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The Optimal Prediction
" JEE
m Assume we know the data-generating mechanism“ﬂx

m If our task is prediction, which summary of the
distribution Y | x should we report’>
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m Taking a decision-theoretic framework, consider the
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Continuous Responses
" JEE
m Expected loss Ex {Eyx [L(Y, f(z)) | X = z|}

m Example: L ({f(x)) = (Y'F(“\)z o’C”\’”

m Example: L, LY, (%) )= lY-—H")]

Solution: ?(X) - medion (Y1x)
= More generally: L, ‘(?(X\) %f”' )| )7

Categorical Responses | (k)
" JEE
m Expected loss Ex {EY|X [L(Y,g(z)) | X = 37]}
Ex {Bvix [L0Y.ga) | X =<

= Response: 4é {G\ G\d e %o £ \%6%

m Same setup, but need new loss function

m Can always r B\resent loss f&nctlon with K X K matrlx
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Optimal Prediction E(Ar§ X00=)

m Expected loss K \(
Ex {Byx [L(Y,g(2)) | X = z]} = L <§l(€i,j{i\\
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Optimal Prediction
"
K
g(x) = arg mginZL(gk,g)Pr(Qk | X =)
k=1

m With 0-1 loss, we straightforwardly get the Bayes classifier
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Optimal Prediction

" J
g(x) =G, if Pr(Gy| X =2)= maXPr(g | X =)

m How to approximate the optimal prediction? ‘)C’(WC (LA
Don't actually have p(Y | X = z)
7513

m Nearest neighbor approach :AVJ(\K{%
Look at k-nearest neighbors with majority vote to estimate t
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Optimal Prediction

g(x) =Gr if Pr(Gy| X =2) =maxPr(g | X =x)
9

m How to approximate the optimal prediction?
Don't actually have p(Y | X = z)

N W€ -G

m Model-based approach
Introduce indicators for each class u\ Co 6 | 00.. 0(3
Consider squared-error loss: f X)=E[Y | X]

A8MLY /9 = 6 W

Bayes classifier is equivalent to standard regression and L Ioss
followed by classification to largest fitted value

F = (o gk =

Works in theory, but not in practice...Will Iook at many other
approaches (e.g., logistic regression)
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Measuring Accuracy of Classifier
" JE

m For a given classifier, how do we assess how well it
performs?

= For 0-1 loss, the gElefa"ZaEO”jao;j‘l (7()(\ f‘f)

with empirical estlmate ﬂ/ « ch\%f\ classifier

m Consider blnary responsé and some useful summaries
N discase
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Measuring Accuracy of Classifier

" J QSC&
= Sensitivity: V(Ob, O(: we(). d{%q;e’ -G( II\AM&UQ\
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False positive rate:
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Specificity: “w [

True positive rate:




Classification Tree Spam Example
" JE

m Resulting tree of size 17

m Note that there are 13 distinct covariates
split on by the tree

11 of these overlap with the 16 significant "
predictors from the additive model ﬁ
previously explored

m Overall error rate (9.3%) is
higher than for additive model

Predicted

From Hastie,
Tibshirani,
Friedman book
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Classification Tree Spam Example
" JEE

m Think of spam and email as presence and absence of disease

Predicted

m Using equal losses

Sensitivity = \60* w/}: 963%
u ¥ 6
- 0 rom Rastie, liosnirani,
\()D ¥ 57 1 47&’"\’0 ‘131‘[ (o Friedman book
m By varying Ly, and L, caﬁ increase/decrease sensitivity and \
decreasel/increase specificity of rule o

v v ’
= Which do we want here? & vid, w\qr\{\,\, ‘emal\ 45 7 pam

" how? Lor? L\o.’\ \V\'\‘)MSQQC,’\QIC’\H
m Change in rule at leaf: ‘ }( . v Py og \
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ROC Curves
= JEE

m Receiver operating characteristic (ROC) curve summarizes
tradeoff between sensitivity and specificity
Plot of sensitivity vs. specificity as a function of params of classification rule

m Example: vary@in [0.1,10]
Want specificity near 100%, but in this
case sensitivity drops to about 50%

08
N

06
I

Tree (0.95)
GAM (0.98)

