

Continuous Responses

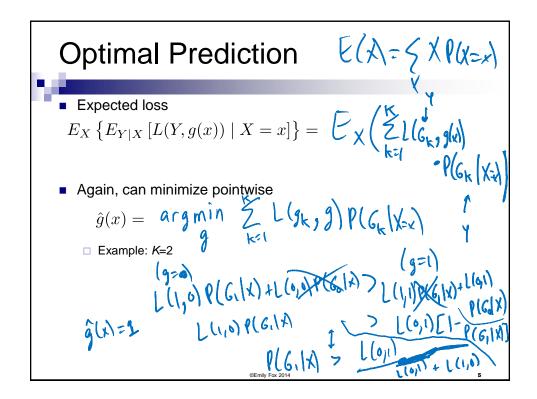
- Expected loss $E_X \left\{ E_{Y|X} \left[L(Y, f(x)) \mid X = x \right] \right\}$
- Example: L_2 $L(Y, f(x)) = (Y-f(x))^2$ Solution: $\hat{f}(x) = E[Y|X]$ $f_0 \in \mathcal{F}(x)$ Example: L_1 L(Y, f(x)) = |Y-f(x)| $f_0 \in \mathcal{F}(x)$
- - Solution: $\hat{f}(x) = \text{median } (Y|x)$
- More generally: $L_p = \{(Y, F(x)) = \{(Y F(x))^p \}^{1/p} \}$

Categorical Responses

- $\qquad \qquad \textbf{Expected loss} \quad E_X \left\{ E_{Y|X} \left[L(Y,g(x)) \mid X=x \right] \right\}$
- Same setup, but need new loss function
- Can always represent loss function with Kx K matrix

- L is zeros on the diagonal and non-negative elsewhere
- Typical loss function:

Lik=L(i)K = 6 , j=k unit cost For all post an istake



Optimal Prediction

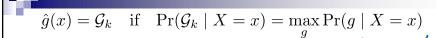
$$\hat{g}(x) = \arg\min_{g} \sum_{k=1}^{K} L(\mathcal{G}_k, g) \Pr(\mathcal{G}_k \mid X = x)$$

■ With 0-1 loss, we straightforwardly get the *Bayes classifier*

$$\hat{g}(x) = \arg\min \left[\left[- P(g \mid X=x) \right] \right]$$
 (general)
$$g(x) = G_{k} \quad \text{if} \quad P(G_{k} \mid X=x) = \max P(g \mid X=x)$$

$$\left(C \mid q \leq i \text{f} \quad \text{for most probable chass} \right)$$

Optimal Prediction



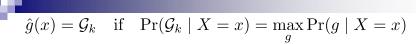
How to approximate the optimal prediction?

 $\hfill\Box$ Don't actually have $\,p(Y\mid X=x)\,$

Nearest neighbor approach

□ Look at k-nearest neighbors with majority vote to estimate

Optimal Prediction



- How to approximate the optimal prediction?
 - $\ \square$ Don't actually have $p(Y \mid X = x)$

Model-based approach ☐ Introduce indicators for each class: Y=[00|00 → 0]

 \square Bayes classifier is equivalent to standard regression and L_2 loss.

followed by classification to largest fitted value

□ Works in theory, but not in practice...Will look at many other approaches (e.g., logistic regression)

Measuring Accuracy of Classifier

For a given classifier, how do we assess how well it performs?

For 0-1 loss, the generalization error is $\begin{bmatrix}
x & y \\
y & x
\end{bmatrix} = \begin{cases}
y & y \\
y & x
\end{cases}$ with empirical estimate $\begin{bmatrix}
x & y \\
y & x
\end{bmatrix} = \begin{cases}
y & y \\
y & x
\end{cases}$ where classifier

Consider binary response and some useful summaries

Measuring Accuracy of Classifier

prob. of pred. disease for a diseased individual p(G(x)=1 (Y=1)

no disease given individual's p(G(x)=0 Y=0 not diseased rate:

Specificity:

False positive rate:

