

Maximizing Conditional Log Likelihood



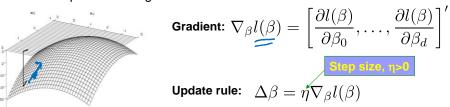
Good news: $I(\beta)$ is concave function of β , no local optima problems

Bad news: no closed-form solution to maximize $I(\beta)$

Good news: concave functions easy to optimize

Optimizing Concave Function – **Gradient Ascent**

- Conditional likelihood for logistic regression is concave
- Find optimum with gradient ascent



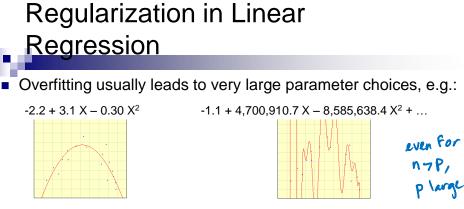
$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \frac{\partial l(\beta)}{\partial \beta_j}$$

Gradient ascent is simplest of optimization approaches

e.g., Conjugate gradient ascent can be much better 1951?

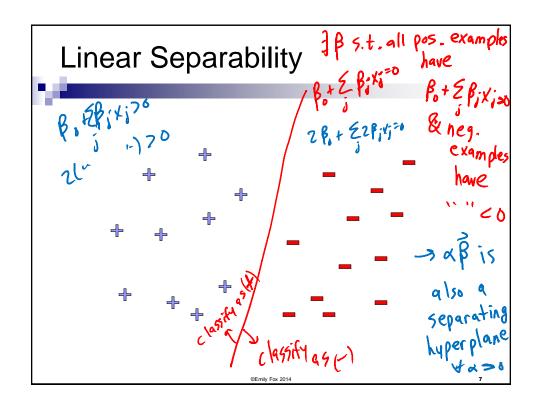
Often, esp. proofs, N gets smaller w iterations

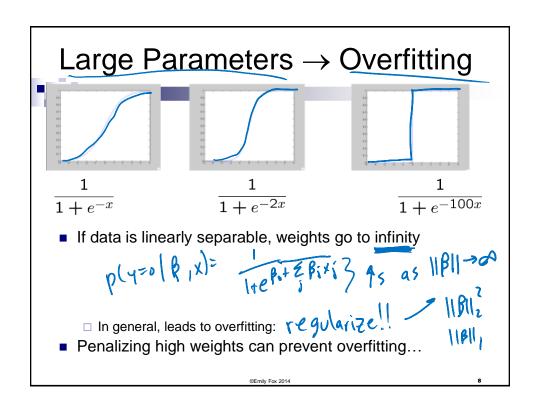
Gradient Ascent for LR
$$\frac{\zeta + \alpha (t + \omega) - \beta(t)}{\zeta + \alpha (t + \omega) - \beta(t)} = \frac{\beta(t+1)}{\zeta + \alpha(t)} + \eta \sum_{i} \left(y_i - \hat{p}(y=1 \mid x_i, \beta^{(t)}) \right)$$
Can do in For $j=1,...,d$,
$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \sum_{i} x_{ij} \left(y_i - \hat{p}(y=1 \mid x_i, \beta^{(t)}) \right)$$
repeat
$$\frac{\beta(t+1)}{\zeta + \alpha(t)} \leftarrow \beta_j^{(t)} + \eta \sum_{i} x_{ij} \left(y_i - \hat{p}(y=1 \mid x_i, \beta^{(t)}) \right)$$



- Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights
 - □ "Shrinkage" method

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (\underline{y_i - (\beta_0 + \beta^T x_i))^2} + \lambda ||\beta||$$
 penalty





Regularized Conditional Log Likelihood

Add regularization penalty, e.g., L₂:

$$l(\beta) = \log \prod_{i=1}^{n} p(y_i \mid x_i, \beta) - \frac{\lambda}{2} ||\beta||_2^2$$

- Practical note about β₀:
- Gradient of regularized likelihood:

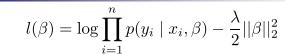
Standard v. Regularized Updates

$$\hat{\beta} = \arg\max_{\beta} \ \log \prod_{i=1}^{n} p(y_i \mid x_i, \beta)$$

$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \sum_{i} x_{ij} \left(y_i - \hat{p}(y = 1 \mid x_i, \beta^{(t)}) \right)$$

$$\hat{\beta} = \arg\max_{\beta} \ \log \prod_{i=1}^n p(y_i \mid x_i, \beta) - \frac{\lambda}{2} \sum_{j=1}^d \beta_j^2$$

Stopping Criterion



When do we stop doing gradient ascent?

