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Recap of regression so far
“ J
m Recall our regression setting
flz) = E[Y | 2]
m How to estimate from finite training set?

Restrict to
model class
m Example = linear basis expansion
Standard linear
Polynomial
Splines

ooooooooooooo




Other Important Basis Expansions
* JEE—
/A
(VAR v

WAWS
V V

: VAR
vV V

Fourier Basis Wavelet Basis
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Recap of regression so far
* JEE——

m Recall our regression setting
f(z) = E[Y | x]
m How to estimate from finite training set?

Restrict to
model class
m Example = linear basis expansion

Overfitting as model
complexity grows

m Penalized linear basis expansions
Ridge
Lasso
Smoothing splines
Penalized regression splines
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Overfitting
"

9th Order Polynomial
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Recap of regression so far
" JEE—

m Recall our regression setting
f(z) = E[Y | x]

m How to estimate from finite training set?

Restrict to Local nbhd
model class methods
m Example = linear basis expansion
Overfitting as model = Example =

complexity grows .
plextty 9 kernel regression

m Penalized linear basis expansions
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Again: Linear Basis Expansion

* JEE
m Instead of just considering input variables x (potentially mult.),
augment/replace with transformations = “input features”

m Linear basis expansions maintain linear form in terms of

these transformations M roans.
@) = 3 ()
m=1

m What transformations should V\ge l\Jse?
hn(z) = 2y 2 linear Mpde e
. 2 \ éq -

hin(x) =23, hm(z) =220 > Po\xfnom a\ V€4

hon(x) = I(Lin < 2 < Up) > Piteewion constant
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Making Predictions
" JE
m So far, our focus has been on L, loss:
min RSS(5) + A5

m Here, we assumed y = f(z) + € with

m Now, let’s assume a distributional form and log-likelihood loss
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Quick Review of Gaussians
= JEE

m Univariate and multivariate Gaussians

N(z|p,0?) 1 1
5
N(z|p,0%) = WQXP{_%*? (z — #)“}
zob
L1
1 1 1 -
N(x|p, 2) = Wml—lﬂexp {—§(X — TS (x - N)}

Two-Dimensional Gaussians

aaaaaaaaaaaaaaaaa
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Conditional & Marginal Distributions

Bk, =07)

0.5

p(za)

0 05 ra 1 0 05 Za 1

Maximum Likelihood Estimation

" JEE
m Model:
y= f(z)+€ where €~ N(0,02)

M
f(z) = Z Binhim ()
m=1
m Equivalently,
ply | z.B,0%) = N(y| f(z).0?)

m For our training data (independent obs)

p(y | X, B,0%) =




Maximum Likelihood Estimation
" JEEE
p(y | X, B,0%) = HN(yi | 8T h(x;),07)

u Taklng the |Og N(x|p, E) = ;lz‘;‘/?vxp{—é(x - M)TZ’I(X - u)}

(2m)D/2

m Equivalent objective to RSS (Gaussian log-like loss = L, loss)

m Taking the gradient and setting to zero, we have already shown
BML — (HTH)—lHTy
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A Bayesian Formulation

m Consider a model with likelihood W GNN[D/”})

yi | B~ N(Bo + 2] B,0%) &7

and prior o2 cr
B~N (o, Tfp) ,sd~rl(o, 7)

m Forlarge A

?(8) wr /V(B) Prior Pulf_‘} arownd ﬁ=0
/‘\’ __) | < ftna(i%?'j R far

o 0
m The posterior is tom 0

Bly~N(fie o2(XTX + M) XTXo?(XTX + )J)_1>

va o shov VN(BAJT)
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Bayesian Linear Regression
" JEEE
m More generally, consider a conjugate prior on the basis
expansion coefficients:

p(B) = N(B | po,>0)

m Combining this with the Gaussian likelihood function, and
using standard Gaussian identities, gives posterior

p(Bly) =N@B | pn,En)

where
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Example: Standard Linear Basis
" JEE—

