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Maximizing Conditional Log Likelihood
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Good news: I(B) is concave function of B8, no local optima
problems

Bad news: no closed-form solution to maximize I(B)

Good news: concave functions easy to optimize

Optimizing Concave Function —
Gradient Ascent
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m Conditional likelihood for logistic regression is concave
m Find optimum with gradient ascent
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Gradient Ascent for LR«
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Regularization in Linear

_ Regression

m Overfitting usually leads to very large parameter choices, e.g.:
-2.2+3.1X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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In general, leads to overfitting: (€ 9(}\0\( \Ze.. \\F“

m Penalizing high weights can prevent overfitting...




Regularized Conditional Log Likelihood
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= Add regularlzatlon penalty, e. g L,:
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m Practical note about 3,:

m Gradient of regularized likelihood:
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= Maximum conditional likelihood estimate l
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Stopping Criterion
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m When do we stop domg grad|ent ascent?
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m Because I(w) is strongly concave:
i.e., because of some technical condition

* 1 2
1)~ 1(8) < 5 IVIB)IE
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Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case (K
classes), where Y in {1,...,K}




Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case, where

Yin{1,..., K}
for k<K ) N
ply = k|x, B) = exp(Bro + Zj:1 Brj ;)

- K—1 d
L+ > =1 exp(Bro + X251 Brryaj)
for k=K (normalization, so no weights for this class)
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Estimation procedure is basically the same
as what we derived!

The Cost, The Cost!!! Think about

the cost...
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m What's the cost of a gradient update step for LR??7?
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Gradient ascent in Terms of Expectations
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m “True” gradient ascent rule:
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m How do we estimate expected gradient? Um‘\' am?,ﬂ{\
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SGD: Stochastic Gradient Ascent (or Descent)
" JEE
m “True” gradient: VI(B) = E.[VI(3,x)]

m Sample based approximation: que Yi FFO‘
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m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy! k\ ‘\V ar,
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!




Stochastic Gradient Ascent for

_ Logistic Reﬂression

m Logistic loss as a stochastic function:
A
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What you should know...
" JEE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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Discriminative vs. Generative
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Generative Classifiers
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m Examples include:
Linear and quadratic discriminative analysis (LDA and QDA)

_> \inear (+<gu« ) decision \Dound’"‘e;
Mixture of Gaussians (saw in BNP module)

5 nun-lingar bovndary

Nonparametric density estimation for fk( )

b V€(~{Qﬂ\\o\€ %{
oume® 4 5 \Nj (X)

Qa

Linear Discriminative Analysis
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m Assume Gaussian class-conditional densmes Z
(29
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m Log odds
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Linear Discriminative Analy;is
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LDA Parameter Estimation
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Quadratic Discriminative Analysis
" JE

m Same setup as LDA, but allow class-specific covariances
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m Quadratic discriminant functions:
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m Quadratic decision boundaries
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From Hastie, Tibshirani, Friedman book
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QDA Parameter Estimation
" JE

m Based on the training class labels, estimate parameters:
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m Number of parameters: %L’k
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Notes on QDA and LDA
" JE

m LDA + QDA tend to perform very well in practice

m |tis not true that data are Gaussian or, furthermore, that
covariances are equal (LDA)

m Performance is likely attributed to the fact that the data can
only support simple decision boundaries

Also, estimates for Gaussian models are stable (\T wC(v
: ad
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LDA vs. Logistic Regression
" JEE

m Both have linear log odds:

p(Y =k | X =2)
p(Y =K [ X =ux)
p(Y =k | X =ux)
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m Difference is in how the coefficients are estimated
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LDA vs. Logistic Regression

= JEE
p(X,Y =k) =pX)p(Y =k | X)

m Marginal likelihood term

Logistic regression: & Wrary ..., U§+ MA Iz \ke\\k:jh
kain ‘}‘ of \ike &‘)hma’rmﬁ 0(x) “‘”‘quméﬁ
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LDA:

C G i T N(‘( s 23 m‘)&p
N

eo\rams,

LDA vs. Logistic Regression
" JEE

m In LDA, the data inform the parameters more

If data are indeed Gaussian, then asymptotically maximizing just
conditional likelihood requires 30% more data to perform as well

m Data far from boundary affect >J in LDA, but are ignored by
logistic regression
gistic reg —7 LOA s pet robust D > e

m Observations without class labels.can pe used in mixture model
case, but not in logistic regression ¥ ¥ ¢ wl vi's (\,N\'\

m Marginal |Ike|lh00d p(X) acts as a regularizer

1 - cqés \in. $€,Qara\')€ »\,7 e9,—> [l es '\A&RA
7 L0 otk Cor i dala e well-defined

m Logistic regression tends to be more robust than LDA and can
handle qualitative X variables, but performance is often similar.
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KDE for Classification #sbefar<
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pY=k|X=x)=