Stopping criterian

- Because I(w) is strongly concave:
 - □ i.e., because of some technical condition

$$l(\beta^*) - l(\beta) \le \frac{1}{2\lambda} ||\nabla l(\beta)||_2^2$$

■ Thus, stop when:

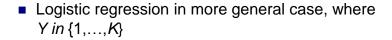
Digression:

Logistic Regression for K > 2

■ Logistic regression in more general case (K classes), where Y in {1,...,K}

Digression:

Logistic Regression for K > 2



for
$$k < K$$

$$p(y = k | \mathbf{x}, \beta) = \frac{\exp(\beta_{k0} + \sum_{j=1}^{d} \beta_{kj} x_j)}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k'0} + \sum_{j=1}^{d} \beta_{k'j} x_j)}$$

for *k*=*K* (normalization, so no weights for this class)

$$p(y = K | \mathbf{x}, \beta) = \frac{1}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k'0} + \sum_{j=1}^{d} \beta_{k'j} x_j)}$$

Estimation procedure is basically the same as what we derived!

©Emily Fox 2014

13

The Cost, The Cost!!! Think about the cost...

What's the cost of a gradient update step for LR???

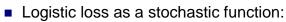
$$\beta_{j}^{(t+1)} \leftarrow \beta_{j}^{(t)} + \eta \left\{ -\lambda \beta_{j}^{(t)} + \sum_{i} x_{ij} \left(y_{i} - \hat{p}(y = 1 \mid x_{i}, \beta^{(t)}) \right) \right\}$$

Vaively, $O(nd \cdot d = nd^2)$ but if you cache \hat{p} (same $\forall i) \rightarrow O(nd)$ However, if "n" is huge (or online streaming), this

Gradient ascent in Terms of Expectations • "True" objective function: $l(\beta) = E_x[l(\beta,x)] = \int p(x)l(\beta,x)dx \text{ complexity penalty}$ • Taking the gradient: $V_{\beta}(|\beta|) = V_{\beta}(|\beta|)$ • "True" gradient ascent rule: $V_{\beta}(|\beta|) = V_{\beta}(|\beta|)$ • How do we estimate expected gradient? $V_{\beta}(|\beta|) = V_{\beta}(|\beta|)$

SGD: Stochastic Gradient Ascent (or Descent)	
$lacktriangledown$ "True" gradient: $ abla l(eta) = E_x[abla l(eta,x)]$)]
■ Sample based approximation: take ¼ îîd	75 Ec
■ Sample based approximation: take xi fid Ex[V[(P,x)] ~ 1 2 VB[(B,xe)) useth	mal fic
What if we estimate gradient with just one sample???	, , , , ,
☐ Unbiased estimate of gradient	
□ Very noisy! high var.	
□ Called stochastic gradient ascent (or descent)	
 Among many other names 	
□ VERY useful in practice!!!	
©Emily Fox 2014	16

Stochastic Gradient Ascent for Logistic Regression



$$E_x[l(\beta,x)] = E_x \left[\log p(y\mid x,\beta) - \frac{\lambda}{2} ||\beta||_2^2 \right] \qquad \text{for all parameters} \qquad \text{for a scent updates} \qquad \text{for a scen$$

$$\beta_{j}^{(t+1)} \leftarrow \beta_{j}^{(t)} + \eta \left\{ -\lambda \beta_{j}^{(t)} + \frac{1}{n} \sum_{i=1}^{n} x_{ij} \left(y_{i} - \hat{p}(y = 1 \mid x_{i}, \beta^{(t)}) \right) \right\}$$

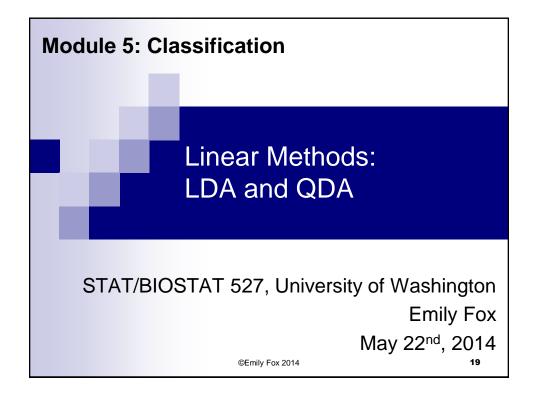
■ Stochastic gradient ascent updates:

