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Very convenient! 

 

implies 
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implies 

linear 

classification 

rule! 

Examine ratio: 
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Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 

problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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Optimizing Concave Function – 

Gradient Ascent  

 Conditional likelihood for logistic regression is concave  

 Find optimum with gradient ascent 

 

 

 

 

 

 

 

 

 Gradient ascent is simplest of optimization approaches 

 e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, >0 

Update rule: 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change <  

    

 

  

 For j=1,…,d,  

 

 

repeat    
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Regularization in Linear 

Regression 

 Overfitting usually leads to very large parameter choices, e.g.: 

 

 

 

 

 

 Regularized or penalized regression aims to impose a 

“complexity” penalty by penalizing large weights 

 “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large Parameters  Overfitting 

 If data is linearly separable, weights go to infinity 
 

 

 

 

 In general, leads to overfitting: 

 Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

 Add regularization penalty, e.g., L2: 

 

 

 

 

 Practical note about β0: 

 

 

 Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

 Maximum conditional likelihood estimate 

 

 

 

 

 

 Regularized maximum conditional likelihood estimate 
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Stopping Criterion 

 When do we stop doing gradient ascent?  

 

 

 Because l(w) is strongly concave: 

 i.e., because of some technical condition 

 

 

 

 

 Thus, stop when: 
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Digression:  

Logistic Regression for K > 2 

 Logistic regression in more general case (K 

classes), where Y in {1,…,K} 
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 Logistic regression in more general case, where  

Y in {1,…,K} 

 

 for k<K 

 

 
 

 for k=K (normalization, so no weights for this class) 

 

 
 

Estimation procedure is basically the same  

as what we derived! 
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Digression:  

Logistic Regression for K > 2 

The Cost, The Cost!!! Think about 

the cost… 

 What’s the cost of a gradient update step for LR??? 
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Gradient ascent in Terms of Expectations 

 “True” objective function: 

 

 

 Taking the gradient: 

 

 

 “True” gradient ascent rule: 

 

 

 How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

 “True” gradient: 

 

 Sample based approximation: 

 

 

 

 What if we estimate gradient with just one sample??? 

 Unbiased estimate of gradient 

 Very noisy! 

 Called stochastic gradient ascent (or descent) 

 Among many other names 

 VERY useful in practice!!! 
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Stochastic Gradient Ascent for 

Logistic Regression 

 Logistic loss as a stochastic function: 

 

 

 Batch gradient ascent updates: 

 

 
 

 Stochastic gradient ascent updates: 

 Online setting: 
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What you should know… 

 Classification: predict discrete classes rather than 
real values 

 Logistic regression model: Linear model 
 Logistic function maps real values to [0,1] 

 Optimize conditional likelihood 

 Gradient computation 

 Overfitting 

 Regularization 

 Regularized optimization 

 Cost of gradient step is high, use stochastic 
gradient descent 
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Discriminative vs. Generative 

 So far, we have considered modeling/fitting 

 

 

 

 

 There are also a large set of generative methods 

 Model: 

 Class-conditional densities 

 Class prior probabilities 

 

 Via Bayes’ rule: 
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Generative Classifiers 

 Examples include: 

 Linear and quadratic discriminative analysis (LDA and QDA) 

 

 

 Mixture of Gaussians (saw in BNP module) 

 

 

 Nonparametric density estimation for 

 

 

 Naïve Bayes  
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Linear Discriminative Analysis 

 Assume Gaussian class-conditional densities 

 

 

 Furthermore, consider equal covariances 

 

 Log odds 
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Linear Discriminative Analysis 

 Equivalently,  

 

where 

 

 

 Decision rule: 

 

 

 Linear decision boundaries 
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From Hastie, Tibshirani, Friedman book 
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LDA Parameter Estimation 

 Based on the training class labels,  

estimate parameters: 
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From Hastie, Tibshirani, Friedman book 
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Quadratic Discriminative Analysis 

 Same setup as LDA, but allow class-specific covariances 

 

 Quadratic discriminant functions: 

 

 

 Quadratic decision boundaries 
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From Hastie, Tibshirani, Friedman book 
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QDA Parameter Estimation 

 Based on the training class labels, estimate parameters: 

 

 

 

 Number of parameters: 

 

 

 

 Can also consider shrinkage estimators 
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Notes on QDA and LDA 

 LDA + QDA tend to perform very well in practice 

 

 It is not true that data are Gaussian or, furthermore, that 

covariances are equal (LDA) 

 

