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Module 3: Bayesian Nonparametrics 

Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

¨  Standard linear  
¨  Polynomial  
¨  Splines 
¨  … 

f(x) = E[Y | x]

Restrict to 
model class 
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Other Important Basis Expansions 
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Fourier Basis Wavelet Basis 

Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

n  Penalized linear basis expansions 
¨  Ridge 
¨  Lasso 
¨  Smoothing splines 
¨  Penalized regression splines 

f(x) = E[Y | x]

Restrict to 
model class 

Overfitting as model 
complexity grows 



3 

Overfitting 
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9th	
  Order	
  Polynomial	
  

n = 15 n = 100

Recap of regression so far 
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n  Recall our regression setting 

n  How to estimate from finite training set? 

 
n  Example = linear basis expansion 

n  Penalized linear basis expansions 

f(x) = E[Y | x]

Restrict to 
model class 

Overfitting as model 
complexity grows 

Local nbhd 
methods 

n  Example =  
kernel regression 
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Again: Linear Basis Expansion 
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n  Instead of just considering input variables x (potentially mult.), 
augment/replace with transformations = “input features” 

n  Linear basis expansions maintain linear form in terms of 
these transformations 

n  What transformations should we use? 
¨                        à  
¨                                                     à 
¨                                                  à 
¨  … 

 

f(x) =
MX

m=1

�mhm(x)

hm(x) = xm

hm(x) = x

2
j , hm(x) = xjxk

hm(x) = I(Lm  xk  Um)

Making Predictions 
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n  So far, our focus has been on L2 loss: 

n  Here, we assumed     with  

n  Now, let’s assume a distributional form and log-likelihood loss 

min
�

RSS(�) + �||�||

y = f(x) + ✏
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Quick Review of Gaussians 
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n  Univariate and multivariate Gaussians 

Two-Dimensional Gaussians 
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Conditional & Marginal Distributions 
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Maximum Likelihood Estimation 
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n  Model: 
                                              where  

n  Equivalently, 
 
 
n  For our training data (independent obs) 

y = f(x) + ✏ ✏ ⇠ N(0,�2)

f(x) =
MX

m=1

�mhm(x)

p(y | x,�,�2) = N(y | f(x),�2)

p(y | X,�,�2) =
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Maximum Likelihood Estimation 
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n  Taking the log 

n  Equivalent objective to RSS (Gaussian log-like loss = L2 loss) 

n  Taking the gradient and setting to zero, we have already shown 

p(y | X,�,�

2) =
Y

i

N(yi | �T
h(xi),�

2)

�̂ML = (HTH)�1HT y

A Bayesian Formulation 
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n  Consider a model with likelihood 
 
     and prior  
 
n  For large λ 

 
n  The posterior is 

yi | � ⇠ N(�0 + x

T
i �,�

2)

� ⇠ N

✓
0,

�2

�
Ip

◆

� | y ⇠ N
⇣
�̂ridge,�2(XTX + �I)�1XTX�2(XTX + �I)�1

⌘
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Bayesian Linear Regression 
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n  More generally, consider a conjugate prior on the basis 
expansion coefficients: 

n  Combining this with the Gaussian likelihood function, and 
using standard Gaussian identities, gives posterior  

 
    where 

p(�) = N(� | µ0,⌃0)

p(� | y) = N(� | µn,⌃n)

Example: Standard Linear Basis 
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1	
  data	
  point	
  observed	
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   Posterior	
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Example: Standard Linear Basis 
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Example: Standard Linear Basis 
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20	
  data	
  points	
  observed	
  

Likelihood	
   Posterior	
   Data	
  Space	
  

Example: Standard Linear Basis 
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�0

�1 f

�0

�1

Predictive Distribution 
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n  Predict y* at new locations x* by integrating over parameters �

p(y⇤ | y) =
Z

p(y⇤ | �)p(� | y)d�
p(� | y) = N(� | µn,⌃n)

p(y | x,�,�2) = N(y | f(x),�2)
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Example: Gaussian Basis Expansion 
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n  Gaussian basis functions: 

n  These are local;  
a small change in x  
only affects nearby  
basis functions.   
Parameters control  
location and scale (width) 

hj(x) = exp

⇢
� (x� µj)