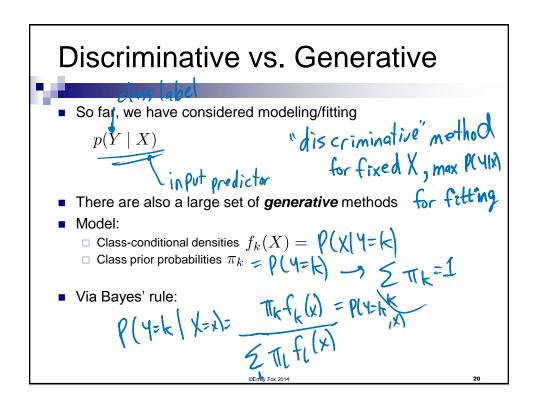
□ Online setting: take 1 data pt. at iter. t": Xi(4)

$$\beta_{j}^{(t+1)} \leftarrow \beta_{j}^{(t)} + \eta \left\{ -\lambda \beta_{j}^{(t)} + x_{i(t),j} \left(y_{i(t)} - \hat{p}(y=1 \mid x_{i(t)}, \beta^{(t)}) \right) \right\}$$

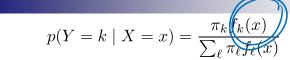
What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model □ Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent





Generative Classifiers



- Examples include:
 - ☐ Linear and quadratic discriminative analysis (LDA and QDA)

> linear (+quad) decision boundaries

☐ Mixture of Gaussians (saw in BNP module)

-> non-linear boundary

 \square Nonparametric density estimation for $f_k(x)$

KOE, very flexible

Naïve Baves

assumes a simple form for fk(x)

Linear Discriminative Analysis

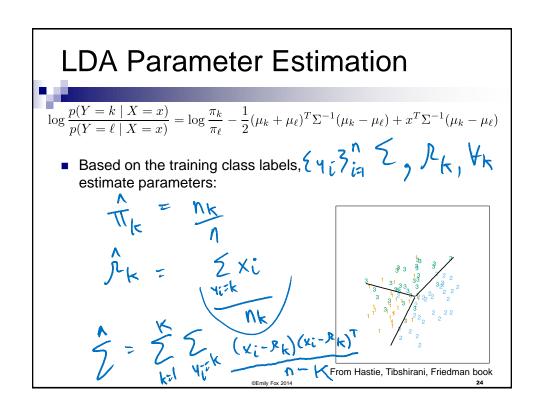
Assume Gaussian class-conditional densities $f_k(X) = \frac{1}{(2\pi)^{d/2}} \frac{1}{|Z_k|^{d/2}} e^{-\frac{1}{2}(\chi-J_k)} \sum_{k=1}^{n} (\chi-J_k)^{n}$

• Furthermore, consider equal covariances

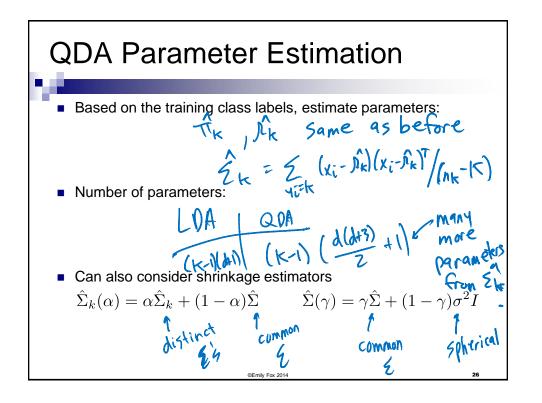
Log odds

 $\log \frac{p(Y=k \mid X=x)}{p(Y=\ell \mid X=x)} = \log \frac{\pi_k}{\pi_l} + \log \frac{f_k(x)}{f_l(x)}$ $= \log \frac{\pi_k}{p(Y=\ell \mid X=x)} = \log \frac{\pi_k}{\pi_l} + \log \frac{f_k(x)}{f_l(x)}$ $= \log \frac{\pi_k}{p(Y=k \mid X=x)} = \log \frac{\pi_k}{\pi_l} + \log \frac{f_k(x)}{f_l(x)}$ (2'3 same)