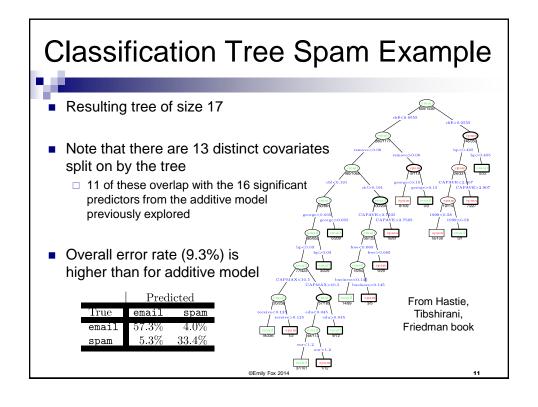
P(g(x)=1 | 4=0)

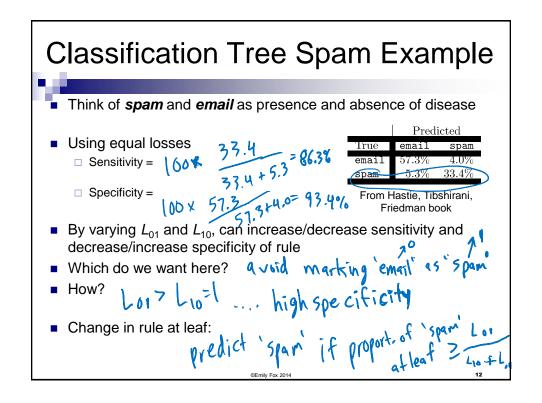
True positive rate:

P(g(x)=1 (4=1)

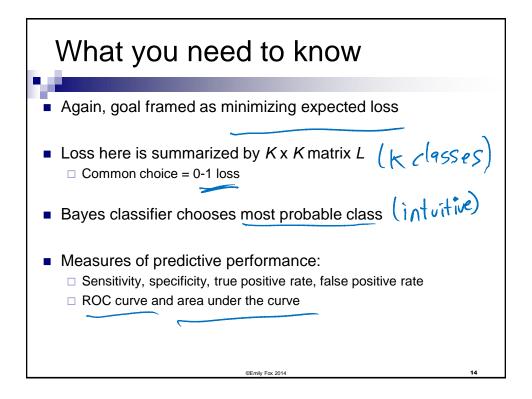
Connections:

SCNSÍTIVITY = TPR , Specificity=1-FPR

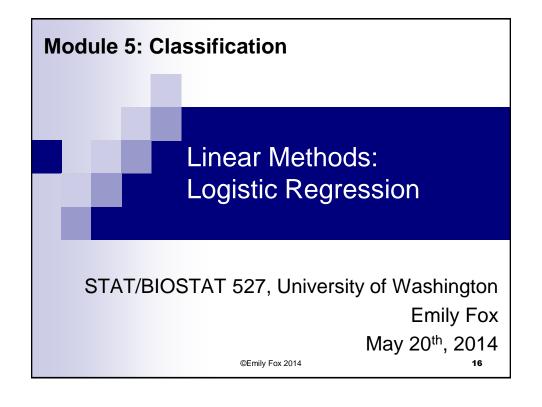


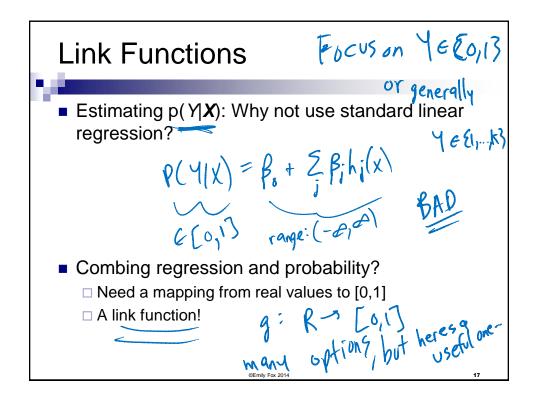


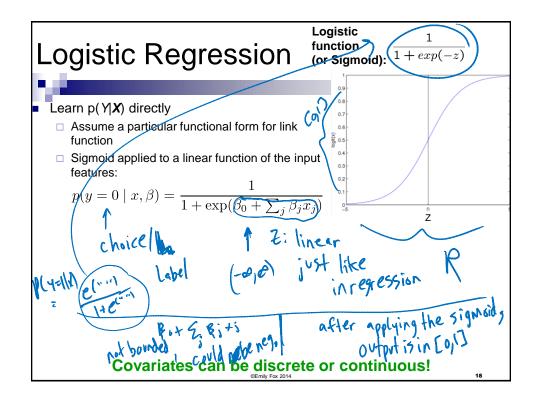
Receiver operating characteristic (ROC) curve summarizes tradeoff between sensitivity and specificity Plot of sensitivity vs. specificity as a function of params of classification rule Example: vary on in [0.1,10] Want specificity near 100%, but in this case sensitivity drops to about 50% Summary = area under the curve Tree = 0.95 GAM = 0.98 Instead of Bayes rule at leaf, better to account for unequal losses in constructing tree From Hastie, Tibshirani, Friedman book