2

2s

2

�

Example: Gaussian Basis Expansion 
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n  Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  funcDons,	
  	
  
1	
  data	
  point	
  

yy
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Example: Gaussian Basis Expansion 
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n  Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  funcDons,	
  	
  
2	
  data	
  points	
  

yy

Example: Gaussian Basis Expansion 
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n  Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  funcDons,	
  	
  
4	
  data	
  points	
  

yy
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Example: Gaussian Basis Expansion 
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n  Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  funcDons,	
  	
  
25	
  data	
  points	
  

yy

Estimation vs. Predictive Distributions 
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Bayesian Model Selection 
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n  Assume some M possible models 
¨  Model Mm  m=1,…,M  has parameters          and prior   
¨  Prior over models  

n  Model posterior 

n  Compare models: 

✓m p(✓m | Mm)

p(Mm | Z) / p(Mm)p(Z | Mm)

/ p(Mm)

Z
p(Z | ✓m,Mm)p(✓m | Mm)d✓m

p(Mm)

p(Mm | Z)

p(M` | Z)
=

p(Mm)p(Z | Mm)

p(M`)p(Z | M`)

>
< 1

BMS Example (n=5) 

©Emily Fox 2014 28 
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BMS Example (n=30) 
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William of Ockham 

“Plurality must never be posited 
without necessity.” 

n  Parametric Bayes:  Consider a finite list of possible models, 
average according to posterior probability  
(or in practice, just select the most probable) 

n  Nonparametric Bayes:  Consider a single infinite model, 
integrate over parameters when making predictions or infer which 
finite subset is exhibited in your dataset 

Bayesian Ockham’s Razor 

©Emily Fox 2014 30 
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Going Infinite… 

©Emily Fox 2014 31 

n  Nonparametric Gaussian regression: 
Would like to let the number of basis functions M à ∞ 

n  Prior: 

n  Distribution on f:  

n  Gaussian process models replace explicit basis function 
representation with a direct specification in terms of a  
positive definite kernel function  

h(x) ! �(x)

Change of notation: 

p(� | 0,↵�1IM )

f = ��

Mercer Kernel Functions 

©Emily Fox 2014 32 

n  Distributions are of the form 
 
 
 
where the Gram matrix K is defined as 
 

 
n  K is a Mercer kernel if the Gram matrix is positive definite for 

any n and any x1, …, xn 

Kij =

p(f) = N(f | 0,↵�1��T )
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Mercer’s Theorem 

©Emily Fox 2014 33 

n  If K is positive definite, we can compute the eigendecomp: 
 
 
n  Then 
n  Define         so that 

n  If a kernel is Mercer, there exists a function     s.t. 

Kij =
�(x) = ⇤

1
2
U·i

Kij =

� : X ! Rd

Example Mercer Kernels 

©Emily Fox 2014 34 

n  Example #1: (non-stationary) polynomial kernel 

n  For M=2, γ = r = 1,  

n  This can be written as     , with 

¨  Equivalent to working in a 6-dimensional feature space 
¨  For general M, basis contains all terms up to degree M 

n  Example #2: Gaussian kernel 

¨  Feature map lives in an infinite-dimensional space 

(x, x0) = (�xT
x

0 + r)M

(1 + x

T
x

0)2 = (1 + x1x
0
1 + x2x

0
2)

2

�(x)T�(x0)

�(x) =

(x, x

0
) = exp

✓
�1

2

(x� x

0
)

T
⌃

�1
(x� x

0
)

◆
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Gaussian Processes 

©Emily Fox 2014 35 

n  Dispense of parametric view (prior on    ) and consider prior on 
functions themselves (prior on f) 

n  Seems hard, but we have shown that it is feasible when we 
look at a finite set of values x1, …, xn 

n  Defined by a Mercer kernel 

n  More generally, a Gaussian process provides a distribution 
over functions  

�

p(f) = N(f | 0,K)

