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Nonparam. Multiple Regression

We now consider a d-dimensional covariate x;

In its most general form, the regression equation then takes the
form

In principle, all of the methods we have discussed so far carry
over to this case rather straightforwardly

Unfortunately, the risk of the nonparametric estimator increases
rapidly with covariate dimension d.
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Curse of Dimensionality
" J

m To maintain a fixed level of accuracy for a given nonparametric
estimator, the sample size must increase exponentially in d

m Set MSE =0

m Why? Using data in local nbhd
In high dim, few points in any nbhd

m Consider example with n uniformly
distributed points in [-1,1]d
d=1:
d=10

3 dimensions:
> 1000 positions!

Figure from Yoshua Bengio’s website
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Natural Thin Plate Splines
" J
m One-dimensional smoothing splines (obtained via regularization)
can be extended to the multivariate setting as the solution to

mmZ{yz (2:)}? + A (f)

m Recall roughness penalty in 1d

_ / ' (2)%da

m The natural 2d extension to penalize rapid variation in either dim is

J(f) =

m |s the penalty affected by rotation or translation in R2?
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Natural Thin Plate Splines
"
mln Z:{yZ ()} + AN (f)
C (@ (@)
-/l [( 5) v (5) ¢ (B e
m Solution: Unique minimizer is the natural thin plate spline with

knots at the x;
m Proof: See Green and Silverman (1994) and Duchon (1977)

m Similar properties and intuition as in 1d:
As A0,

AS A> o,

©Emily Fox 2014 5

Natural Thin Plate Splines
"
mlnz:{yZ ()} + AN (f)

2 2 2
0% f(x) 0*f(x)
n=11. K 0a3 ) i ( Ja 113 ) * ( 9a3 ) i
m Solution: natural thin plate spline with knots at the x;
m For general A, solution is a linear basis expansion of the form

f(z) =
with
hj(z) = |l — 2;]|* log ||z — ]

m Interpretation: We take an elastic flat plate that interpolates points
(x,,y;) and penalize its “bending energy”
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Natural Thin Plate Splines

f@)=Bo+ Bz + Y bihi(x)

=1

m Coefficients are found via standard penalized LS
min(y — X8 — Eb)' (y — XB — Eb) + \b" Eb

)

S.t. Z b; = Z bixi1 = Z birio =0

7

m Interpretation: We take an elastic flat plate that interpolates points
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(x,,y;) and penalize its “bending energy”

Complexity of Thin Plate

- sllges.
= Natural thin plate splines place knots at every location x;

Systolic Blood Pressure

m Computational complexity scales as O(n3)

Can get away with fewer knots
If we use K knots, then computational
complexity reduces to O(nK?2 + K3)

m Can choose some lattice of knots

Obesity
8

From
Hastie,
Tibshirani,

20 4

Friedman *
book 2 o M M
Age

©Emily Fox 2014




Thin Plate Regression Splines
" J
m Thin plate regression splines truncate the “wiggly” basis b;
s Let E=UDUT

m Grab out largest k eigenvalues and eigenvectors

m Define b = U.b;

= Minimize
gl%n(y — XB — UpDypbp)* (y — XB — UpDyby,) + Abf Dby,
YUk
XTUpbe =0

m Optimal approximation of thin plate splines using low rank basis
m Retain advantages of (i) no choice of knots, (ii) rotation invariance
m See Wood (2006) for more details
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Tensor Product Splines
" J
m Again, assume x in R?

m Instead of thin plate splines, consider modeling f(x) as follows

m Suppose for each dimension
we have a basis of functions

nooA A

m Then the M, x M, dimensional A,
tensor product basis is

b

From Hastie, Tibshirani, Friedman Qoook
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Tensor Product Splines
" J
m We use this tensor product basis
gik(x) = h1j(21)hok(22)

to model f(x)

m This formulation extends (in
theory) to any dimension d

m Note that as the dimension of

the basis grows exponentially
with the input dimension d

From Hastie, Tibshirani, Friedman 990k
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Tensor Product Splines Example
" J

m Linear spline basis with L, truncated lines for x, and L, for x,

Ly, (w1 — &)t (@1 — &1y )+
Lo, (22 — &§21) 4+ -y (@1 — &2L,)+
m Then, the tensor product expansion is
f(ajhl'?) -

m Number of parameters:

m Note: Captures interaction terms between x; and X,
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Tensor Product Splines Example
" J

m For prostate cancer dataset, fits of log PSA as a function of log
cancer volume and log weight for various models

Linear fit Thin plate Tensor product
regression spline spline
From Wakefield textbook
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Generalized Additive Models
" J
m Both for computational reasons and added interpretability,
models that assume an additive structure are very popular

m Assuming a GLM framework:
g(p(z)) =

m |s this model identifiable?