Linear Discriminative Analysis
$$\log \frac{p(Y=k\mid X=x)}{p(Y=\ell\mid X=x)} = \log \frac{\pi_k}{\pi_\ell} - \frac{1}{2}(\mu_k + \mu_\ell)^T \Sigma^{-1}(\mu_k - \mu_\ell) + \chi^T \Sigma^{-1}(\mu_k - \mu_\ell)$$
• Equivalently,
$$\log \frac{p(Y=k\mid X=x)}{p(Y=\ell\mid X=x)} = \delta_k(x) - \delta_\ell(x)$$
• where
$$\delta_k(x) = \chi^T \sum_{k=1}^{\infty} \int_{\mathbb{R}^k} \int_{\mathbb{R}^$$



Quadratic Discriminative Analysis Same setup as LDA, but allow class-specific covariances Quadratic discriminant functions: $\delta_k(x) = -\frac{1}{2} \log |\mathcal{Z}_k| - \frac{1}{2} (x - \mathcal{P}_k)^{\top} \mathcal{Z}_k^{-1} (x - \mathcal{P}_k) + \log T_k$ Quadratic decision boundaries Ext. \mathcal{Z}_k \mathcal{Z}_k



Notes on QDA and LDA

- LDA + QDA tend to perform very well in practice
- It is not true that data are Gaussian or, furthermore, that covariances are equal (LDA)
- Performance is likely attributed to the fact that the data can only support simple decision boundaries
 - ☐ Also, estimates for Gaussian models are stable

©Emily Fox 2014

27

LDA vs. Logistic Regression

Both have linear log odds:

$$\log \frac{p(Y=k \mid X=x)}{p(Y=K \mid X=x)} = \alpha_{k0} + \alpha_k^T x$$

$$\log \frac{p(Y = k \mid X = x)}{p(Y = K \mid X = x)} = \beta_{k0} + \beta_k^T x$$

Difference is in how the coefficients are estimated

$$p(X,Y=k) = P(X) P(Y=k|X)$$

1 Same form

for both

models

14

LDA vs. Logistic Regression

$$p(X, Y = k) = p(X)p(Y = k \mid X)$$

- Marginal likelihood term
 - Logistic regression: arbitrary..., just maximize likelihood
 kind of like estimating P(x) non parametrically

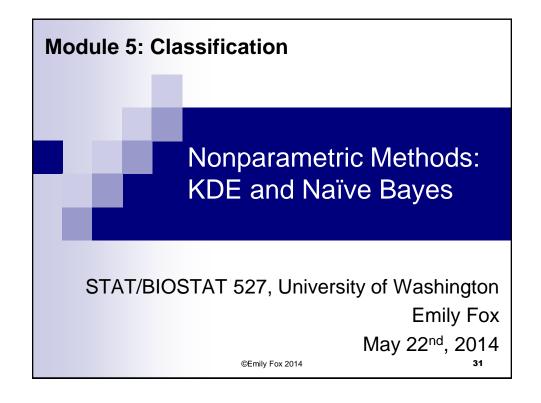
 empirically will mass in @ each x:

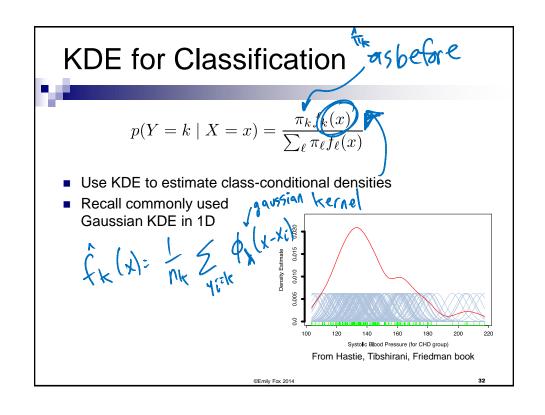
 LDA:

