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Maximizing Conditional Log Likelihood
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Good news: I(B) is concave function of B8, no local optima
problems

Bad news: no closed-form solution to maximize I(B)

Good news: concave functions easy to optimize

Optimizing Concave Function —
Gradient Ascent
" SR

m Conditional likelihood for logistic regression is concave
m Find optimum with gradient ascent
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Gradient Ascent for LR«
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Regularization in Linear

_ Regression

m Overfitting usually leads to very large parameter choices, e.g.:
-2.2+3.1X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method
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Linear Separability
" JE
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Large Parameters — Overfitting
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m [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood

= Add regularlzatlon penalty, e. g L,:

= long i | x5, 8) — —||5||2

=1
m Practical note about 3,:

m Gradient of regularized likelihood:

Standard v. Reqgularized Updates

m Maximum conditional Iikelihood estimate
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m Regularized maximum conditional |Ike|lh00d estlmate
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Stopping Criterion
" JE
n )\ 5
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m When do we stop doing gradient ascent?

m Because I(w) is strongly concave:
i.e., because of some technical condition

* 1 2
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m Thus, stop when:

Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case (K
classes), where Y in {1,...,K}




Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case, where

Yin{1,..., K}
for k<K ) N
ply = k|x, B) = exp(Bro + Zj:1 Brj ;)

- K—1 d
L+ > =1 exp(Bro + X251 Brryaj)
for k=K (normalization, so no weights for this class)
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Estimation procedure is basically the same
as what we derived!

The Cost, The Cost!!! Think about

the cost...
" JEE
m What's the cost of a gradient update step for LR??7?
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Gradient ascent in Terms of Expectations
" JEE
m “True” objective function:

1(3) = Eull8.2) = [ p(o)(6,2)de
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?

SGD: Stochastic Gradient Ascent (or Descent)
" JEE
m “True” gradient: Vl(ﬁ) = F, [Vl(/87gj)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

_ Logistic Reﬁression

m Logistic loss as a stochastic function:
A
BL{15.) = E. [logaty | 2.6) - 31814
m Batch gradient ascent updates:
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m Stochastic gradient ascent updates:
Online setting:
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What you should know...
" JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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Discriminative vs. Generative
" JEE

m So far, we have considered modeling/fitting
p(Y | X)

m There are also a large set of generative methods

= Model:
Class-conditional densities f, (X) =
Class prior probabilities 7T

m Via Bayes' rule:

@@@@@@@@@@@@@
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Generative Classifiers

= JEE
T fr(T)

Y =k| X =2)= > o mefe(x)

m Examples include:
Linear and quadratic discriminative analysis (LDA and QDA)

Mixture of Gaussians (saw in BNP module)
Nonparametric density estimation for fk (:L’)

Naive Bayes
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Linear Discriminative Analysis
" I

m Assume Gaussian class-conditional densities
fe(X) =

m Furthermore, consider equal covariances

m Log odds

o p(Y:k:|X::U)_
Y =(1X=2)
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Linear Discriminative Analysis

" J
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= Equivalently, p(Y =k | X =)

log oV =0 X =) = 0i(z) — d¢(x)

where
or(z) =

m Decision rule:

m Linear decision boundaries

From Hastie, Tibshirani, Friedman book
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LDA Parameter Estimation
= JEE

o pY =Fk| X =1x)
Y =C1X =0

T 1 _ _
= log W—IZ — 5+ ) TS (g — o) + 2T (e — o)

m Based on the training class labels,
estimate parameters:

From Hastie, Tibshirani, Friedman book
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Quadratic Discriminative Analysis
" JEE

m Same setup as LDA, but allow class-specific covariances

m Quadratic discriminant functions:
o () =

m Quadratic decision boundaries

From Hastie, Tibshirani, Friedman book
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QDA Parameter Estimation
" JEE

m Based on the training class labels, estimate parameters:

m Number of parameters:

m Can also consider shrinkage estimators
Se(e) =aX, + (1 — )2 S(7) =42+ (1 —7)o?l
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Notes on QDA and LDA
" JEE

m LDA + QDA tend to perform very well in practice

m |tis not true that data are Gaussian or, furthermore, that
covariances are equal (LDA)

m Performance is likely attributed to the fact that the data can
only support simple decision boundaries
Also, estimates for Gaussian models are stable
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LDA vs. Logistic Regression
" JE

m Both have linear log odds:

p(Y =k | X =2) T
1 =
ng(Y:K\X::c) ko + Qg T
Y=k|X=2
log LU= FIX =0 _ g1 b

p(Y =K | X =2x)
m Difference is in how the coefficients are estimated
p(X, Y = k:) =

©Emily Fox 2014 28

14



LDA vs. Logistic Regression

= JEE
p(X,Y =k) =p(X)p(Y =k | X)

m Marginal likelihood term

Logistic regression:

LDA:
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LDA vs. Logistic Regression
" JEE

m In LDA, the data inform the parameters more

If data are indeed Gaussian, then asymptotically maximizing just
conditional likelihood requires 30% more data to perform as well

m Data far from boundary affect > in LDA, but are ignored by
logistic regression

m Observations without class labels can be used in mixture model
case, but not in logistic regression

m Marginal likelihood p(X) acts as a regularizer

m Logistic regression tends to be more robust than LDA and can
handle qualitative X variables, but performance is often similar.