 Performance is likely attributed to the fact that the data can 

only support simple decision boundaries 

 Also, estimates for Gaussian models are stable 
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LDA vs. Logistic Regression 

 Both have linear log odds: 

 

 

 

 

 

 Difference is in how the coefficients are estimated 
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LDA vs. Logistic Regression 

 Marginal likelihood term 

 

 Logistic regression: 

 

 

 

 LDA: 
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LDA vs. Logistic Regression 

 In LDA, the data inform the parameters more 

 If data are indeed Gaussian, then asymptotically maximizing just 

conditional likelihood requires 30% more data to perform as well 
 

 Data far from boundary affect      in LDA, but are ignored by 

logistic regression 

 

 Observations without class labels can be used in mixture model 

case, but not in logistic regression 

 Marginal likelihood p(X) acts as a regularizer 

 

 

 

 Logistic regression tends to be more robust than LDA and can 

handle qualitative X variables, but performance is often similar. 
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KDE for Classification 

 Use KDE to estimate class-conditional densities 

 Recall commonly used 

Gaussian KDE in 1D 
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From Hastie, Tibshirani, Friedman book 
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Example: Heart Disease Data 

 Binary response = CHD (coronary heart disease) 

 Predictor = systolic blood pressure 
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From Hastie, Tibshirani, Friedman book 
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Example: Heart Disease Data 

 KDE estimates are poor in regions with little data 

 Local linear model uses variable bandwidth based on k-NN  

 smooths out over these regions 

 For classification tasks, do not need to estimate each class-

conditional density well.  Just need good estimates of the 

posterior near the decision boundary 
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From Hastie, Tibshirani, Friedman book 
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Class-Conditionals vs. Posterior 

 Example: 

 Both densities are multimodal 

 Might opt for rougher, high-variance estimator to capture features 

 However, posterior is quite smooth 

 Fine-scale features are irrelevant for classification here 
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Multivariate KDE 
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 In 1d  

 

 

 In Rd, assuming a product kernel, 

 

 

 

 

 Typical choice = Gaussian RBF 
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Naïve Bayes Classifier 

 Useful in high-dimensional settings (d large)  

 Assumes factored form for class-conditional densities 

 

 

 

 

 Benefits: 

 Estimate                   separately for each j using only 1D KDE  

 If Xj of X is discrete, then can combine using a histogram estimate 
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Naïve Bayes Classifier 

 Log odds 

 

 

 

 

 

 

 Has form of GAM, but fit very differently 

 Analogous to difference between LDA and logistic regression 
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Density as Mixture of Gaussians 

 Approximate density with a mixture of Gaussians 

Mixture of 3 Gaussians 
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Clustering our Observations 

 Imagine we have an assignment of each xi to a Gaussian 

Our actual observations 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 

by true cluster assignments 
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Clustering our Observations 

 Imagine we have an assignment of each xi to a Gaussian 

C. Bishop, Pattern Recognition & Machine Learning 

Complete data labeled 

by true cluster assignments 

 Introduce latent cluster 

indicator variable zi 

 

 

 Then we have 
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Clustering our Observations 

 We must infer the cluster assignments from the observations 

C. Bishop, Pattern Recognition & Machine Learning 

 Posterior probabilities of 

assignments to each cluster 

*given* model parameters: 

Soft assignments to clusters 
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Mixture Models for Classification 

 Can use mixture models as a generative classifier in the 

unsupervised setting 

 

 EM algorithm = iteratively: 

 Estimate responsibilities given parameter estimates 

 

 

 

 Maximize parameters given responsibilities 

 

 For classification, threshold the estimated responsibilities 

 E.g.,  

 

 Note: allows non-linear boundaries as in QDA 
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Example: Heart Disease Data 

 Binary response = CHD (coronary heart disease) 

 Predictor = systolic blood pressure 
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From Hastie, Tibshirani, Friedman book 
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What you need to know 

 Discriminative vs. Generative classifiers 

 

 LDA and QDA assume Gaussian class-conditional densities 

 Results in linear and quadratic decision boundaries, respectively 

 

 KDE for classification 

 Challenging in areas with little data or in high dimensions 

 Estimating class-conditionals is not optimizing classification objective 

 

 Naïve Bayes assumes factored form 

 Results in log odds that have GAM form 

 

 Mixture models allow for unsupervised generative approach 

©Emily Fox 2014 46 



24 

Readings 

 Hastie, Tibshirani, Friedman – 4.3, 4.4.5, 6.6.2-6.6.3, 6.8 
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