Sensitivity

m Summary = area under the curve O
Tree = 0.95
GAM = 0.98

0.4

0.2

m Instead of Bayes rule at leaf, better % o2 o+ o5 os 1o

to account for unequal Iosseii)n o g ) _
. From Hastie, Tib 1, Friedman book
constructing tree ., . ‘;eC o>
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What you need to know
" JEE

m Again, goal framed as minimizing expected loss

m Loss here is summarized by K x K matrix L ( k ((qsg’eg)

Common choice = 0-1 loss
—

m Bayes classifier chooses most probable class (i n'l vit 'VC)

m Measures of predictive performance:
Sensitivity, specificity, true positive rate, false positive rate
ROC curve and area under the curve

f/
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Readings
"
m Wakefield — 10.3.2, 10.4.2, 12.8.4 _
m Hastie, Tibshirani, Friedman — 2.4
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Link Functions Bocys an \\6@113

" JEE oY 7¢,\erq“
m Estimating p(Y|X): Why not use standard Ilnear
regression? ™~ 9 e, K

RN 7 B+ Z Bkt :
o j‘cf/ "

m Combing regression and probability?
Need a mapping from real values to [0,1]

A link function! % @ l;() \/B 4\0“(

EE— & v,\(\m\‘] \,)UJV

Logistic

~ -
: 1+ exp(—2)

k\,w Arg oV RERTN A
Covariates 8a e discrete or continuous!
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Understanding the Sigmoid
" JE

1
9(Bo +;m> L+ exp(Bo + 2, Bray)

a

Bo=-2, B;=-1 Bo=0, B=-1 Bo,=0, B;=-0.5

Logistic Regression— -
a Linear classifier T+emp(—2)
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Very convenient!
" S

P =0le0) = 1+ exp(fo + >, B;)
|m|c()I|es1 ) = B0+ Bre) l |- QU’O)
p(y = 1+ exp(Bo + >_; Bjw;) ’ s
Examine ratio: y \065\ e
—1|x "
% = exp(Bo + ) Bj2;)7 1/ (v nder 0" %\
| ! linear
classification
implies p(y =1]a,8) _ S
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Loss Function: Conditional Likelihood

= Have a bunch of iid data of the form: ( ”(’ -
')L \,1 (Y\/‘h) fi'\h\ d U
ﬁi Io1 ’( = (o)(/ 0"1\

= Discriminative (logistic regression) loss function:
Conditional Data Likelihood

Acgmst QWW\O“ ’@\ > Rrgmax ME 9(1;\Kuﬂ

P .
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logp(Dy | Dx, ) = Zlogpy | zi, )
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Expressing Conditional Log Likelihood
" A

«iz \H*I:F

(\14 L) iE e
=> v 1ogp y = Y | fcz,ﬁ) (L ~yi)logp(y =0 | zi, f)
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Maximizing Conditional Log Likelihood

1

" JEE =010 = o+ 5, Bre)
_ _exp(Bo + 3, Bij)
_Zlogp Yi |x17 (y_l‘xﬁ)_lJreXpﬁUnLZjﬁjzj)

= Zyz.~l— ZO\mw/logH— exp( @ z_‘@xz’j‘ eﬁ(
fix

o ‘W\,,JcerS

Good news: I(B) is co cave fu aon of B no local optima
problems

Bad news: no closed-form solutlon to maximize I(B)

Good news: concave functions easy to optimize
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Optimizing Concave Function —
Gradient Ascent
S

m Conditional likelihood for logistic regression is concave
m Find optimum with gradient ascent
/
ol(p) ol )]

Gradient: Vl(3) = l 25 " o8

Posocieno

Update rule: A3 = 1V l(3
ﬂ(t—i-l) B(t) l(ﬁﬁ)
1\ w0t blae* J

m Gradient ascent is simplest of optimization approaches
e.g., Conjugate gradient ascent can be much better ( )‘e( \r\ h

0"*"\) M 76’6 smaller W )c
,L !{co"" }

MaX|m|ze Conditional Log Likelihood:

. ﬁ \nS(g\ Gradient ascent  5c(8: £ &

Zyz 50

_ Bywiz) = log(1 + exp(By + > Biwi)
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Gradient Ascent for LR <
- Stact W/Ed:?f