Readings Wakefield – 10.3.2, 10.4.2, 12.8.4 Hastie, Tibshirani, Friedman – 9.2.3 9.2.5, 2.4





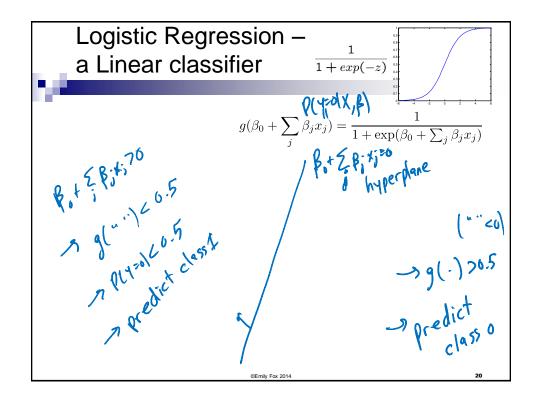


Understanding the Sigmoid
$$g(\beta_0 + \sum_j \beta_j x_j) = \frac{1}{1 + \exp(\beta_0 + \sum_j \beta_j x_j)}$$

$$\int dz$$

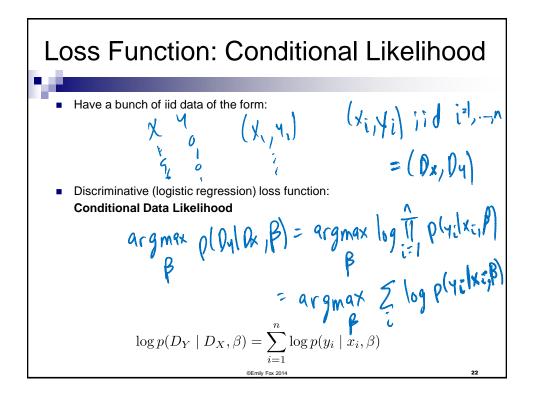
$$\beta_0 = -2, \beta_1 = -1$$

$$\beta_0 = 0, \beta_1 = -0.5$$



Very convenient!

$$p(y = 0 \mid x, \beta) = \frac{1}{1 + \exp(\beta_0 + \sum_j \beta_j x_j)}$$
implies
$$p(y = 1 \mid x, \beta) = \frac{\exp(\beta_0 + \sum_j \beta_j x_j)}{1 + \exp(\beta_0 + \sum_j \beta_j x_j)}$$
Examine ratio:
$$\frac{p(y = 1 \mid x, \beta)}{p(y = 0 \mid x, \beta)} = \exp(\beta_0 + \sum_j \beta_j x_j)$$
implies
$$\frac{p(y = 1 \mid x, \beta)}{p(y = 0 \mid x, \beta)} = \exp(\beta_0 + \sum_j \beta_j x_j)$$
inear classification rule!



$$l(\beta) = \sum_{i} \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} = 0 \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} = 1 \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} = 0 \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} = 0 \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

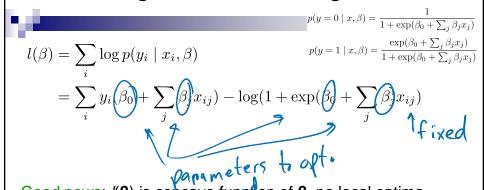
$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta) + (1 - y_{i}) \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{i} y_{i} \log p(y_{i} \mid x_{i}, \beta)$$