Gaussian Processes 

n  Distribution on functions 
¨  f ~ GP(m,κ) 

n  m: mean function 
n  κ: covariance function 

¨ p(f(x1), . . . , f(xn)) ∼ Nn(µ, K) 
n  µ = [m(x1),...,m(xn)] 
n  Kij = κ (xi,xj) 

n  Idea: If xi, xj are similar according to the kernel, then f(xi) 
is similar to f(xj) 

,

©Emily Fox 2014 36 



19 

κ: covariance function 

High	
  lengthscale	
  

Low	
  lengthscale	
  

(x, x

0
) = �

2
f exp

✓
� 1

2`

2
(x� x

0
)

2

◆

©Emily Fox 2014 37 

m: mean function 

©Emily Fox 2014 38 
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m: mean function 

©Emily Fox 2014 39 

n  Evaluating the GP-distributed function at any 
set of locations, we have 

Induced Multivariate Gaussian 

x3x1x2 xn. . .
x

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200
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n  Comparing length-scales: 

Induced Multivariate Gaussian 

x3x1x2 xn. . .
x

x3x1x2 xn. . .
x

10 20 30 40 50 60 70 80 90 100
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50

60

70
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20
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100
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2D Gaussian Processes 

©Emily Fox 2014 42 
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✓
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2
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T
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GPs for Regression 

©Emily Fox 2014 43 

n  Start with noise-free scenario: directly observe the function 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 

n  Therefore,  

D = {(xi, fi), i = 1, . . . , n}
X⇤

✓
f
f⇤

◆
⇠ N

✓✓
µ
µ⇤

◆
,

✓
K K⇤
KT

⇤ K⇤⇤

◆◆

p(f⇤ | X⇤, X, f) =

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Samples from Prior Posterior Given 5 
Noise-Free Observations 

1D Noise-Free Example 

n  Interpolator, where uncertainty increases with distance 
n  Useful as a computationally cheap proxy for a complex simulator 

¨  Examine effect of simulator params on GP predictions instead of doing 
expensive runs of the simulator 

©Emily Fox 2014 44 
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GPs for Regression 

©Emily Fox 2014 45 

n  Noisy scenario: observe a noisy version of underlying function 

¨  Not required to interpolate, just come “close” to observed data 

 

n  Training data 
n  Test data locations          à  predict f*  

n  Jointly, we have 
 

n  Therefore,  

X⇤
D = {(xi, yi), i = 1, . . . , n}

✓
y
f⇤

◆
⇠ N

✓
0,

✓
Ky K⇤
KT

⇤ K⇤⇤

◆◆

y = f(x) + ✏ ✏ ⇠ N(0,�2
y)

cov(y|X) =

p(f⇤ | X⇤, X, y) =

GPs for Regression 

©Emily Fox 2014 46 

n  For a single point x* 
 
 
so 

p(f⇤ | X⇤, X, y) = N(KT
⇤ K

�1
y y,K⇤⇤ �KT

⇤ K
�1
y K⇤)

p(f⇤ | X⇤, X, y) = N(kT⇤ K
�1
y y, k⇤⇤ � kT⇤ K

�1
y k⇤)

f̄⇤ = kT⇤ K
�1
y y =
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CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 ©Emily Fox 2014 47 

Mixing Kernels for CO2 GP Analysis 

Smooth global trend 

Seasonal periodicity 

Medium term irregularities 

Correlated Observation Noise 

©Emily Fox 2014 48 
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CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 ©Emily Fox 2014 49 

Estimating Hyperparameters 

©Emily Fox 2014 50 

n  How should we choose the kernel parameters? 

¨  Example: squared exponential kernel parameterization 

¨  Hyperparameters 
¨  As we saw before, can choose 

n  As in other nonparametric methods, choice can have large effect 

M = `�2I M = diag(`�2
1 , . . . , `�2

d ) M = ⇤⇤0 + diag(`�2
1 , . . . , `�2

d ) . . .