Gradient ascent algorithm: iterate until change < ¢

ét—l—l) (t) 4 772 ( ply=1] xz,ﬂ(t)))

For j=1,...,d,
B = B Yy (v - ply =11 20, 89))

repeat

Regularization in Linear

_ Regression

m Overfitting usually leads to very large parameter choices, e.g.:
-2.2+3.1X-0.30 X2 -1.1 +4,700,910.7 X — 8,585,638.4 X2 + ...

m Regularized or penalized regression aims to impose a
“‘complexity” penalty by penalizing large weights
“Shrinkage” method

= arg mlnz — (Bo+ 8" 2:))* + A8
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Linear Separability
" JE

IﬁJ}I ||
Ik -
Iﬁ]}l ||
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Large Parameters — Overfitting
[ ] | .

1 1 1

14e= 14 6—23: 14 8—100:;:

m [f data is linearly separable, weights go to infinity

In general, leads to overfitting:
m Penalizing high weights can prevent overfitting...
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Regularized Conditional Log Likelihood
" JEE

= Add regularlzatlon penalty, e. g L,:

= long i | x5, 8) — —||5||2

=1
m Practical note about 3,:

m Gradient of regularized likelihood:

Standard v. Reqgularized Updates
" A
m Maximum conditional Iikelihood estimate
6 - argmaX IOng Yi | $zvﬁ)

=1

D 8 403wy (v — iy = 1| a0, 89)

m Regularized maximum conditional |Ike|lh00d estlmate

B = arg max 1ong vi | 23, 8) — 262

Bj(.tﬂ) — ﬁ;t) + 17 {—)\ﬁ]@ +) @y (yz —ply=1]| l‘i,ﬁ(t)))}
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Stopping Criterion
" JE
n )\ 5
1(8) =log [ [ p(wi | . 8) — 511113

i=1
m When do we stop doing gradient ascent?

m Because I(w) is strongly concave:
i.e., because of some technical condition

* 1 2
1)~ 1(8) < 5 IVIB)IE

m Thus, stop when:

Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case (K
classes), where Y in {1,...,K}
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Digression:

_ Logistic Regression forK > 2

m Logistic regression in more general case, where

Yin{1,..., K}
for k<K ) N
ply = k|x, B) = exp(Bro + Zj:1 Brj ;)

- K—1 d
L+ > =1 exp(Bro + X251 Brryaj)
for k=K (normalization, so no weights for this class)

1
p(y = K|X7 6) = —
L+ Yo yexp(Bro + X0 Buj))

Estimation procedure is basically the same
as what we derived!

The Cost, The Cost!!! Think about

the cost...
" JEE
m What's the cost of a gradient update step for LR??7?

BT e B 1 {—A@@ > i (v = bly =11 20, 81)) }
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Gradient ascent in Terms of Expectations
" JEE
m “True” objective function:

1(3) = Eull8.2) = [ p(o)(6,2)de
m Taking the gradient:

m “True” gradient ascent rule:

m How do we estimate expected gradient?

37

SGD: Stochastic Gradient Ascent (or Descent)
" JEE
m “True” gradient: Vl(ﬁ) = F, [Vl(/87gj)]

m Sample based approximation:

m What if we estimate gradient with just one sample???
Unbiased estimate of gradient
Very noisy!
Called stochastic gradient ascent (or descent)
= Among many other names
VERY useful in practice!!!
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Stochastic Gradient Ascent for

_ Logistic Reﬁression

m Logistic loss as a stochastic function:
A
BL{15.) = E. [logaty | 2.6) - 31814

m Batch gradient ascent updates:

1< .
B i 1 {—)\BJ@ + = T <y¢ —ply=1] «fiaﬁ(t))) }
1=1

m Stochastic gradient ascent updates:
Online setting:

B g 1 {—Aﬁj(-t) + Tig),5 (Z/z'(t) —ply=1] xi(t)’ﬁ(t))>

What you should know...
" JE
m Classification: predict discrete classes rather than

real values

m Logistic regression model: Linear model
Logistic function maps real values to [0,1]

m Optimize conditional likelihood
m Gradient computation

m Overfitting

m Regularization

m Regularized optimization

m Cost of gradient step is high, use stochastic
gradient descent
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