$$= \sum_{$$

Maximizing Conditional Log Likelihood

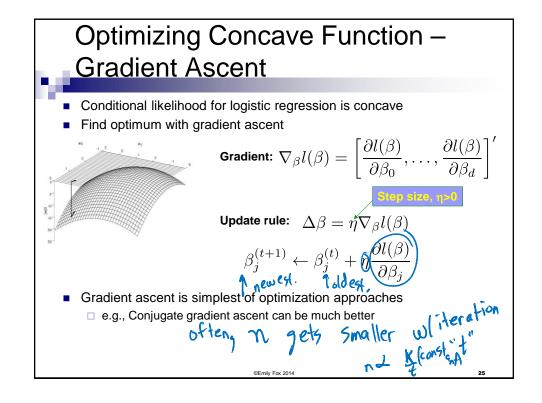


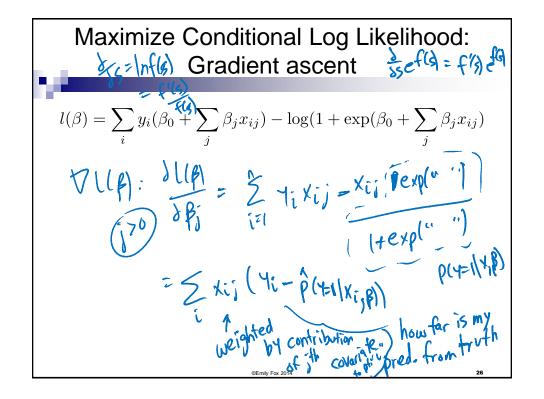
Good news: $I(\beta)$ is concave function of β , no local optima problems

Bad news: no closed-form solution to maximize $I(\beta)$

Good news: concave functions easy to optimize

©Emily Fox 2014





Gradient Ascent for LR

Gradient ascent algorithm: iterate until change < ε

$$\beta_0^{(t+1)} \leftarrow \beta_0^{(t)} + \eta \sum_i \left(y_i - \hat{p}(y = 1 \mid x_i, \beta^{(t)}) \right)$$

For $j=1,\ldots,d$,

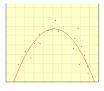
$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \sum_i x_{ij} \left(y_i - \hat{p}(y = 1 \mid x_i, \beta^{(t)}) \right)$$

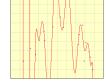
repeat

Regularization in Linear

- Regression
- Overfitting usually leads to very large parameter choices, e.g.:

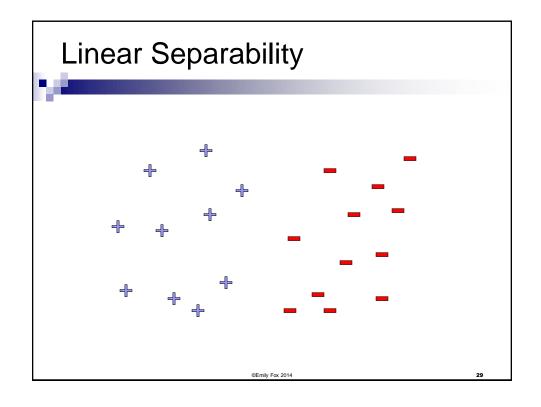
-1.1 + 4,700,910.7 X
$$-$$
 8,585,638.4 X^2 + ...

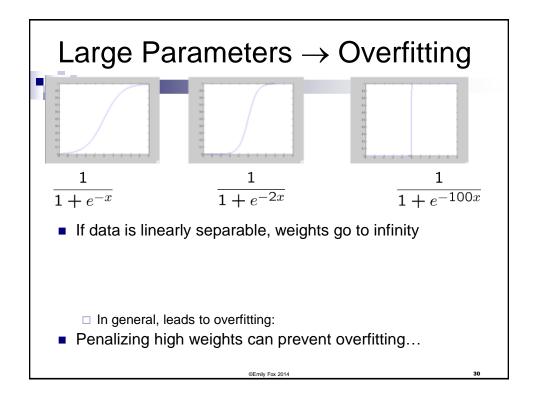




- Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights
 - □ "Shrinkage" method

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda ||\beta||$$





Regularized Conditional Log Likelihood

■ Add regularization penalty, e.g., L₂:

$$l(\beta) = \log \prod_{i=1}^{n} p(y_i \mid x_i, \beta) - \frac{\lambda}{2} ||\beta||_2^2$$

- Practical note about β₀:
- Gradient of regularized likelihood:

©Emily Fox 2014

31

Standard v. Regularized Updates

Maximum conditional likelihood estimate

$$\hat{\beta} = \arg\max_{\beta} \log \prod_{i=1} p(y_i \mid x_i, \beta)$$

$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \sum_i x_{ij} \left(y_i - \hat{p}(y = 1 \mid x_i, \beta^{(t)}) \right)$$

