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The Optimal Prediction 

 Assume we know the data-generating mechanism 

 If our task is prediction, which summary of the 

distribution Y | x  should we report? 

 

 

 Taking a decision-theoretic framework, consider the 

expected loss 
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Continuous Responses 

 Expected loss 

 

 Example:  L2 

 

    Solution: 

 

 Example: L1 

 

    Solution: 

 

 More generally: Lp 
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 Expected loss 

 

 Response:  

 

 Same setup, but need new loss function 

 Can always represent loss function with K x K matrix 

 

 

 L is zeros on the diagonal and non-negative elsewhere 

 Typical loss function: 

 

Categorical Responses 
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 Expected loss 

 

 

 

 Again, can minimize pointwise 

 

 

 Example: K=2 

 

Optimal Prediction 
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 With 0-1 loss, we straightforwardly get the Bayes classifier 

 

Optimal Prediction 
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 How to approximate the optimal prediction? 

 Don’t actually have 

 

 Nearest neighbor approach 

 Look at k-nearest neighbors with majority vote to estimate 

 

 

 

Optimal Prediction 
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 How to approximate the optimal prediction? 

 Don’t actually have 
 

 Model-based approach 

 Introduce indicators for each class: 

 Consider squared-error loss: 

 

 

 Bayes classifier is equivalent to standard regression and L2 loss, 

followed by classification to largest fitted value 

 

 

 Works in theory, but not in practice…Will look at many other 

approaches (e.g., logistic regression) 

 

 

 

Optimal Prediction 

©Emily Fox 2014 8 



5 

 For a given classifier, how do we assess how well it 

performs? 

 For 0-1 loss, the generalization error is 

 

 

with empirical estimate 

 

 

 Consider binary response and some useful summaries 

Measuring Accuracy of Classifier 
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 Sensitivity: 

 

 

 Specificity: 

 

 

 False positive rate: 

 

 

 True positive rate: 

 

 

 Connections: 

Measuring Accuracy of Classifier 
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 Resulting tree of size 17  

 

 Note that there are 13 distinct covariates 

split on by the tree 

 11 of these overlap with the 16 significant 

predictors from the additive model 

previously explored 

 

 Overall error rate (9.3%) is  

higher than for additive model 

From Hastie, 

Tibshirani, 

Friedman book 
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Classification Tree Spam Example 

 Think of spam and email as presence and absence of disease 

 

 Using equal losses 

 Sensitivity =  

 

 Specificity =  

 

 By varying L01 and L10, can increase/decrease sensitivity and 

decrease/increase specificity of rule 

 Which do we want here? 

 How? 

 

 Change in rule at leaf: 

From Hastie, Tibshirani, 

Friedman book 
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Classification Tree Spam Example 
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 Receiver operating characteristic (ROC) curve summarizes 

tradeoff between sensitivity and specificity 

 Plot of sensitivity vs. specificity as a function of params of classification rule 

 

 Example: vary L01 in [0.1,10] 

 Want specificity near 100%, but in this  

case sensitivity drops to about 50% 

 

 Summary = area under the curve 

 Tree = 0.95 

 GAM = 0.98  

 

 Instead of Bayes rule at leaf, better  

to account for unequal losses in  

constructing tree 
From Hastie, Tibshirani, Friedman book 
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ROC Curves 

What you need to know 

 Again, goal framed as minimizing expected loss 

 

 Loss here is summarized by K x K matrix L 

 Common choice = 0-1 loss 

 

 Bayes classifier chooses most probable class 

 

 Measures of predictive performance: 

 Sensitivity, specificity, true positive rate, false positive rate 

 ROC curve and area under the curve 
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Readings 

 Wakefield – 10.3.2, 10.4.2, 12.8.4 

 Hastie, Tibshirani, Friedman – 9.2.3, 9.2.5, 2.4 
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Linear Methods: 

Logistic Regression 
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Link Functions 

 Estimating p(Y|X): Why not use standard linear 

regression? 

 

 

 

 

 Combing regression and probability? 