0 data points observed

Prior Data Space
1

A

0
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Example: Standard Linear Basis
" JEE

1 data point observed

Likelihood Posterior Data Space
1 1 1
51 b1 f
0 0 0
-1 -1 -1
-1 0 60 1 -1 0 501 -1 0 x 1
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Example: Standard Linear Basis
" JEE—

2 data points observed

Likelihood Posterior Data Space

ooooooooooooo




Example: Standard Linear Basis
" JEE

20 data points observed

Likelihood Posterior Data Space
1 1 1
51 b1 f
0 0 0 0 Q%
8 (o]
)
-1 -1 -1
-1 0 60 1 -1 0 601 -1 0 x 1

Predictive Distribution
* JEE
m Predict y* at new locations x* by integrating over parameters 6
b0 |9 = [ 0" | 8105 | )5

p(B1y)=N@B| pn,En)
p(ylz,B,0%) =Nyl f(z),0%)
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Example: Gaussian Basis Expansion
* JE
m Gaussian basis functions:

hj(z) = eXp{—M}

252

m These are local; 1
a small change in x
only affects nearby 0.75
basis functions.
Parameters control 0.5

location and scale (width) /
0.25
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Example: Gaussian Basis Expansion
" JEE
m Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

=)
(0]
=}

©Emily Fox 2014 22

11



Example: Gaussian Basis Expansion
* JE
m Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points
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Example: Gaussian Basis Expansion
" JE
m Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points

ooooooooooooo
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Example: Gaussian Basis Expansion
* JE
m Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points
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Estimation vs. Predictive Distributions
" S

plugin approximation (MLE) Posterior predictive (known variance)
60 80
training data 700
50+
60
40
50
30 40+
301
20
N
20
101
101
ok
ok
10 10
6 4 2 0 2 4 6 8 6 4 2 0 2 4 6
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Bayesian Model Selection
" JEE
m Assume some M possible models

Model M,, m=1,...,M has parameters @,,, and prior (6, | M.y,)
Prior over models p(M,,)

. dakA
. U”“""‘ﬁ
m Model posteri «‘"‘* y,
p(My, | Z) o p(Myn)p(Z | M) /'A Ii;',cr
=
D) [ D2 | O M )9O | D)0, o B
g ———— -
m Compare models:
ot‘xb‘.‘:t p(Mm | Z) _ p(Mm) (Z | Mm) z 1
P P01 12) T p(Mp(Z| M) |
1 “Go #5
¢ 3
e ::;o( I\ b ‘1(00“0 -
BMS Example (n=5)
" J—
: EEes _
o ook
V.U o
R s T a0t
o . TT=e] ol
(a) ' 7 ‘(b)
=3, logev=-21718, EB ; N=5, method=EB
:: ﬁo.s
50, -1 g
B S Sig—= @ 0.4
V'f” 0.2
"5: 0 1 " 2 3
© ©Emily Fox 2014 @ 28
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BMS Example (n=30)

" JEE
61, lgeve-108.110,EB -2, logo=108.025,EB
60 70|
50 e0) A
50 4
w0 /
20 o ) o ya
“IN /
20 / 2 ‘\ /0
o _.-| 3 R
w0 “Q} 8 /°.- | aq;,% ~0
| .—cogos%r o 02028 o
O0g ° 0@
O O
O T e S B e
(a) (b)
4=3, logev=-107.410, EB N=30, method=EB
L .
) ) 08
’I
* K 508
y [=}
40 Vi 2
O/' o 0.4
20F ~, pe
~ ~"0 0.2
B,0088%
0 “oo'e
o 0 1 2 3
2 o 2 4 6 8 10 12 M
© _ @
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Bayesian Ockham’s Razor
= \