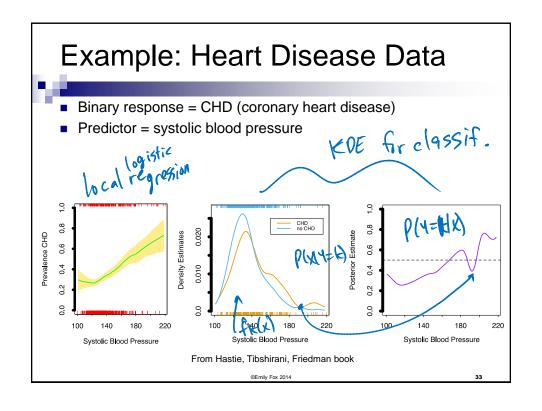
P(X)= ZTKN(XjJk, Z) mixton
Params

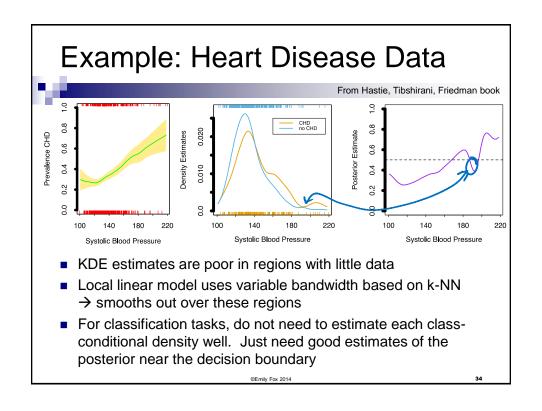
LDA vs. Logistic Regression

- In LDA, the data inform the parameters more
 - ☐ If data are indeed Gaussian, then asymptotically maximizing just conditional likelihood requires 30% more data to perform as well
- Data far from boundary affect Σ in LDA, but are ignored by -> LOA is not robust toutliers logistic regression
- Observations without class labels can be used in mixture model case, but not in logistic regression 1; who will
- Marginal likelihood p(X) acts as a regularizer 2 - class, lin. separable they.reg. > Mest.gre > LOA coeff. For some data are well-defined
- Logistic regression tends to be more robust than LDA and can handle qualitative *X* variables, but performance is often similar.









Class-Conditionals vs. Posterior



- Example:
 - □ Both densities are multimodal
 - ☐ Might opt for rougher, high-variance estimator to capture features
 - ☐ However, posterior is quite smooth
 - ☐ Fine-scale features are irrelevant for classification here

Multivariate KDE

In 1d

$$\hat{p}(x_0) = \frac{1}{n\lambda} \sum_{i=1}^{n} K_{\lambda}(x_0, x_i)$$

■ In R^d, assuming a product kernel, XER

$$\hat{p}(x_0) = \frac{1}{n\lambda_1 \cdots \lambda_d} \sum_{i=1}^n \left\{ \prod_{j=1}^d K_{\lambda_j}(x_{0j}, x_{ij}) \right\}$$

Naïve Bayes Classifier

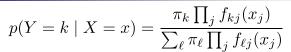
$$p(Y = k \mid X = x) = \frac{\pi_k f_k(x)}{\sum_{\ell} \pi_{\ell} f_{\ell}(x)}$$

- Useful in high-dimensional settings (d large)
- Assumes factored form for class-conditional densities

$$f_k(X) = \prod_{i \in \mathcal{I}} f_{k_i}(y_i)$$

- Benefits:
 - $\ \square$ Estimate $f_{kj}(X_j)$ separately for each $\it j$ using only 1D KDE
 - \Box If X_i of X is discrete, then can combine using a histogram estimate

Naïve Bayes Classifier



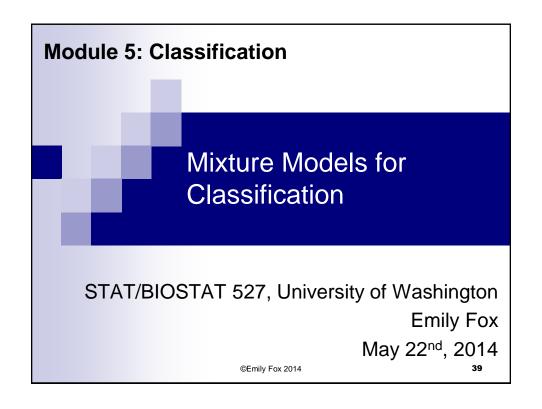
Log odds

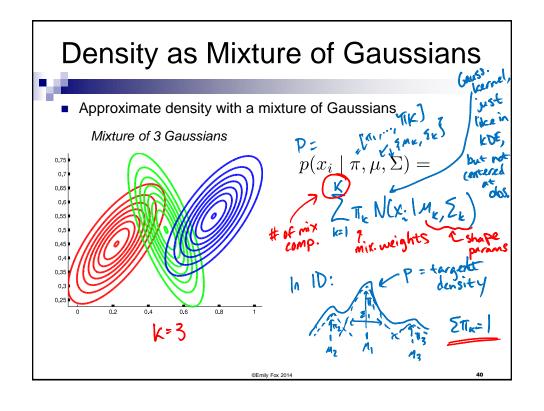
$$\log \frac{p(Y=k\mid X=x)}{p(Y=\ell\mid X=x)} = \log \frac{\pi}{\pi} + \sum_{i} \log \frac{\pi}{f_{i,i}(x_i)}$$

