
1 

Multidimensional Splines 

 

STAT/BIOSTAT 527, University of Washington 

Emily Fox 

May 6th, 2014 
©Emily Fox 2014 

Module 4: Coping with Multiple Predictors 

1 

Nonparam. Multiple Regression 

 We now consider a d-dimensional covariate xi 

 

 In its most general form, the regression equation then takes the 

form 

 

 

 

 

 In principle, all of the methods we have discussed so far carry 

over to this case rather straightforwardly 

 

 Unfortunately, the risk of the nonparametric estimator increases 

rapidly with covariate dimension d.   
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Curse of Dimensionality 

 To maintain a fixed level of accuracy for a given nonparametric 

estimator, the sample size must increase exponentially in d 

 Set MSE = δ 

 

 Why?  Using data in local nbhd 

 In high dim, few points in any nbhd 

 

 Consider example with n uniformly 

distributed points in [-1,1]d 

 d=1: 

 d=10 

 

 
Figure from Yoshua Bengio’s website 
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Natural Thin Plate Splines 

 One-dimensional smoothing splines (obtained via regularization) 

can be extended to the multivariate setting as the solution to 

 

 

 

 Recall roughness penalty in 1d 

 

 

 The natural 2d extension to penalize rapid variation in either dim is 

 

 

 Is the penalty affected by rotation or translation in      ?  
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Natural Thin Plate Splines 

 Solution: Unique minimizer is the natural thin plate spline with 

knots at the xij 

 Proof: See Green and Silverman (1994) and Duchon (1977) 

 

 Similar properties and intuition as in 1d: 

 As λ0,  

 

 As λ∞, 
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Natural Thin Plate Splines 

 Solution: natural thin plate spline with knots at the xij 

 For general λ, solution is a linear basis expansion of the form 

 

 

with 

 

 

 Interpretation: We take an elastic flat plate that interpolates points 

(xi,yi) and penalize its “bending energy” 
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Natural Thin Plate Splines 

 Coefficients are found via standard penalized LS 
 

 

 

 

s.t.  

 

 

 

 

 Interpretation: We take an elastic flat plate that interpolates points 

(xi,yi) and penalize its “bending energy” 
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Complexity of Thin Plate 

Splines 
 Natural thin plate splines place knots at every location xij 

 

 Computational complexity scales as O(n3) 

 Can get away with fewer knots 

 If we use K knots, then computational 

 complexity reduces to O(nK2 + K3)   

 

 Can choose some lattice of knots 

From 

Hastie, 

Tibshirani, 

Friedman 

book 
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Thin Plate Regression Splines 

 Thin plate regression splines truncate the “wiggly” basis bi 

 Let  

 

 Grab out largest k eigenvalues and eigenvectors 

 

 Define 

 Minimize 

 

 

 

 Optimal approximation of thin plate splines using low rank basis 

 Retain advantages of (i) no choice of knots, (ii) rotation invariance 

 See Wood (2006) for more details 
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Tensor Product Splines 

 Again, assume x in  

 Instead of thin plate splines, consider modeling f(x) as follows 

 Suppose for each dimension 

we have a basis of functions 

 

 

 

 Then the M1 x M2 dimensional 

tensor product basis is 

From Hastie, Tibshirani, Friedman book 
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Tensor Product Splines 

 We use this tensor product basis  

 

 

to model f(x) 

 

 

 This formulation extends (in  

theory) to any dimension d 

 Note that as the dimension of  

the basis grows exponentially  

with the input dimension d 

From Hastie, Tibshirani, Friedman book 
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Tensor Product Splines Example 

 Linear spline basis with L1 truncated lines for x1 and L2 for x2 

 

 

 Then, the tensor product expansion is 

 

 

 

 

 

 

 Number of parameters: 

 

 Note: Captures interaction terms between x1 and x2 
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Tensor Product Splines Example 

 For prostate cancer dataset, fits of log PSA as a function of log 

cancer volume and log weight for various models 

 

 

Linear fit Thin plate 

regression spline 

Tensor product 

spline 

From Wakefield textbook 
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Generalized Additive Models 

 Both for computational reasons and added interpretability, 

models that assume an additive structure are very popular 

 Assuming a GLM framework: 

 

 

 Is this model identifiable?   

 

 

 

 Can model fj(xj) using any smoother  
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GAM Example 

 Consider using a penalized regression spline of order pj with Lj 

knots for each covariate xj 

 

 

 Penalization is applied to the spline coefficients bj 

 

 

 

Comments: 

 The GAM is very interpretable 

 fi(xi) is not influenced by the other fj(xj) 

 Can plot fj to straightforwardly see the relationship between xi and y 

 Will see that this also leads to computational efficiencies 

©Emily Fox 2014 15 

Backfitting 

 To begin, assume a standard (non-GLM) regression setting 

 

 For concreteness, consider  

 

 

 Result is an additive cubic spline model with knots at the 

unique values of xij  

 For X full column rank, can show that solution is unique.  Otherwise, linear 

part of fj(xj) is not uniquely determined 

 

 Here, clearly 

 

 How do we think about fitting the other parameters?? 
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Backfitting 

 Backfitting is an iterative fitting procedure 

 

 Since f(x) is additive, if we condition on the fit of all other 

components fj(xj), j ≠ i, then we know how to fit fi(xi) 

 

 

 

 Iterate the estimation procedure until convergence 
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Backfitting Algorithm 

From Hastie, Tibshirani, Friedman book 
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GAMs and Logistic Regression 

 A generalized additive logistic regression model has the form 

 

 

 

 The functions f1,…, fd can be estimated using a backfitting 

algorithm, too 

 First, recall IRLS algorithm for *parametric* logistic regression 
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GAMs and Logistic Regression 

From Hastie, Tibshirani, Friedman book 
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GAM Logistic Example 

 Example: predicting spam 

 

 Data from UCI repository  

 

 Response variable: email  or  spam 

 57 predictors: 

 48 quantitative – percentage of words in email that match a give word such 

as “business”, “address”, “internet”,… 

 6 quantitative – percentage of characters in the email that match a given 

character ( ; , [ ! $ # ) 

 The average length of uninterrupted capital letters: CAPAVE 

 The length of the longest uninterrupted sequence of capital letters: CAPMAX 

 The sum of the length of uninterrupted sequences of capital letters: CAPTOT 

©Emily Fox 2014 21 

GAM Logistic Example 

 Test set of 1536 emails 

 Training set: n=3065 

 

 Use a GAM with a cubic 

smoothing spline  

 Each with 4 dof 

 

 Estimated functions 

for significant predictors 

 Note large discontinuity 

near 0 for many 

 

 Test error of 6.6% 

From Hastie, Tibshirani, Friedman book 
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Other GAM formulations 

 Semiparametric models: 

 

 

 

 ANOVA decompositions: 

 

 

 

Choice of: 

 Maximum order of interaction 

 Which terms to include 

 What representation 

 

 Tradeoff between full model and decomposed model 
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Connection with Thin Plate Splines 

 Recall formulation that lead to natural thin plate splines:  

 

 

 

 

 

 There exists a J(f) such that the solution has the form 

 

 

 However, it is more natural to just assume this form and apply 
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What you need to know 

 Nothing is conceptually hard about multivariate x 

 

 In practice, nonparametric methods struggle from curse of 

dimensionality 

 

 Options considered: 

 Thin plate splines 

 Tensor product splines 

 Generalized additive models 

 Combinations (to model some interaction terms) 
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Readings 

 Wakefield – 12.1-12.3 

 Hastie, Tibshirani, Friedman – 5.7, 9.1 

 Wasserman – 4.5, 5.12 
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