p(D) H 3
M, “Plurality must never be posited

4‘ without necessity.” |
My

Do o William of Ockham
m Parametric Bayes: Consider a finite list of possible models,
average according to posterior probability
(or in practice, just select the most probable)
m Nonparametric Bayes: Consider a single infinite model,
integrate over parameters when making predictions or infer which
finite subset is exhibited in your dataset
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. .. Change of notation:
Going Infinite... h(z) — é(z)
* JEE—
m Nonparametric Gaussian regression:
Would like to let the number of basis functions M >

m Prior: p(B|0,a ' Iy)

m Distribution on f- | = ®f

m Gaussian process models replace explicit basis function
representation with a direct specification in terms of a
positive definite kernel function
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Mercer Kernel Functions
" JE
m Distributions are of the form
p(f) = N(f10,a" " 00")

where the Gram matrix K is defined as
Kij =

m Kis a Mercer kernel if the Gram matrix is positive definite for
any nand any x4, ..., X,

©Emily Fox 2014 32
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Mercer's Theorem
= JEE

m If Kis positive definite, we can compute the eigendecomp:

m Then Kij =
1
m Define ¢(x) = A2U; so that

Kl'j =

m If a kernel is Mercer, there exists a function ¢ : X — RY s.t.

©Emily Fox 2014 33

Example Mercer Kernels
* JEE——
m Example #1: (non-stationary) polynomial kernel
wa,a') = (e + )M
m ForM=2,y=r=1,
(14 272")? = (1 + 12 + zoxh)?

= This can be written as ¢(x)” ¢(2') , with
¢(z) =

Equivalent to working in a 6-dimensional feature space
For general M, basis contains all terms up to degree M

m Example #2: Gaussian kernel
k(x,2") = exp <—;(x — 2Ty - x'))

Feature map lives in an infinite-dimensional space

©Emily Fox 2014 34
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Gaussian Processes
* JE
m Dispense of parametric view (prior on 5) and consider prior on

functions themselves (prior on 1)

m Seems hard, but we have shown that it is feasible when we
look at a finite set of values x,, ..., x,

p(f) =N(f10,K)

m Defined by a Mercer kernel

m More generally, a Gaussian process provides a distribution
over functions

©Emily Fox 2014 35

Gaussian Processes
" JEE—
m Distribution on functions
f~ GP(m,k)
= m: mean function
m K: covariance function

¢

p(f(x1), . . ., f(xn)) ~ Nn(H, K)
= 4= [Mm(x1),...,m(Xn)]
= Kj =K (Xi,X))

m |dea: If x; x; are similar according to the kernel, then f(x))
is similar to f(x;)

©Emily Fox 2014 36
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K: covariance function
o
k(z,x") = oF exp (—i(x — 33’)2)

High lengthscale

Low Iew

©Emily Fox 2014

©Emily Fox 2014
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m: mean function
= JEEE
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Induced Multivariate Gaussian
" JEE
m Evaluating the GP-distributed function at any
set of locations, we have

o

00 00 000 O O O © o000 O o000
T1xToXL3 - - Tn

ooooooooooooo
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Induced Multivariate Gaussian
= JEE

m Comparing length-scales:

OO0 0O 00O O O COO © 00O O 000
T1xToX3 - - In
X

OO0 00 000 O 0 0COO © 00O ©O 000
T1T2T3 - -- In
X
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2D Gaussian Processes
" N (1, ) = o} exp 1 (v, — )T M(z, — )

0

) -2 2
input x2 input x1

. -2 -2
input x2 input x1

inout x2 -2 -2
nput x ©Emnyrox'5bqk” x1 42
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GPs for Regression
* JEEE

m Start with noise-free scenario: directly observe the function

Training data D = {(x;, fi),i =1,...,n}
Test data locations X* - predict f*

Jointly, we have

()= () (& )