Tk

Yoo mefe(T)

m Use KDE to estimate class-conditional densities

= Recall commonly used oao\\ﬁ"“"‘ \<erne
Gaussian KDE in 1D \‘g
'L’%
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Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book
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Example: Heart Disease Data

" JEE
m Binary response = CHD (coronary heart disease)
m Predictor = systolic blood pressure ‘F
ki KOE 'Gf C\qssl -
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Systolic Blood Pressure Systolic Blood Pressure Systolic Blood Pressure
From Hastie, Tibshirani, Friedman book
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u _ From Hastie, Tibshirani, Friedman book
o o f\\?—‘
100 140 180 220 160 14‘10 1 éo 2éo 1 (;o 1;10 1 t;o 2éo
Systolic Blood Pressure Systolic Blood Pressure Systolic Blood Pressure

m KDE estimates are poor in regions with little data
m Local linear model uses variable bandwidth based on k-NN
- smooths out over these regions

m For classification tasks, do not need to estimate each class-
conditional density well. Just need good estimates of the
posterior near the decision boundary

©Emily Fox 2014 34
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Class-Conditionals vs. Posterior
= JEE

L C

m Example:
Both densities are multimodal
Might opt for rougher, high-variance estimator to capture features
However, posterior is quite smooth
Fine-scale features are irrelevant for classification here

©Emily Fox 2014

Multivariate KDE
= JEE

m Inld 1 «
p(zo) = a;f{/\(ﬂﬂo,l’i) |

= In RY, assuming a product kernel, XQ@

n d

. 1
p(zo) = o > o9 1 5o, (wogs 245)
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m Typical choice = Gaussian RBF — 6AMS§\AV| kDE
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Naive Bayes Classifier

T fr(T)
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m Useful in high-dimensional settings (d large)
m Assumes factore j:)rm for class-conditional densities

\\ !; Ya\ generally nat 1
‘A"/

pY = k| X =2) =

k

m Benefits:
Estimate flgj ( ) separately for each j using only 1D KDE
If X; of X is discrete, then can combine using a histogram estimate

bt A{J(en QGFQfmfwA

Naive Bayes Classifier
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. — kH frj ()

Y =k| X )= ZZWH foj(x5)
m Log odds ¥
p(Y =k | X =) Al ‘C“i( J)

Y = X=a) \Oj =1 'Fi, \°9 @\
ﬁcrumw\q{,,e =
A % jko(w\

m Has form of GAM, but fit very differently
Analogous to difference between LDA and logistic regression

N gen el
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Density as Mixture of Gaussians
" M

m Approximate density with a mixture of Gaussians ‘3 J‘s‘%
M ()Gt

Mixture of 3 Gaussians - ){A\ " ‘1“_’61 kDf,
p(xl W,M,E) = but v
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Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian
Our actual observations

0 0.5 1 0

0.5 1,
%abeled Uncomplexe dota
by true clusterassignments

C. Bishop, Rattern Recognition & Machine Learping

Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian

m Introduce latent cluster
indicator variable z,

el WS

(2:2K) = Ty
m Then we have

pla; | zism, 1, B) =
N(k‘\ MZ; ;22.3
K k‘

0 0.5 1 Param. est. is eas, € we hoVE i3
Complete data labeled . Gauss-
by true cluster assignments 0) ACCOuP‘Al! inte K &84

C. Bishop,Pattern Recognition & Machine Learging
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Clustering our Observations
" JE

m We must infer the cluster assignments from the observations

m Posterior probabilities of
assignments to each cluster
*given* model parameters:

rie =plzi =k |z, m,0) =
= T ‘\\(ﬁ\ M\c,it)
?TJNW;‘\ % %)

mokivakes an (terasive 4‘6-

\('” C. Bishop,Rattern Recognition & Machine Learping

Mixture Models for Classification
= JEE

m Can use mixture models as a generative classifier in the
unsupervised setting

1

m EM algorithm = iteratively: SRS K )

Estimate responsibilities given parameter estimates 05 M

~ A~ -~ g -8

e N (4, fue, 2k wov
>0 TN (@i, fue, Xo)

0 05 1

Maximize parameters given responsibilities

Tik = 0

m For classification, threshold the estimated responsibilities
Eg. g(z;) = arg max Tik

m Note: allows non-linear boundaries as in QDA
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Example: Heart Disease Data
" JE

m Binary response = CHD (coronary heart disease)

m Predictor = systolic blood pressure

No CHD CHD Combined

000 002 004 006 008 O

0 50 e 0 % 4w s 6 0 3 4w s

From Hastie, Tibshirani, Friedman book
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What you need to know
" JE

m Discriminative vs. Generative classifiers

LDA and QDA assume Gaussian class-conditional densities
Results in linear and quadratic decision boundaries, respectively

m KDE for classification
Challenging in areas with little data or in high dimensions
Estimating class-conditionals is not optimizing classification objective

Naive Bayes assumes factored form
Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach
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Readings
= JEE
m Hastie, Tibshirani, Friedman — 4.3, 4.4.5, 6.6.2-6.6.3, 6.8