Regularized maximum conditional likelihood estimate

$$\hat{\beta} = \arg\max_{\beta} \log \prod_{i=1}^{n} p(y_i \mid x_i, \beta) - \frac{\lambda}{2} \sum_{j=1}^{d} \beta_j^2$$

$$\beta_{j}^{(t+1)} \leftarrow \beta_{j}^{(t)} + \eta \left\{ -\lambda \beta_{j}^{(t)} + \sum_{i} x_{ij} \left(y_{i} - \hat{p}(y = 1 \mid x_{i}, \beta^{(t)}) \right) \right\}$$

©Emily Fox 2014

Stopping Criterion

$$l(\beta) = \log \prod_{i=1}^{n} p(y_i \mid x_i, \beta) - \frac{\lambda}{2} ||\beta||_2^2$$

- When do we stop doing gradient ascent?
- Because *l*(**w**) is strongly concave:
 - □ i.e., because of some technical condition

$$l(\beta^*) - l(\beta) \le \frac{1}{2\lambda} ||\nabla l(\beta)||_2^2$$

■ Thus, stop when:

©Emily Fox 2014

33

Digression:

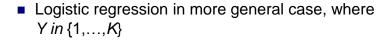
Logistic Regression for K > 2

Logistic regression in more general case (K classes), where Y in {1,...,K}

©Emily Fox 2014

Digression:

Logistic Regression for K > 2



for k < K $p(y = k | \mathbf{x}, \beta) = \frac{\exp(\beta_{k0} + \sum_{j=1}^{d} \beta_{kj} x_j)}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k'0} + \sum_{j=1}^{d} \beta_{k'j} x_j)}$

for *k*=*K* (normalization, so no weights for this class)

$$p(y = K | \mathbf{x}, \beta) = \frac{1}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k'0} + \sum_{j=1}^{d} \beta_{k'j} x_j)}$$

Estimation procedure is basically the same as what we derived!

©Emily Fox 2014

35

The Cost, The Cost!!! Think about the cost...

١

What's the cost of a gradient update step for LR???

$$\beta_{j}^{(t+1)} \leftarrow \beta_{j}^{(t)} + \eta \left\{ -\lambda \beta_{j}^{(t)} + \sum_{i} x_{ij} \left(y_{i} - \hat{p}(y = 1 \mid x_{i}, \beta^{(t)}) \right) \right\}$$

©Emily Fox 2014

Gradient ascent in Terms of Expectations

■ "True" objective function:

$$l(\beta) = E_x[l(\beta, x)] = \int p(x)l(\beta, x)dx$$

- Taking the gradient:
- "True" gradient ascent rule:
- How do we estimate expected gradient?

©Emily Fox 2014

37

SGD: Stochastic Gradient Ascent (or Descent)

"True" gradient:

$$\nabla l(\beta) = E_x[\nabla l(\beta, x)]$$

- Sample based approximation:
- What if we estimate gradient with just one sample???
 - $\hfill \square$ Unbiased estimate of gradient
 - □ Very noisy!
 - □ Called stochastic gradient ascent (or descent)
 - Among many other names
 - □ VERY useful in practice!!!

©Emily Fox 2014

Stochastic Gradient Ascent for Logistic Regression

Logistic loss as a stochastic function:

$$E_x[l(\beta, x)] = E_x \left[\log p(y \mid x, \beta) - \frac{\lambda}{2} ||\beta||_2^2 \right]$$

Batch gradient ascent updates:

$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \left\{ -\lambda \beta_j^{(t)} + \frac{1}{n} \sum_{i=1}^n x_{ij} \left(y_i - \hat{p}(y = 1 \mid x_i, \beta^{(t)}) \right) \right\}$$

- Stochastic gradient ascent updates:
 - □ Online setting:

$$\beta_j^{(t+1)} \leftarrow \beta_j^{(t)} + \eta \left\{ -\lambda \beta_j^{(t)} + x_{i(t),j} \left(y_{i(t)} - \hat{p}(y = 1 \mid x_{i(t)}, \beta^{(t)}) \right) \right\}$$

©Emily Fox 2014

39

What you should know...

- Classification: predict discrete classes rather than real values
- Logistic regression model: Linear model
 Logistic function maps real values to [0,1]
- Optimize conditional likelihood
- Gradient computation
- Overfitting
- Regularization
- Regularized optimization
- Cost of gradient step is high, use stochastic gradient descent

©Emily Fox 2014