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

(x, x

0
) = �

2
f exp

✓
�1

2

(xp � xq)
T
M(x

0
p � x

0
q)

◆
+ �

2
y�pq
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Estimating Hyperparameters 

©Emily Fox 2014 51 

n  Options: 
¨  #1: Define a grid of possible values and use cross validation 

¨  #2: Full Bayesian analysis: Place prior on hyperparameters and integrate 
over these as well in making predictions 

¨  #3: Maximize the marginal likelihood 

p(y | X, ✓) =

Z
p(y | f,X)p(f | X, ✓)df

log p(y | X, ✓) =

Estimating Hyperparameters 

©Emily Fox 2014 52 

¨  For short length-scale, the fit is good, but K is nearly diagonal 

¨  For large length-scale, the fit is bad, but K is almost all 1’s 

n  Can show: 

¨  Optimize to choose hyperparameters 
¨  Complexity is 
¨  Objective is non-convex, so local minima are a problem 

log p(y | X, ✓) = �1

2

yTK�1
y y � 1

2

log |Ky|�
n

2

log 2⇡

@

@✓j
log p(y | X, ✓) =

1

2

yTK�1
y

@Ky

@✓j
K�1

y y � 1

2

tr

✓
K�1

y
@Ky

@✓j

◆

=

1

2

tr

✓
(↵↵T �K�1

y )

@Ky

@✓j

◆
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Example of Estimating Hypers 

©Emily Fox 2014 53 
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Relating GPs to Kernel Methods 
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n  GPs as linear smoothers 
¨  Recall that the predictive posterior mean of a GP is 

 
n  In kernel regression, the weight function was derived from a 

smoothing kernel instead of a Mercer kernel 
¨  Clear that smoothing kernels have local support 
¨  Less clear for GPs since the weight function depends on the inverse of K 

n  For some GP kernels, can analytically derive equivalent kernel 
¨  As with smoothing kernels,  
¨  Computing a linear combination, but not a convex combination of yi’s 
¨  Interestingly, the weight function is local even when the GP kernel is not 
¨  Furthermore, the effective bandwidth of the GP equivalent kernel 

automatically decreases with n, where as in kernel smoothing such tuning 
must be done by hand 

f̄(x⇤) = k

T
⇤ (K + �

2
yIn)

�1
y



28 

Effective Degrees of Freedom 

©Emily Fox 2014 55 

n  For the training set, the fit is given by 

n  Since K is a positive definite Gram matrix, it has eigendecomp 

n  Using this, one can show that    has eigenvals 

n  Therefore, the effective degrees of freedom is  

n  Remember that this specifies how “wiggly” the curve is 
 

f̂ = K(K + �2
yIn)

�1y

K =
nX

i=1

�iuiu
T
i

K(K + �2
yIn)

�1

Relating GPs to Splines 

©Emily Fox 2014 

n  Recall smoothing spline objective 

n  Consider the following model 
 
 
where  

 
n  One can show that the MAP estimate of f(x) is a cubic 

smoothing spline when 

n  Penalty parameter λ is now given by  

 

f(x) = �0 + �1x+ r(x)

p(�j) / 1

min
f

nX

i=1

(yi � f(xi))
2 + �

Z
f

00(x)2dx

�2
y/�

2
f

56 
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Relating GPs to Splines 

©Emily Fox 2014 

n  The spline kernel leads to a smooth posterior mode/mean, but 
posterior samples are not smooth. 
¨  Again, as in lasso, regularizers do not always make good priors 

n  See Rasmussen and Williams 2006 for more details 

 

Figure from 
Rasmussen 
and Williams 

2006 

57 

GP Regression Recap 

©Emily Fox 2014 

f ⇠ GP(0,(x, x0))

� ⇠ N(0,↵�1
IM )

f(x) =
MX

m=1

�m�m(x)

