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The Optimal Prediction 

 Assume we know the data-generating mechanism 

 If our task is prediction, which summary of the 

distribution Y | x  should we report? 

 

 

 Taking a decision-theoretic framework, consider the 

expected loss 
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Continuous Responses 

 Expected loss 

 

 Example:  L2 

 

    Solution: 

 

 Example: L1 

 

    Solution: 

 

 More generally: Lp 
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 Expected loss 

 

 Response:  

 

 Same setup, but need new loss function 

 Can always represent loss function with K x K matrix 

 

 

 L is zeros on the diagonal and non-negative elsewhere 

 Typical loss function: 

 

Categorical Responses 
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 Expected loss 

 

 

 

 Again, can minimize pointwise 

 

 

 Example: K=2 

 

Optimal Prediction 

©Emily Fox 2014 5 

 With 0-1 loss, we straightforwardly get the Bayes classifier 

 

Optimal Prediction 
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 How to approximate the optimal prediction? 

 Don’t actually have 

 

 Nearest neighbor approach 

 Look at k-nearest neighbors with majority vote to estimate 

 

 

 

Optimal Prediction 
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 How to approximate the optimal prediction? 

 Don’t actually have 
 

 Model-based approach 

 Introduce indicators for each class: 

 Consider squared-error loss: 

 

 

 Bayes classifier is equivalent to standard regression and L2 loss, 

followed by classification to largest fitted value 

 

 

 Works in theory, but not in practice…Will look at many other 

approaches (e.g., logistic regression) 

 

 

 

Optimal Prediction 
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 For a given classifier, how do we assess how well it 

performs? 

 For 0-1 loss, the generalization error is 

 

 

with empirical estimate 

 

 

 Consider binary response and some useful summaries 

Measuring Accuracy of Classifier 
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 Sensitivity: 

 

 

 Specificity: 

 

 

 False positive rate: 

 

 

 True positive rate: 

 

 

 Connections: 

Measuring Accuracy of Classifier 
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 Resulting tree of size 17  

 

 Note that there are 13 distinct covariates 

split on by the tree 

 11 of these overlap with the 16 significant 

predictors from the additive model 

previously explored 

 

 Overall error rate (9.3%) is  

higher than for additive model 

From Hastie, 

Tibshirani, 

Friedman book 
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Classification Tree Spam Example 

 Think of spam and email as presence and absence of disease 

 

 Using equal losses 

 Sensitivity =  

 

 Specificity =  

 

 By varying L01 and L10, can increase/decrease sensitivity and 

decrease/increase specificity of rule 

 Which do we want here? 

 How? 

 

 Change in rule at leaf: 

From Hastie, Tibshirani, 

Friedman book 

©Emily Fox 2014 12 

Classification Tree Spam Example 
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 Receiver operating characteristic (ROC) curve summarizes 

tradeoff between sensitivity and specificity 

 Plot of sensitivity vs. specificity as a function of params of classification rule 

 

 Example: vary L01 in [0.1,10] 

 Want specificity near 100%, but in this  

case sensitivity drops to about 50% 

 

 Summary = area under the curve 

 Tree = 0.95 

 GAM = 0.98  

 

 Instead of Bayes rule at leaf, better  

to account for unequal losses in  

constructing tree 
From Hastie, Tibshirani, Friedman book 
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ROC Curves 

What you need to know 

 Again, goal framed as minimizing expected loss 

 

 Loss here is summarized by K x K matrix L 

 Common choice = 0-1 loss 

 

 Bayes classifier chooses most probable class 

 

 Measures of predictive performance: 

 Sensitivity, specificity, true positive rate, false positive rate 

 ROC curve and area under the curve 
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Readings 

 Wakefield – 10.3.2, 10.4.2, 12.8.4 

 Hastie, Tibshirani, Friedman – 9.2.3, 9.2.5, 2.4 
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Linear Methods: 
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Link Functions 

 Estimating p(Y|X): Why not use standard linear 

regression? 

 

 

 

 

 Combing regression and probability? 

 Need a mapping from real values to [0,1] 

 A link function! 
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Logistic Regression 
Logistic 

function 

(or Sigmoid): 

 Learn p(Y|X) directly 

 Assume a particular functional form for link 

function 

 Sigmoid applied to a linear function of the input 

features: 

Z 

Covariates can be discrete or continuous! 
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Understanding the Sigmoid 
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Logistic Regression –  

a Linear classifier 
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Very convenient! 

 

implies 
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implies 

linear 

classification 

rule! 

Examine ratio: 

Loss Function: Conditional Likelihood 

 Have a bunch of iid data of the form: 

 

 

 

 

 Discriminative (logistic regression) loss function: 

 Conditional Data Likelihood 
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Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 

problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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Optimizing Concave Function – 

Gradient Ascent  

 Conditional likelihood for logistic regression is concave  

 Find optimum with gradient ascent 

 

 

 

 

 

 

 

 

 Gradient ascent is simplest of optimization approaches 

 e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, >0 

Update rule: 
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Maximize Conditional Log Likelihood: 

Gradient ascent 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change <  

    

 

  

 For j=1,…,d,  

 

 

repeat    
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Regularization in Linear 

Regression 

 Overfitting usually leads to very large parameter choices, e.g.: 

 

 

 

 

 

 Regularized or penalized regression aims to impose a 

“complexity” penalty by penalizing large weights 

 “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large Parameters  Overfitting 

 If data is linearly separable, weights go to infinity 
 

 

 

 

 In general, leads to overfitting: 

 Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

 Add regularization penalty, e.g., L2: 

 

 

 

 

 Practical note about β0: 

 

 

 Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

 Maximum conditional likelihood estimate 

 

 

 

 

 

 Regularized maximum conditional likelihood estimate 
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Stopping Criterion 

 When do we stop doing gradient ascent?  

 

 

 Because l(w) is strongly concave: 

 i.e., because of some technical condition 

 

 

 

 

 Thus, stop when: 
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Digression:  

Logistic Regression for K > 2 

 Logistic regression in more general case (K 

classes), where Y in {1,…,K} 
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 Logistic regression in more general case, where  

Y in {1,…,K} 

 

 for k<K 

 

 
 

 for k=K (normalization, so no weights for this class) 

 

 
 

Estimation procedure is basically the same  

as what we derived! 
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Digression:  

Logistic Regression for K > 2 

The Cost, The Cost!!! Think about 

the cost… 

 What’s the cost of a gradient update step for LR??? 
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Gradient ascent in Terms of Expectations 

 “True” objective function: 

 

 

 Taking the gradient: 

 

 

 “True” gradient ascent rule: 

 

 

 How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

 “True” gradient: 

 

 Sample based approximation: 

 

 

 

 What if we estimate gradient with just one sample??? 

 Unbiased estimate of gradient 

 Very noisy! 

 Called stochastic gradient ascent (or descent) 

 Among many other names 

 VERY useful in practice!!! 
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Stochastic Gradient Ascent for 

Logistic Regression 

 Logistic loss as a stochastic function: 

 

 

 Batch gradient ascent updates: 

 

 
 

 Stochastic gradient ascent updates: 

 Online setting: 
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What you should know… 

 Classification: predict discrete classes rather than 
real values 

 Logistic regression model: Linear model 
 Logistic function maps real values to [0,1] 

 Optimize conditional likelihood 

 Gradient computation 

 Overfitting 

 Regularization 

 Regularized optimization 

 Cost of gradient step is high, use stochastic 
gradient descent 
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