 Need a mapping from real values to [0,1] 

 A link function! 
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Logistic Regression 
Logistic 

function 

(or Sigmoid): 

 Learn p(Y|X) directly 

 Assume a particular functional form for link 

function 

 Sigmoid applied to a linear function of the input 

features: 

Z 

Covariates can be discrete or continuous! 
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Understanding the Sigmoid 
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Logistic Regression –  

a Linear classifier 
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Very convenient! 

 

implies 
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implies 

linear 

classification 

rule! 

Examine ratio: 

Loss Function: Conditional Likelihood 

 Have a bunch of iid data of the form: 

 

 

 

 

 Discriminative (logistic regression) loss function: 

 Conditional Data Likelihood 
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Expressing Conditional Log Likelihood 
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Maximizing Conditional Log Likelihood 

Good news: l(β) is concave function of β, no local optima 

problems 

Bad news: no closed-form solution to maximize l(β) 

Good news: concave functions easy to optimize 
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Optimizing Concave Function – 

Gradient Ascent  

 Conditional likelihood for logistic regression is concave  

 Find optimum with gradient ascent 

 

 

 

 

 

 

 

 

 Gradient ascent is simplest of optimization approaches 

 e.g., Conjugate gradient ascent can be much better 

Gradient: 

Step size, >0 

Update rule: 
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Maximize Conditional Log Likelihood: 

Gradient ascent 
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Gradient Ascent for LR 

Gradient ascent algorithm: iterate until change <  

    

 

  

 For j=1,…,d,  

 

 

repeat    
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Regularization in Linear 

Regression 

 Overfitting usually leads to very large parameter choices, e.g.: 

 

 

 

 

 

 Regularized or penalized regression aims to impose a 

“complexity” penalty by penalizing large weights 

 “Shrinkage” method 

-2.2 + 3.1 X – 0.30 X2 -1.1 + 4,700,910.7 X – 8,585,638.4 X2 + … 
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Linear Separability 
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Large Parameters  Overfitting 

 If data is linearly separable, weights go to infinity 
 

 

 

 

 In general, leads to overfitting: 

 Penalizing high weights can prevent overfitting… 
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Regularized Conditional Log Likelihood 

 Add regularization penalty, e.g., L2: 

 

 

 

 

 Practical note about β0: 

 

 

 Gradient of regularized likelihood: 
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Standard v. Regularized Updates 

 Maximum conditional likelihood estimate 

 

 

 

 

 

 Regularized maximum conditional likelihood estimate 
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Stopping Criterion 

 When do we stop doing gradient ascent?  

 

 

 Because l(w) is strongly concave: 

 i.e., because of some technical condition 

 

 

 

 

 Thus, stop when: 
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Digression:  

Logistic Regression for K > 2 

 Logistic regression in more general case (K 

classes), where Y in {1,…,K} 
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 Logistic regression in more general case, where  

Y in {1,…,K} 

 

 for k<K 

 

 
 

 for k=K (normalization, so no weights for this class) 

 

 
 

Estimation procedure is basically the same  

as what we derived! 
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Digression:  

Logistic Regression for K > 2 

The Cost, The Cost!!! Think about 

the cost… 

 What’s the cost of a gradient update step for LR??? 
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Gradient ascent in Terms of Expectations 

 “True” objective function: 

 

 

 Taking the gradient: 

 

 

 “True” gradient ascent rule: 

 

 

 How do we estimate expected gradient? 
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SGD: Stochastic Gradient Ascent (or Descent) 

 “True” gradient: 

 

 Sample based approximation: 

 

 

 

 What if we estimate gradient with just one sample??? 

 Unbiased estimate of gradient 

 Very noisy! 

 Called stochastic gradient ascent (or descent) 

 Among many other names 

 VERY useful in practice!!! 
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Stochastic Gradient Ascent for 

Logistic Regression 

 Logistic loss as a stochastic function: 

 

 

 Batch gradient ascent updates: 

 

 
 

 Stochastic gradient ascent updates: 

 Online setting: 
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What you should know… 

 Classification: predict discrete classes rather than 
real values 

 Logistic regression model: Linear model 
 Logistic function maps real values to [0,1] 

 Optimize conditional likelihood 

 Gradient computation 

 Overfitting 

 Regularization 

 Regularized optimization 

 Cost of gradient step is high, use stochastic 
gradient descent 
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