Therefore,
p(f* 1 X5 X, f) =

©Emily Fox 2014 43

1D Noise-Free Example

s 5

Samples from Prior ~ Posterior Given 5
K(z,2') = 0} exp(—2—22(;p —¢/)?2)  Noise-Free Observations

m Interpolator, where uncertainty increases with distance

m Useful as a computationally cheap proxy for a complex simulator

Examine effect of simulator params on GP predictions instead of doing
expensive runs of the simulator

©Emily Fox 2014 a4
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GPs for Regression
“ JE
m Noisy scenario: observe a noisy version of underlying function
y=f(x)+e e~N(0,0y)

Not required to interpolate, just come “close” to observed data

cov(y|X) =

Training dataD = {(x;,v;),i =1,...,n}
Test data locations X* - predict f*

Jointly, we have [ y K, K,
()~ (o (s

Therefore, p(f* | X*, X,y) =

©Emily Fox 2014 45

GPs for Regression
" JEE
p(f* ‘ X*’va) = N(KZKy_lyaK** - KZKy_lK*)
m For a single point x*
PO 1 X5 X y) = Nk Ky ko — kUK k)
o)

JP=k Ky =

©Emily Fox 2014 46
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CO2 Concentration Over Time
= JEE

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95% predicted confidence
< 420 T T T T T T T
=

410

400

3901

3801

370

360

w

a

o
T

Monthly average atmospheric CO2 concentration, ppm(

w
S
(=]

1 1 1 1 I I ! 1
1985 1990 1995 2000 2005 2010 2015 2020
year

Mauna Loa Observatorg-inrktawaii, analyzed by Rasmussen & Williams2006

Mixing Kernels for CO2 GP Analysis

Smooth global trend
/ 2 (-T - -TI)Q
Ki(z,2") = 07 exp (— 202 )
Seasonal periodicity

Ko(z,2') = 603 exp (_ (x—2')? _ 2sin?(m(z — 1,/)))

262 02
Medium term irregularities

’ —fs
) (z—2')?
Kka(z,z') = 02 (1 + 20502

Correlated Observation Noise

T, — T,)2
Ka(2p, 2q) = 05 exp (—%) + 60316

©Emily Fox 2014 48
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CO2 Concentration Over Time

1, €
E &
(=} -
0.5 5 s
§ 8
IS €
5 c
° 8
-0.545" "
o Q
(6]
-1 ;
1960 1970 1980 1990 2000 2010 2020 JFMAMJJASOND
year month
(a) (b)

Mauna Loa Observatorg-inrktawaii, analyzed by Rasmussen & Williamg:2006

Estimating Hyperparameters
* JEE—
m How should we choose the kernel parameters?
Example: squared exponential kernel parameterization

-1
k(z,2') = a]% exp <2(:z:p — xq)TM(x;, — x;)> + Uidpq

Hyperparameters
As we saw before, can choose

M =021 M =diag((;?,...,0;%) M=AN +diag(¢;?,...,0,%)...

m As in other nonparametric methods, choice can have large effect

ot

©Emily Fox 2014 50
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Estimating Hyperparameters
" JEE
m Options:
#1: Define a grid of possible values and use cross validation

#2: Full Bayesian analysis: Place prior on hyperparameters and integrate
over these as well in making predictions

#3: Maximize the marginal likelihood

Py | X.0) = / Dy | £, X)p(f | X, 0)df

logp(y | X,0) =

©Emily Fox 2014 51

Estimating Hyperparameters
* JEE——

1 _
logp(y | X,0) = -5y K,

For short length-scale, the fit is good, but K is nearly diagonal

1
Ly — 510g|Ky| — glog%r

For large length-scale, the fit is bad, but K is almost all 1’s

m Can show:

0 1 0K 1 0K
1 X _ TK_1 yK—l - K—l Yy

1 T o1y 0Ky
= 2tr ((aa K, )80j

Optimize to choose hyperparameters
Complexity is
Objective is non-convex, so local minima are a problem

©Emily Fox 2014 52
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Example of Estimating Hypers

