

Nonparam. Multiple Regression

 $x_i = (x_i, y_i, x_i)$ In its most general form, the regression equation then takes the

In its most general form, the regression equation then takes the form $\gamma = f(x_1, \dots, x_n) + \xi$

 In principle, all of the methods we have discussed so far carry over to this case rather straightforwardly

 Unfortunately, the risk of the nonparametric estimator increases rapidly with covariate dimension d.

©Emily Fox 2014

Curse of Dimensionality To maintain a fixed level of accuracy for a given nonparametric estimator, the sample size must increase exponentially in d Set MSE = δ Why? Using data in local nbhd □ In high dim, few points in any nbhd Consider example with n uniformly distributed points in [-1,1]d □ d=1: in [-0.170.1] ~ n x (10 in [-0.1,0,1]" gure from Yoshua Bengio's website

Natural Thin Plate Splines

$$\min_{f} \sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda J(f)$$

$$\chi_i \in \mathbf{R}^{\mathbf{d}}$$

Recall roughness penalty in 1d

$$J(f) = \int f''(x) \sqrt{2} dx$$

The natural 2d extension to penalize rapid variation in either dim is
$$J(f) = \begin{cases} \int_{\mathbb{R}^2} \left[\left(\frac{\lambda^2 f(\lambda)}{\lambda x_1^2} \right)^2 + \left(\frac{\lambda^2 f(\lambda)}{\lambda x_1^2} \right)^2 + 2 \left(\frac{\lambda^2 f(\lambda)}{\lambda x_1^2} \right)^2 \right] dx_1 dx_2 \end{cases}$$

Is the penalty affected by rotation or translation in \mathbb{R}^2 ? [Can be 1 extended for 4>2) N

Natural Thin Plate Splines

$$\min_{f} \sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda J(f) \qquad \text{bending}$$

$$J(f) = \int \int_{\mathbb{R}^2} \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(x)}{\partial x_1 x_2} \right)^2 + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right)^2 \right] dx_1 dx_2$$

- Solution: Unique minimizer is the *natural thin plate spline* with knots at the x_{ii}
- Proof: See Green and Silverman (1994) and Duchon (1977)
- Similar properties and intuition as in 1d:

 □ As A > 0, Sol'n approaches an interpolator

 □ As A > ∞, LS plane (no 2nd derivative)

Natural Thin Plate Splines

 $\min_{f} \sum_{i=1}^{n} \{y_i - (f(x_i))\}^2 + \lambda J(f)$ $J(f) = \int \int_{\mathbb{R}^2} \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(x)}{\partial x_1 x_2} \right)^2 + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right)^2 \right] dx_1 dx_2$

- Solution: **natural thin plate spline** with knots at the x_{ij}

For general λ , solution is a linear basis expansion of the form $f(x) = \beta + \beta^{T} \times \beta +$ $h_j(x) = ||x - x_j||^2 \log ||x - x_j||$ Radial Basis Function with

Interpretation: We take an elastic flat plate that interpolates points (x_i, y_i) and penalize its "bending energy"

Natural Thin Plate Splines

Coefficients are found via standard penalized LS

$$\min_{\beta,b}(y-X\beta-Eb)^{T}(y-X\beta-Eb) + \left(\lambda b^{T}Eb\right)$$
s.t.
$$\sum_{i}b_{i} = \sum_{i}b_{i}x_{i1} = \sum_{i}b_{i}x_{i2} = 0$$

$$\text{Ensures}$$

$$\text{Ensures}$$

■ Interpretation: We take an elastic flat plate that interpolates points (x_i, y_i) and penalize its "bending energy"

Complexity of Thin Plate
Splines

Natural thin plate splines place knots at every location x_{ij} Computational complexity scales as O

Can get away with fewer knots

If we use K knots, then computational complexity reduces to $O(nK^2 + K^3)$ Can choose some lattice of knots

Can choose some lattice of knots

Thin Plate Regression Splines Thin plate regression splines truncate the "wiggly" basis bLet $E = UDU^T$ eigen de comp Let $E = UDU^T$ eigen de comp Grab out largest k eigenvalues and eigenvectors Define $b = U_k b_k$ Minimize $\min_{\beta,b_k} (y - X\beta - U_k D_k b_k)^T (y - X\beta - U_k D_k b_k) + \lambda b_k^T D_k b_k$ $X^T U_k b_k = 0$ Optimal approximation of thin plate splines using low rank basis Retain advantages of (i) no choice of knots, (ii) rotation invariance See Wood (2006) for more details

Tensor Product Splines Example

- Linear spline basis with L_1 truncated lines for x_1 and L_2 for x_2 $1, x_1, (x_1 \xi_{11})_+, \dots, (x_1 \xi_{1L_1})_+$ $1, x_2, (x_2 \xi_{21})_+, \dots, (x_1 \xi_{2L_2})_+$
- Then, the tensor product expansion is

$$f(x_{1}, x_{2}) = \beta_{0} + \beta_{1} \times 1 + \beta_{2} \times 2 + \beta_{3} \times 1 \times 2 + \beta_{3} \times 1 \times 2 + \beta_{4} \times 1 \times 2 + \beta_{5} \times 1$$

- Number of parameters: $(x_1 \xi_{11})$
- Note: Captures interaction terms between x_1 and x_2

GAM Example

Consider using a penalized regression spline of order p_i with L_i knots for each covariate x

knots for each covariate
$$x_i$$

$$g(\mu) = \beta_0 + \sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} \beta_{jk} x_j^k + \sum_{l=1}^{\infty} b_{jl} (x_l \cdot \xi_{jl}) \right) = f_j(x_j)$$

