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Very convenient! 

 

implies 
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implies 

linear 

classification 

rule! 

Examine ratio: 
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Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 

problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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Optimizing Concave Function – 

Gradient Ascent  

 Conditional likelihood for logistic regression is concave  

 Find optimum with gradient ascent 

 

 

 

 

 

 

 

 

 Gradient ascent is simplest of optimization approaches 

 e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, >0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change <  

    

 

  

 For j=1,…,d,  

 

 

repeat    
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Regularization in Linear 

Regression 

 Overfitting usually leads to very large parameter choices, e.g.: 

 

 

 

 

 

 Regularized or penalized regression aims to impose a 

“complexity” penalty by penalizing large weights 

 “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large Parameters  Overfitting 

 If data is linearly separable, weights go to infinity 
 

 

 

 

 In general, leads to overfitting: 

 Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

 Add regularization penalty, e.g., L2: 

 

 

 

 

 Practical note about β0: 

 

 

 Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

 Maximum conditional likelihood estimate 

 

 

 

 

 

 Regularized maximum conditional likelihood estimate 
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Stopping Criterion 

 When do we stop doing gradient ascent?  

 

 

 Because l(w) is strongly concave: 

 i.e., because of some technical condition 

 

 

 

 

 Thus, stop when: 
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Digression:  

Logistic Regression for K > 2 

 Logistic regression in more general case (K 

classes), where Y in {1,…,K} 
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 Logistic regression in more general case, where  

Y in {1,…,K} 

 

 for k<K 

 

 
 

 for k=K (normalization, so no weights for this class) 

 

 
 

Estimation procedure is basically the same  

as what we derived! 
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Digression:  

Logistic Regression for K > 2 

The Cost, The Cost!!! Think about 

the cost… 

 What’s the cost of a gradient update step for LR??? 
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Gradient ascent in Terms of Expectations 

 “True” objective function: 

 

 

 Taking the gradient: 

 

 

 “True” gradient ascent rule: 

 

 

 How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

 “True” gradient: 

 

 Sample based approximation: 

 

 

 

 What if we estimate gradient with just one sample??? 

 Unbiased estimate of gradient 

 Very noisy! 

 Called stochastic gradient ascent (or descent) 

 Among many other names 

 VERY useful in practice!!! 
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Stochastic Gradient Ascent for 

Logistic Regression 

 Logistic loss as a stochastic function: 

 

 

 Batch gradient ascent updates: 

 

 
 

 Stochastic gradient ascent updates: 

 Online setting: 

©Emily Fox 2014 17 

What you should know… 

 Classification: predict discrete classes rather than 
real values 

 Logistic regression model: Linear model 
 Logistic function maps real values to [0,1] 

 Optimize conditional likelihood 

 Gradient computation 

 Overfitting 

 Regularization 

 Regularized optimization 

 Cost of gradient step is high, use stochastic 
gradient descent 
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Discriminative vs. Generative 

 So far, we have considered modeling/fitting 

 

 

 

 

 There are also a large set of generative methods 

 Model: 

 Class-conditional densities 

 Class prior probabilities 

 

 Via Bayes’ rule: 

©Emily Fox 2014 20 



11 

Generative Classifiers 

 Examples include: 

 Linear and quadratic discriminative analysis (LDA and QDA) 

 

 

 Mixture of Gaussians (saw in BNP module) 

 

 

 Nonparametric density estimation for 

 

 

 Naïve Bayes  
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Linear Discriminative Analysis 

 Assume Gaussian class-conditional densities 

 

 

 Furthermore, consider equal covariances 

 

 Log odds 
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Linear Discriminative Analysis 

 Equivalently,  

 

where 

 

 

 Decision rule: 

 

 

 Linear decision boundaries 
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From Hastie, Tibshirani, Friedman book 
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LDA Parameter Estimation 

 Based on the training class labels,  

estimate parameters: 
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From Hastie, Tibshirani, Friedman book 
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Quadratic Discriminative Analysis 

 Same setup as LDA, but allow class-specific covariances 

 

 Quadratic discriminant functions: 

 

 

 Quadratic decision boundaries 
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From Hastie, Tibshirani, Friedman book 
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QDA Parameter Estimation 

 Based on the training class labels, estimate parameters: 