©Emily Fox 2014 30

15



Module 5: Classification

Nonparametric Methods:
KDE and Naive Bayes

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 22"d, 2014

©Emily Fox 2014

KDE for Classification
= JE

m Use KDE to estimate class-conditional densities

m Recall commonly used
Gaussian KDE in 1D

-

Systolic Blood Pressure (for CHD group)
From Hastie, Tibshirani, Friedman book

uuuuuuuuuuuuu
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Example: Heart Disease Data

= JEE
m Binary response = CHD (coronary heart disease)
m Predictor = systolic blood pressure
o g 8 2 ©
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100 140 180 220 100 140 180 220 100 140 180 220
Systolic Blood Pressure Systolic Blood Pressure Systolic Blood Pressure
From Hastie, Tibshirani, Friedman book
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n _ From Hastie, Tibshirani, Friedman book
S L T 7T T 1T 1T O -
a] g S 4 £ °
5 o g s g o
T 3 z 2] 3 39
© g 87 £y
100 140 180 220 1(;0 ‘ 14‘10 ‘ 18‘0 ‘ zéo 1(;0 ‘ 14‘10 ‘ 1&0 ‘ 22‘0
Systolic Blood Pressure Systolic Blood Pressure Systolic Blood Pressure
m KDE estimates are poor in regions with little data
m Local linear model uses variable bandwidth based on k-NN
- smooths out over these regions
m For classification tasks, do not need to estimate each class-

conditional density well. Just need good estimates of the
posterior near the decision boundary
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17



Class-Conditionals vs. Posterior
= JEE

m Example:
Both densities are multimodal
Might opt for rougher, high-variance estimator to capture features
However, posterior is quite smooth
Fine-scale features are irrelevant for classification here
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Multivariate KDE
= JEE
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Naive Bayes Classifier
" JE
7k f1 ()

Y =k| X =2)= > o mefe(x)

m Useful in high-dimensional settings (d large)
m Assumes factored form for class-conditional densities

fe(X) =

m Benefits:
Estimate fkj (Xj> separately for each j using only 1D KDE
If X; of X is discrete, then can combine using a histogram estimate

©Emily Fox 2014 37

Naive Bayes Classifier
= JEE
N _ oy el fe(Es)
pl¥ =k[X = )_Zﬂel—[jfzj(xj)

m Log odds
p(Y =k|X=2)
p(Y =0|X =x)

log

m Has form of GAM, but fit very differently
Analogous to difference between LDA and logistic regression

©Emily Fox 2014 38

19



Module 5: Classification

Mixture Models for
Classification

STAT/BIOSTAT 527, University of Washington
Emily Fox
May 22"d, 2014

©Emily Fox 2014

Density as Mixture of Gaussians
" M

m Approximate density with a mixture of Gaussians ‘3 J‘s‘%
M ()Gt

Mixture of 3 Gaussians - ){A\ " ‘1“_’61 kDf,
p(xl W,M,E) = but v
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Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian
Our actual observations

0 0.5 1 0

0.5 1,
%abeled Uncomplexe dota
by true clusterassignments

C. Bishop, Rattern Recognition & Machine Learping

Clustering our Observations
" JEE

m Imagine we have an assignment of each x; to a Gaussian

m Introduce latent cluster
indicator variable z,

el WS

(2:2K) = Ty
m Then we have

pla; | zism, 1, B) =
N(k‘\ MZ; ;22.3
K k‘

0 0.5 1 Param. est. is eas, € we hoVE i3
Complete data labeled . Gauss-
by true cluster assignments 0) ACCOuP‘Al! inte K &84

C. Bishop,Pattern Recognition & Machine Learging
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Clustering our Observations
" JE

m We must infer the cluster assignments from the observations

m Posterior probabilities of
assignments to each cluster
*given* model parameters:

rie =plzi =k |z, m,0) =
= T ‘\\(ﬁ\ M\c,it)
?TJNW;‘\ % %)

mokivakes an (terasive 4‘6-

\('” C. Bishop,Rattern Recognition & Machine Learping

Mixture Models for Classification
= JEE

m Can use mixture models as a generative classifier in the
unsupervised setting

1

m EM algorithm = iteratively: SRS K )

Estimate responsibilities given parameter estimates 05 M

~ A~ -~ g -8

e N (4, fue, 2k wov
>0 TN (@i, fue, Xo)

0 05 1

Maximize parameters given responsibilities

Tik = 0

m For classification, threshold the estimated responsibilities
Eg. g(z;) = arg max Tik

m Note: allows non-linear boundaries as in QDA
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Example: Heart Disease Data
" JE

m Binary response = CHD (coronary heart disease)

m Predictor = systolic blood pressure

No CHD CHD Combined

000 002 004 006 008 O

0 50 e 0 % 4w s 6 0 3 4w s

From Hastie, Tibshirani, Friedman book
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What you need to know
" JE

m Discriminative vs. Generative classifiers

LDA and QDA assume Gaussian class-conditional densities
Results in linear and quadratic decision boundaries, respectively

m KDE for classification
Challenging in areas with little data or in high dimensions
Estimating class-conditionals is not optimizing classification objective

Naive Bayes assumes factored form
Results in log odds that have GAM form

Mixture models allow for unsupervised generative approach
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Readings
= JEE
m Hastie, Tibshirani, Friedman — 4.3, 4.4.5, 6.6.2-6.6.3, 6.8