Penalization is applied to the spline coefficients b_i

$$\sum_{\ell=1}^{L_j} \lambda_j \sum_{\ell=1}^{L_j} b_{j\ell}^2$$

Comments:

- The GAM is very interpretable
 - \Box $f_i(x_i)$ is not influenced by the other $f_i(x_i)$
 - \Box Can plot f_i to straightforwardly see the relationship between x_i and y
- Will see that this also leads to computational efficiencies

©Emily Fox 2014

Backfitting

To begin, assume a standard (non-GLM) regression setting

For concreteness, consider

creteness, consider

$$f_i(x_i)$$
 $f_i(x_i)$
 $f_i(x_i)$

- Result is an additive cubic spline model with knots at the unique values of x_{ii}
 - □ For X full column rank, can show that solution is unique. Otherwise, linear part of $f_i(x_i)$ is not uniquely determined
- (\(\frac{1}{2} \) fi(\(\frac{1}{2} \) = \(\frac{1}{2} \) Here, clearly $\hat{\alpha} =$
- How do we think about fitting the other parameters??

©Emily Fox 2014

Backfitting

- Backfitting is an iterative fitting procedure
- Since f(x) is additive, if we condition on the fit of all other components $f_i(x_i)$, $j \neq i$, then we know how to fit $f_i(x_i)$
- Iterate the estimation procedure until convergence

©Emily Fox 2014

17

Backfitting Algorithm

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

- 1. Initialize: $\hat{\alpha} = \frac{1}{N} \sum_{1}^{N} y_i$, $\hat{f}_j \equiv 0, \forall i, j$.
- 2. Cycle: $j=1,2,\ldots,p,\ldots,1,2,\ldots,p,\ldots,$

$$\hat{f}_j \leftarrow \mathcal{S}_j \left[\{ y_i - \hat{\alpha} - \sum_{k \neq j} \hat{f}_k(x_{ik}) \}_1^N \right],$$

$$\hat{f}_j \leftarrow \hat{f}_j - \frac{1}{N} \sum_{i=1}^N \hat{f}_j(x_{ij}).$$

until the functions \hat{f}_j change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book

©Emily Fox 2014

GAMs and Logistic Regression

- A generalized additive logistic regression model has the form
- The functions $f_1, ..., f_d$ can be estimated using a backfitting algorithm, too
- First, recall IRLS algorithm for *parametric* logistic regression

$$z = X\beta^{\text{old}} + W^{-1}(y - p)$$

$$\beta^{\text{new}} \leftarrow \arg\min_{\beta} (z - X\beta)^T W (z - X\beta)$$

©Emily Fox 2014

19

GAMs and Logistic Regression

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regression Model.

- 1. Compute starting values: $\hat{\alpha} = \log[\bar{y}/(1-\bar{y})]$, where $\bar{y} = \text{ave}(y_i)$, the sample proportion of ones, and set $\hat{f}_j \equiv 0 \ \forall j$.
- 2. Define $\hat{\eta}_i = \hat{\alpha} + \sum_j \hat{f}_j(x_{ij})$ and $\hat{p}_i = 1/[1 + \exp(-\hat{\eta}_i)]$. Iterate:
 - (a) Construct the working target variable

$$z_i = \hat{\eta}_i + \frac{(y_i - \hat{p}_i)}{\hat{p}_i(1 - \hat{p}_i)}.$$

- (b) Construct weights $w_i = \hat{p}_i(1 \hat{p}_i)$
- (c) Fit an additive model to the targets z_i with weights w_i , using a weighted backfitting algorithm. This gives new estimates $\hat{\alpha}, \hat{f_j}, \, \forall j$
- Continue step 2. until the change in the functions falls below a prespecified threshold.

From Hastie, Tibshirani, Friedman book

GAM Logistic Example

- - Example: predicting spam
 - Data from UCI repository
 - Response variable: email or spam
 - 57 predictors:
 - 48 quantitative percentage of words in email that match a give word such as "business", "address", "internet",...
 - 6 quantitative percentage of characters in the email that match a given character (;, [! \$ #)
 - □ The average length of uninterrupted capital letters: CAPAVE
 - □ The length of the longest uninterrupted sequence of capital letters: CAPMAX
 - □ The sum of the length of uninterrupted sequences of capital letters: CAPTOT

©Emily Fox 2014

Other GAM formulations

Semiparametric models:

$$g(\mu) =$$

ANOVA decompositions:

$$f(x) =$$

Choice of:

- □ Maximum order of interaction
- Which terms to include
- What representation
- Tradeoff between full model and decomposed model

©Emily Fox 2014

23

Connection with Thin Plate Splines

Recall formulation that lead to natural thin plate splines:

$$\min_{f} \sum_{i=1} \{y_i - f(x_i)\}^2 + \lambda J(f)$$

$$J(f) = \int \int_{\mathbb{R}^2} \left[\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(x)}{\partial x_1 x_2} \right)^2 + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right)^2 \right] dx_1 dx_2$$

- There exists a *J*(*f*) such that the solution has the form
- However, it is more natural to just assume this form and apply

$$J(f) = J(f_1 + f_2 + \dots + f_d) = \sum_{j=1}^{d} \int f_j^{"}(t_j)^2 dt_j$$

©Emily Fox 2014

What you need to know

- Nothing is conceptually hard about multivariate x
- In practice, nonparametric methods struggle from curse of dimensionality
- Options considered:
 - □ Thin plate splines
 - □ Tensor product splines
 - □ Generalized additive models
 - □ Combinations (to model some interaction terms)

©Emily Fox 2014

25

Readings

- Wakefield 12.1-12.3
- Hastie, Tibshirani, Friedman 5.7, 9.1
- Wasserman 4.5, 5.12

©Emily Fox 2014