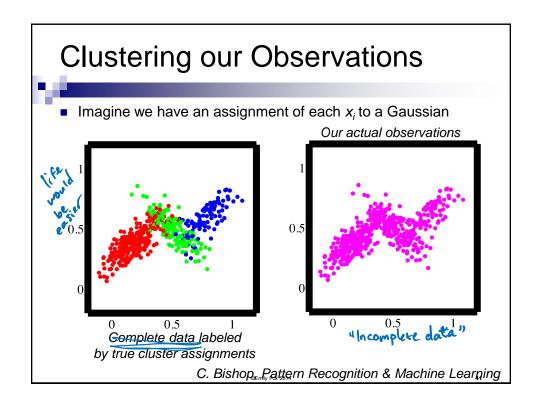
$$= \sum_{i} \operatorname{discriminative} = \operatorname{d$$

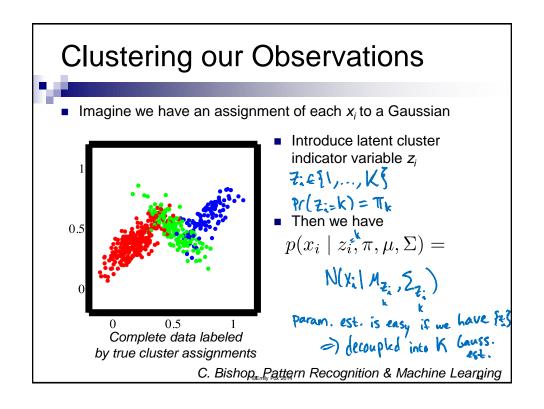
- Has form of GAM, but fit very differently
 - □ Analogous to difference between LDA and logistic regression

NB: generative

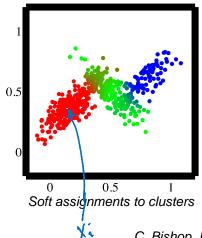








Clustering our Observations



 Posterior probabilities of assignments to each cluster *given* model parameters:

$$r_{ik} = p(z_i = k \mid x_i, \pi, \theta) =$$

$$= \prod_k N(x_i \mid M_k, \xi_k)$$

$$\frac{\prod_{k} N(X_{i}|M_{k},Z_{k})}{\sum_{j} N(X_{i}|M_{j},Z_{j})}$$

motivates an iterative algo

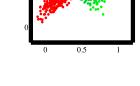
C. Bishop Pattern Recognition & Machine Learning

Mixture Models for Classification

- ۲
 - Can use mixture models as a generative classifier in the unsupervised setting
 - EM algorithm = iteratively:
 - ☐ Estimate responsibilities given parameter estimates 0.5

$$\hat{r}_{ik} = \frac{\hat{\pi}_k N(x_i, \hat{\mu}_k, \hat{\Sigma}_k)}{\sum_{\ell} \hat{\pi}_{\ell} N(x_i, \hat{\mu}_{\ell}, \hat{\Sigma}_{\ell})}$$

□ Maximize parameters given responsibilities



- For classification, threshold the estimated responsibilities \Box E.g., $\hat{g}(x_i) = \arg\max_{k} \hat{r}_{ik}$
- Note: allows non-linear boundaries as in QDA

©Emily Fox 2014

Example: Heart Disease Data Binary response = CHD (coronary heart disease) Predictor = systolic blood pressure No CHD Output Disease Data From Hastle, Tibshirani, Friedman book

What you need to know

- - Discriminative vs. Generative classifiers
 - LDA and QDA assume Gaussian class-conditional densities
 - □ Results in linear and quadratic decision boundaries, respectively
 - KDE for classification
 - □ Challenging in areas with little data or in high dimensions
 - □ Estimating class-conditionals is not optimizing classification objective
 - Naïve Bayes assumes factored form
 - □ Results in log odds that have GAM form
 - Mixture models allow for unsupervised generative approach

©Emily Fox 2014

46

Readings

Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8

©Emily Fox 2014

4/