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Nonparam. Multiple Regression
" J
m We now consider a d-dimensional covariate X; )
Xi= (Xn) "‘"7*5()} L2\
m |n its most general form, the regression equation then takes the

form 'k £ (%, i) + €
0(7 ‘Fbr CLnf)

g (et = Flx,, -

m |n principle, all of the methods we have discussed so far carry
over to this case rather straightforwardly
AUHENE + "
m Unfortunately, the risk of the nonparametric estimator increases
rapidly with covariate dimension d.




Curse of Dimensionality
" JEE

m To maintain a fixed level of accuracy for a given nonparametric
estimator, the sample size must increase exponentially in d
= SetMSE =35 (C/>d[‘4
n o~ ? I ¢7%
m Why? Using data in local nbhd
In high dim, few points in any nbhd

m Consider example with n uniformly >
L e a1
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Natural Thin Plate Splines
" JEE

m One-dimensional smoothing splines (obtained via regularization)
can be extended to the multivariate setting as the solution to

mln Z:{yZ ()} + )\J(f)
,Q%L 4 R

m Recall roughness penalty in 1d

15) = [ f @iz

m The natural 2d extension to penalize rapld varlatloq in eujrer dim is

1 A f& J

J(f) = ”&z ﬂ b{—kﬁ t ( M) 2( am\ dxd,

m |s the penalty affected b tion or trapslation in R??
R
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Natural Thin Plate Splines

mm Z{yl xlt)_,}2 + AJ(f) - \)U\Aif\a .

L enetN
0= L[5 (322 (Y o
R? Oz? 0179 Ox2 i
= Solution: Unique minimizer is the naturalthinplate spline with

knots at the x;
m Proof: See Green and Silverman (1994) and Duchon (1977)

m Similar propertles‘and intuition as in 1d: lat°
ASA0, 45l axw(oukei an ,\erpo‘l
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Natural Thin Plate Splines

mm Z{yl 0}2 + AJ(f

n=/1. l( 57 > <6‘xlx2> (2 3f<f)>2] ey

m Solution: natural thin plate spline with knots at the x;
m For general A, solution|is a linear baS|s expansmn of the form
= B+ BTy + i b
with 57\
hi(@) = llz — ;1| o |z — ] W'“
(¢ foft

m Interpretation: We take an elastic flat plate that interpolates points
(x:,y;) and penalize its “bending energy”
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Natural Thin Plate Splines

m Coefficients are found via standard penalized

min(y - @T(y — X3 — Eb) +
o ¢
£ ]
Zb _Zba?z Zblmlg—o E-\')" \\\(L )
\ = ;
®i“?“e M

= Interpretation: We take an elastic flat plate that interpolates points
(x:,y;) and penalize its “bending energy”
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Complexity of Thin Plate

- iﬂdﬂﬁh
m Natural thin plate spllnes [irace knots at every location x;
i,

ﬁ OF kpoh
= Computational compIeX|ty scales as O@)
Can get away with fewer knots

If we use K knots, then camputational «
complexity reduces to
\)(Al/ N o

m Can choose some lattice of knots
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Thin Plate Regression Splines
(K el

m Thin plate regression splines truncate the “wiggly” bass@
(] Let@» ?DUT enjen Aicomp

diq matrix '(:Cl en\lq\ues (orderd\
m Grab out(iargestkegenvalues and elgenvector% )

Lok Kk Submq{‘nxo": D

Defi b - \5"‘ k co\umn$
m Define h = | of U,
= Minimize E\) (Uk k@) Bebic
XTUkb =0
\\9\
m Optimal approximation of thin plate splines using low rank basis

m Retain advantages of (i) no choice of knots, (ii) rotation invariance
m See ¥Vood (2006)\for more details
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Tensor Product Splines

" JEE
= Again, assume x in R? ( o\ I{ ()\7,2'\
m Instead of thin plate splines, consider modeling f(x) as follows

m Suppose for each dimension (;(\7,(7) /-\N\k,,k

we have a basis of functions b 5(;\-/‘( ’

A LI SRS b
P d
\r\7,\<(h\ TR L2

m Then the M; x M, dimensional
tensor product basis is

G hj (D o)

93 [RAIERTA

K’u\ 3 [ From Hastie, Tibshirani, Friedman book
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Tensor Product Splines
" JEE

m We use.this tensor product basis
@ hij(x1)hor(z2)
to model f(x) P v \
ok T3kl
Lz 2, i,\ ’
'a’/\ \('
m This formulation extends (in
theory) to any dimension d
= Note that as the dimension of

the basis grows exponentially
with the input dimension d

From Hastie, Tibshirani, Friedman t31ook
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Tensor Product Splines Example
" JEE

m Linear spline basis with L, truncated lines for x, and L, for x,
Ly, (w1 — &)+ ooy (@1 — &py )+
Lo, (12 — &o1) 4+ -+ (21 — &21, )+
m Then, the tensor product expansion is
fxr,a2) = @ e+ B 5(7,4' Yu\(z
L

(\»Z\b(‘ll ‘L\L ‘7

-

. iCL d 47 ‘”\HZC s 11\4

' lz
" r r rs; L \ £w)
QR EATTT R, fL by, * AN 2\

= Note: (L:aptures interaction terms between x, and x, 4,1
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Tensor Product Splines Example
" JEE

m For prostate cancer dataset, fits of log PSA as a function of log
cancer volume and log weight for various models

