} = z$.
- 4. If any current clusters are empty $(N_k = 0)$, remove them and decrement K accordingly.

Collapsed DP Sampler: 2 Iterations







 $\log p(x \mid \pi, \theta) = -399.82$

©Emily Fox 2014