= Can model fi(x;) using any smoother
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GAM Example
"

m Consider using a penalized regression spline of order p; with L;
knots for each covariate x;

g(p) =

m Penalization is applied to the spline coefficients b;
L;
2
Aj Z b
=1

Comments:

m The GAM is very interpretable
fi(x) is not influenced by the other f(x)
Can plot f; to straightforwardly see the relationship between x; and y

m Wil see that this also leads to computational efficiencies
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Backfitting
"

m To begin, assume a standard (non-GLM) regression setting

m For concreteness, consider

m Result is an additive cubic spline model with knots at the
unique values of x;

For X full column rank, can show that solution is unique. Otherwise, linear
part of fi(x;) is not uniquely determined

m Here, clearly & =

m How do we think about fitting the other parameters??
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Backfitting
"

m Backfitting is an iterative fitting procedure

m Since f(x) is additive, if we condition on the fit of all other
components f(x), j # i, then we know how to fit f;(x;)

m [terate the estimation procedure until convergence
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Backfitting Algorithm
"

Algorithm 9.1 The Backfitting Algorithm for Additive Models.

1. Initialize: & = o Zf’ vi, f; = 0,Yi, 7.

2. Cycle: j=1,2,...,p,...,1,2,....p, ...,

fi « Si|lyi—a= fil@a)}|,
vy

. o1 M

fioe fi— ) filzy).

i=1

until the functions fj change less than a prespecified threshold.

From Hastie, Tibshirani, Friedman book
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GAMSs and Logistic Regression
" J

m A generalized additive logistic regression model has the form

m The functions f,, ..., f; can be estimated using a backfitting
algorithm, too

m First, recall IRLS algorithm for *parametric* logistic regression

2= XM+ Wy —p)

RV arg mﬁin(z — X)W (2 — Xp)
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GAMSs and Logistic Regression
" J

Algorithm 9.2 Local Scoring Algorithm for the Additive Logistic Regres-
sion Model.
1. Compute starting values: & = log[g/(1 — y)], where § = ave(y;), the
sample proportion of ones, and set f; =0 Vj.

2. Define i = a+3; fi(xi;) and p; = 1/[1 + exp(—;)].
Iterate:
(a) Construct the working target variable
zi =1 + Hyi 7191' .
pi(l = pi)
(b) Construct weights w; = p;(1 — p;)

(¢) Fit an additive model to the targets z; with weights w;, us-
ing a weighted backfitting algorithm. This gives new estimates
&, fj, Vi

3. Continue step 2. until the change in the functions falls below a pre-
specified threshold.

From Hastie, Tibshirani, Friedman book
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GAM Logistic Example
"

m Example: predicting spam
m Data from UCI repository

m Response variable: email or spam
m 57 predictors:

48 quantitative — percentage of words in email that match a give word such

” o« ANTH

as “business”, “address”, “internet’,...

6 quantitative — percentage of characters in the email that match a given

character (;,[!'$#)

The average length of uninterrupted capital letters: CAPAVE

The length of the longest uninterrupted sequence of capital letters: CAPMAX
The sum of the length of uninterrupted sequences of capital letters: CAPTOT
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GAM Logistic Example

" JEE
m Test set of 1536 emails
m Training set: n=3065

f(our)
f(over)

our over

f(remove)
s o s

remove

f(internet)

internet

m Use a GAM with a cubic
smoothing spline
Each with 4 dof

f(free)
f(business)

nnnnnnn

f (np)

o
hp

f(np1)

hpl

f(ze)

f(edu)

w0
edu

m Estimated functions B s
for significant predictors =" =
Note large discontinuity i e
near O for many sq— 27 109
m Test error of 6.6% 3 2
From Hastie, Tibshirani, Friedman book 75— ~UToiir

ch!
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Other GAM formulations
» S

m Semiparametric models:

Choice of:
Maximum order of interaction
Which terms to include
What representation

m Tradeoff between full model and decomposed model
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Connection with Thin Plate Splines
"

m Recall formulation that lead to natural thin plate splines:

mm Z{yz ()} + NI (f)

1 30

m There exists a J(f) such that the solution has the form

m However, it is more natural to just assume this form and apply

d
J(f)=J(fi+fat o+ fa) = Z/f;'(tj)%t
j=1
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What you need to know
" J

m Nothing is conceptually hard about multivariate x

m In practice, nonparametric methods struggle from curse of
dimensionality

m Options considered:
Thin plate splines
Tensor product splines
Generalized additive models
Combinations (to model some interaction terms)
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Readings
" JE
m Wakefield — 12.1-12.3
m Hastie, Tibshirani, Friedman — 5.7, 9.1
m Wasserman — 4.5, 5.12
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