Prior 

Linear Basis 
Expansion 

Gaussian 
Process 

Distribution 
on x1, …, xn 

f ⇠ N(0,↵�1��T ) f ⇠ N(0,K)

Choices •  Choose M 
•  Choose bases 

•  Choose  
•  Choose covariance 

hyperparameters 

(x, x0)

58 
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GP Regression Recap 

©Emily Fox 2014 

(x, x0){�m(x)}

Linear Basis 
Expansion 

GP  
regression 

f

y

f

y

Splines Kernels 

59 

Choice of Covariance Function 

©Emily Fox 2014 

n  Definitions 
¨  Stationary kernel – only depends on 
¨  Isotropic kernel – furthermore only depends on 

n  Examples 
¨  Squared exponential – 

n  Kernel is infinitely differentiable à GP has mean square derivatives of all orders  
 à resulting functions are very smooth 

 
 

¨  Matern –  

n  When    :  squared exponential 

n  When   : exponential kernel 
    ** equal to Brownian motion in 1D **     

 

x� x

0

||x� x

0||

SE(r) = e�
r

2`2

Matern(r) =
21�⌫

�(⌫)

 p
2⌫r

`

!⌫

Kv

 p
2⌫r

`

!

⌫ ! 1

⌫ =
1

2

exp

(r) = e�
r
`

60 
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Sample Paths using Matern Kernel 

©Emily Fox 2014 

n  Can produce very rough sample paths 

 

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

4.2 Examples of Covariance Functions 85
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Figure 4.1: Panel (a): covariance functions, and (b): random functions drawn from
Gaussian processes with Matérn covariance functions, eq. (4.14), for di↵erent values of
⌫, with ` = 1. The sample functions on the right were obtained using a discretization
of the x-axis of 2000 equally-spaced points.

in D dimensions. Note that the scaling is chosen so that for ⌫ !1 we obtain
the SE covariance function e�r2/2`2 , see eq. (A.25). Stein [1999] named this the
Matérn class after the work of Matérn [1960]. For the Matérn class the process
f(x) is k-times MS di↵erentiable if and only if ⌫ > k. The Matérn covariance
functions become especially simple when ⌫ is half-integer: ⌫ = p + 1/2, where
p is a non-negative integer. In this case the covariance function is a product
of an exponential and a polynomial of order p, the general expression can be
derived from [Abramowitz and Stegun, 1965, eq. 10.2.15], giving

k⌫=p+1/2(r) = exp
⇣

�
p

2⌫r

`

⌘ �(p + 1)
�(2p + 1)

p
X

i=0

(p + i)!
i!(p� i)!

⇣

p
8⌫r

`

⌘p�i

. (4.16)

It is possible that the most interesting cases for machine learning are ⌫ = 3/2
and ⌫ = 5/2, for which

k⌫=3/2(r) =
⇣

1 +
p

3r

`

⌘

exp
⇣

�
p

3r

`

⌘

,

k⌫=5/2(r) =
⇣

1 +
p

5r

`
+

5r2

3`2

⌘

exp
⇣

�
p

5r

`

⌘

,

(4.17)

since for ⌫ = 1/2 the process becomes very rough (see below), and for ⌫ � 7/2,
in the absence of explicit prior knowledge about the existence of higher order
derivatives, it is probably very hard from finite noisy training examples to
distinguish between values of ⌫ � 7/2 (or even to distinguish between finite
values of ⌫ and ⌫ ! 1, the smooth squared exponential, in this case). For
example a value of ⌫ = 5/2 was used in [Cornford et al., 2002].

Ornstein-Uhlenbeck Process and Exponential Covariance Function

The special case obtained by setting ⌫ = 1/2 in the Matérn class gives the exponential

exponential covariance function k(r) = exp(�r/`). The corresponding process

Figure from Rasmussen and Williams 2006 
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Polynomial kernel = 
finite polynomial basis 

Matern (v=0.5) = 
Brownian motion 

Matern (v=0.5+p) 
= cont time AR(p) 

Squared 
exponential 
kernel 

RBF 
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