Linear fit Thin plate Tensor product
regression spline spline

ey
From Wakefield textbook * ? ”/V\l
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Generalized Additive Models
= JEE

m Both for computational reasons and added interpretability,
models that assume an additive structure are very popular

m Assuming a GLM framework: LM 9= A +f()(,)

9u(x)) = A 4 (,\4“_40\ () +y () -
m |s this model |dent|f|able?N La SWH " a J‘U X‘\
6 . “’\ 5\1\‘\%

'\"’ Compensale > ‘Q)(QC‘H

_ e
PR Cynskeqin %, &l w hmq’fc\\

m Can model @ sing any smoother N
(e Lgline ,kerne\ " REE change

(modvﬁ\ e
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GAM Example GLN: g(M:XTB
- A

m Consider using a penalized regression spline of order p; with L;
knots for each cov%rlate

@ ¥ 2 E{ Brons® * ZBJL(*» i——\ £504)

m Penalization is applled to the spline coeff|C|ents b,

ixz

-\
)
Comments:

m The GAM is very interpretable
fi(x) is not influenced by the other f,(x)
Can plot f; to straightforwardly see the relationship between x; and y

m Will see that this also leads to computational efficiencies

©Emily Fox 2014 15

Backfitting
" JEE

m To begin, assume a standard (non-GLM) regression setting

=0 €

= For convi:el:\eness gonts\l{dbei . Z(f ) . ZN ]C (\(HA
S

m Resultis an1 addltlve cubic spline model with knots at the
unique values of x;

For X full column rank can show that solution is unlg“e Otherwise, linear
part of f,(x;) is not uniquely determined

3 (3 (g(%cs\:"\

m Here, clearly & = \’1

m How do we think about fitting the other parameters??
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Backfitting
" SN

m Backfitting is an iterative fitting procedure

m Since f(x) is additive, if we condition on the fit of all other
components fi(x), j # i, then we know how to fit f;(x;)

m [terate the estimation procedure until convergence
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Backfitting Algorithm
" J
Algorithm 9.1 The Backfitting Algorithm for Additive Models.
1. Initialize: & = o 30 v, f; = 0,Vi, j.

2.Cycle: 5=1,2,....p,...,1,2,....p, ...,

fi = Sil{yi—a=> fulwa)} |,
k#j
fi « fi- % ,

7

fi(®ij).

M=

1

until the functions f]- change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book
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GAMSs and Logistic Regression
" JE

m A generalized additive logistic regression model has the form

m The functions f,, ..., f; can be estimated using a backfitting
algorithm, too
m First, recall IRLS algorithm for *parametric* logistic regression

2= XML Wy —p)

BV arg mﬁin(z —XB)TW(z - Xp)
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GAMs and Logistic Regression
" JE

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.

1. Compute starting values: & = log[y/(1 — §)], where § = ave(y;), the
sample proportion of ones, and set f; = 0 Vj.

2. Define i = a+3; fi(ziy) and p; = 1/[1 + exp(—;)].
Iterate:

(a) Construct the working target variable

(b) Construct weights w; = p;(1 — p;)
(c) Fit an additive model to the targets z; with weights w;, us-
ing a weighted backfitting algorithm. This gives new estimates
&, fj, Vi
3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

From Hastie, Tibshirani, Friedman book
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GAM Logistic Example
" S

m Example: predicting spam
m Data from UCI repository

m Response variable: email or spam

m 57 predictors:
48 quantitative — percentage of words in email that match a give word such

EET » o

as “business”, “address”, “internet’,...

6 quantitative — percentage of characters in the email that match a given
character (; ,[!$#)

The average length of uninterrupted capital letters: CAPAVE

The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT
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GAM Logistic Example
"

m Test set of 1536 emails
m Training set: n=3065

u
f(over)
f(remove)

f(internet)

nnnnn
our over  remove internet

m Use a GAM with a cubic
smoothing spline
Each with 4 dof ?

f(tree)
f(business)

F(vp)

f(np1)

nnnnnnn

o 2 4 6 10 o s
free business hp hpl

m Estimated functions
for significant predictors
Note large discontinuity

f(george)
s o
F(1999)
f(xe)
f(edu)

woos

george 1999 re edu

near 0 for many
m Test error of 6.6% 2 2 g g
From Hastie, Tibshirani, Friedman book " 5 .0 "o T e s b sme tomo o
ch! ch$ CAPMAX CAPTOT
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Other GAM formulations
~ S

m Semiparametric models:

g(p) =

m ANOVA decompositions:

fz) =

Choice of:
Maximum order of interaction
Which terms to include
What representation

m Tradeoff between full model and decomposed model
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Connection with Thin Plate Splines

m Recall formulation that lead to natural thin plate splines:

min Z{yi — f(z)}* + A (f)

= [ o () () o

m There exists a J(f) such that the solution has the form

m However, it is more natural to just assume this form and apply

d
T = I+ ot f) =3 / £ ()2t
j=1
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What you need to know
" JE

m Nothing is conceptually hard about multivariate x

m In practice, nonparametric methods struggle from curse of
dimensionality

m Options considered:
Thin plate splines
Tensor product splines
Generalized additive models
Combinations (to model some interaction terms)

Readings
" A
m Wakefield — 12.1-12.3
m Hastie, Tibshirani, Friedman — 5.7, 9.1
m Wasserman — 4.5, 5.12
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