 

 

 

 Number of parameters: 

 

 

 

 Can also consider shrinkage estimators 
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Notes on QDA and LDA 

 LDA + QDA tend to perform very well in practice 

 

 It is not true that data are Gaussian or, furthermore, that 

covariances are equal (LDA) 

 

 Performance is likely attributed to the fact that the data can 

only support simple decision boundaries 

 Also, estimates for Gaussian models are stable 
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LDA vs. Logistic Regression 

 Both have linear log odds: 

 

 

 

 

 

 Difference is in how the coefficients are estimated 
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LDA vs. Logistic Regression 

 Marginal likelihood term 

 

 Logistic regression: 

 

 

 

 LDA: 
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LDA vs. Logistic Regression 

 In LDA, the data inform the parameters more 

 If data are indeed Gaussian, then asymptotically maximizing just 

conditional likelihood requires 30% more data to perform as well 
 

 Data far from boundary affect      in LDA, but are ignored by 

logistic regression 

 

 Observations without class labels can be used in mixture model 

case, but not in logistic regression 

 Marginal likelihood p(X) acts as a regularizer 

 

 

 

 Logistic regression tends to be more robust than LDA and can 

handle qualitative X variables, but performance is often similar. 
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KDE for Classification 

 Use KDE to estimate class-conditional densities 

 Recall commonly used 

Gaussian KDE in 1D 
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From Hastie, Tibshirani, Friedman book 
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Example: Heart Disease Data 

 Binary response = CHD (coronary heart disease) 

 Predictor = systolic blood pressure 
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From Hastie, Tibshirani, Friedman book 
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Example: Heart Disease Data 

 KDE estimates are poor in regions with little data 

 Local linear model uses variable bandwidth based on k-NN  

 smooths out over these regions 

 For classification tasks, do not need to estimate each class-

conditional density well.  Just need good estimates of the 

posterior near the decision boundary 
©Emily Fox 2014 

From Hastie, Tibshirani, Friedman book 
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Class-Conditionals vs. Posterior 

 Example: 

 Both densities are multimodal 

 Might opt for rougher, high-variance estimator to capture features 

 However, posterior is quite smooth 

 Fine-scale features are irrelevant for classification here 

 

©Emily Fox 2014 35 

Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 
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Naïve Bayes Classifier 

 Useful in high-dimensional settings (d large)  

 Assumes factored form for class-conditional densities 

 

 

 

 

 Benefits: 

 Estimate                   separately for each j using only 1D KDE  

 If Xj of X is discrete, then can combine using a histogram estimate 
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Naïve Bayes Classifier 

 Log odds 

 

 

 

 

 

 

 Has form of GAM, but fit very differently 

 Analogous to difference between LDA and logistic regression 
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Density as Mixture of Gaussians 

 Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Clustering our Observations 

 Imagine we have an assignment of each xi to a Gaussian 

Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 

by true cluster assignments 
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Clustering our Observations 

 Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 

by true cluster assignments 

 Introduce latent cluster 

indicator variable zi 

 

 

 Then we have 
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Clustering our Observations 

 We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

 Posterior probabilities of 

assignments to each cluster 

*given* model parameters: 

Soft assignments to clusters 
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Mixture Models for Classification 

 Can use mixture models as a generative classifier in the 

unsupervised setting 

 

 EM algorithm = iteratively: 

 Estimate responsibilities given parameter estimates 

 

 

 

 Maximize parameters given responsibilities 

 

 For classification, threshold the estimated responsibilities 

 E.g.,  

 

 Note: allows non-linear boundaries as in QDA 
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Example: Heart Disease Data 

 Binary response = CHD (coronary heart disease) 

 Predictor = systolic blood pressure 
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From Hastie, Tibshirani, Friedman book 
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What you need to know 

 Discriminative vs. Generative classifiers 

 

 LDA and QDA assume Gaussian class-conditional densities 

 Results in linear and quadratic decision boundaries, respectively 

 

 KDE for classification 

 Challenging in areas with little data or in high dimensions 

 Estimating class-conditionals is not optimizing classification objective 

 

 Naïve Bayes assumes factored form 

 Results in log odds that have GAM form 

 

 Mixture models allow for unsupervised generative approach 
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Readings 

 Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8 
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