2 2
logp(y | X, l,0,) o3 =1
Y 2
+
1 +
c >
210 El
g 2o
o
B
5 -1
e} |
c |
S | 2
@ | - -5 0 5
.q_"'; 107 i input, x
o |
< |
|
i 2
| . +)
10 10 Y
characteristic lengthscale > 1/’—
R +
3 0 +
-1
- — 5

0
input, x
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Relating GPs to Kernel Methods
" JEE—

m GPs as linear smoothers
Recall that the predictive posterior mean of a GP is

fla*) = kI (K +oyl) "y

m In kernel regression, the weight function was derived from a
smoothing kernel instead of a Mercer kernel
Clear that smoothing kernels have local support
Less clear for GPs since the weight function depends on the inverse of K

m For some GP kernels, can analytically derive equivalent kernel
As with smoothing kernels,
Computing a linear combination, but not a convex combination of y;'s
Interestingly, the weight function is local even when the GP kernel is not

Furthermore, the effective bandwidth of the GP equivalent kernel
automatically decreases with n, where as in kernel smoothing such tuning
must be done by hand

©Emily Fox 2014 54
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Effective Degrees of Freedom
" JEE

m For the training set, the fit is given by

f=K(K+ aifn)_ly

Since Kis a positive definite Gram matrix, it has eigendecomp

K= Z)\uu

Using this, one can show that K (K + 021 n) I has eigenvals

Therefore, the effective degrees of freedom is

Remember that this specifies how “wiggly” the curve is

©Emily Fox 2014 55

Relating GPs to Splines
" JEE——

m Recall smoothing spline objective

mmz f(x;)) +)\/f"

m Consider the foIIowmg model

f(x) = Bo+ frx +r(x)

where

m One can show that the MAP estimate of f(x) is a cubic
smoothing spline when p(3;) o 1

m Penalty parameter A is now given by 05/0?

©Emily Fox 2014 56
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Relating GPs to Splines

m The spline kernel leads to a smooth posterior mode/mean, but

posterior samples are not smooth.

Again, as in lasso, regularizers do not always make good priors

o = N

output, y
1

-2

Figure from
Rasmussen
| and Williams
2006

-5 0 5 -5
input, x

(a), spline covariance

0
input, x

(b), squared exponential cov.

m See Rasmussen and Williams 2006 for more details

©Emily Fox 2014
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GP Regression Recap

* JEE——
Linear Basis
Expansion

B~ N(0,a tTy)

Prior
M
f($> = Z ﬁmgbm(x)
m=1
Distribution f ~ N(O a—l@q)T)
on Xy, ...y X, ’
Choices « Choose M

¢ Choose bases

©Emily Fox 2014

Gaussian
Process

[~ GP(0,k(z,2"))

f~N(0,K)

A

e Choose H(CU,CC)
* Choose covariance

hyperparameters

58
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GP Regression Recap
* JEE—

Linear Basis GP Splines Kernels
Expansion regression

k(z,z")

——
s
QD e — %
=

QL —
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Choice of Covariance Function
= JEEE

m Definitions
Stationary kernel — only depends on T — x’
Isotropic kemel — furthermore only depends on ||z — .%‘/| |

m Examples i
Squared exponential - ksg(r) =e 222
= Kernel is infinitely differentiable > GP has mean square derivatives of all orders
- resulting functions are very smooth

21—V 2ur Y 2ur
Matern — ﬁMatern('r) = m ( g ) K'U ( g >

s When IV — 0O : squared exponential

= When I = — :exponential kernel lieg;p(r) =e ¢
2 - equal to Brownian motion in 1D **

©Emily Fox 2014 60
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Sample Paths using Matern Kernel
" NS

m Can produce very rough sample paths

o
@

covariance, k(r)
o
o
output, f(x)

o
IS

0 1 2 3 -5 0 5
input distance, r input, x

(a) (b)

Figure from Rasmussen and Williams 2006
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Family of Gaussian Processes

©Emily Fox 2014
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