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Course Staff 

n  Instructor: Emily Fox 

n  TA: Amrit Dhar 
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Content:  What is the course about? 
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Course Structure 

n  3 Primary Tasks: 
¨  Regression 
¨  Classification 
¨  Density Estimation 

 
n  5 Modules: 

¨  Nonparametric Preliminaries 
¨  Splines and Kernels 
¨  Bayesian Nonparametrics 
¨  Nonparametrics for Multivariate Covariates 
¨  Classification 
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Task 1: Regression 

n  Assume a sample  
n  Model: 
 
 

n  Task involves estimating the function f 

n  Goals of nonparametric approach: 
¨  Make few assumptions about f 
¨  Use a large number of parameters, but constrained in some way 

to avoid overfitting the data 
¨  Complexity can grow with the sample size 
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Task 2: Classification 

n  Assume a sample  
 
 
 

n  Task involves estimating a predictive model of Y given x 

n  Goals of nonparametrics are as before, but now for link 
between x and Y with Y discrete-valued 
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(x1, Y1), . . . , (xn, Yn)
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Task 3: Density Estimation 

n  Assume a sample  

 

n  Task involves estimating the density p 

n  Goals of nonparametric approach are as before, but 
applied to the estimation of p 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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fMRI 

©Emily Fox 2014 9 

Functional MRI 

fMRI 

©Emily Fox 2014 10 

functional Magnetic Resonance Imaging (fMRI) 

~1 mm resolution 

~1 image per sec. 

20,000 voxels/image 

safe, non-invasive 

measures Blood 

Oxygen Level 

Dependent (BOLD) 

response 

Typical fMRI 

response to 

impulse of 

neural activity 

10 sec 
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Typical Stimuli 
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Typical stimuli 

Each stimulus 

repeated several 

times 

fMRI Activation 
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fMRI activation for “bottle”: 

Mean activation averaged over 60 different stimuli: 

“bottle” minus mean activation: 

fMRI 

activation  

high 

below 

average 

average 

bottle 
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fMRI Prediction Task 
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n  Goal: Predict word stimulus from fMRI image 
n  Challenges:  

¨  p >> n (covariate dimension >> sample size) 
¨  Cost of fMRI recordings is high 
¨  Only have a few training examples for each word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 
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Zero-Shot Classification 
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n  Goal: Classify words not in the training set 
n  Challenges:  

¨  Cost of fMRI recordings is high 
¨  Can’t get recordings for every word in the vocabulary 

n  We don’t have many brain images, but we have a lot of info 
about the words and how they relate (co-occurrence, etc.) 

n  How do we utilize this “cheap” information? 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Semantic Features 
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Semantic feature values: “celery” 

 0.8368, eat  

 0.3461, taste 

 0.3153, fill 

 0.2430, see  

 0.1145, clean 

 0.0600, open 

 0.0586, smell 

 0.0286, touch 

 … 

 … 

 0.0000, drive 

 0.0000, wear 

 0.0000, lift 

 0.0000, break 

 0.0000, ride 

Semantic feature values: “airplane” 

 0.8673, ride 

 0.2891, see 

 0.2851, say 

 0.1689, near   

 0.1228, open 

 0.0883, hear 

 0.0771, run 

 0.0749, lift 

 … 

 … 

 0.0049, smell 

 0.0010, wear 

 0.0000, taste 

 0.0000, rub 

 0.0000, manipulate 
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Zero-Shot Classification 
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n  From training data, learn two mappings: 
¨  S: input image à semantic features 
¨  L: semantic features à word 

n  Can use “cheap” co-occurrence data to help learn L 

Features 
of word 

Classifier 
(logistic regression, 

kNN, …) 

HAMMER 
or 

HOUSE 

Assumed Background 

n  [Stat 502 and Stat 504] or [Biostat 514 and Biostat 515] 

n  Comfortable with: 
¨  Linear algebra 
¨  Probability 
¨  R (or Matlab, Python, etc.) 

n  Computational and mathematical maturity 
¨  Many concepts thrown at you quickly!   
¨  Some background is not provided in above courses and requires 

significant dedication to keep up 
¨  Expected to implement many methods from scratch 
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Logistics:  How is the course going to run? 
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Website and Discussion Board 

n  Course website:   
    http://stat.washington.edu/courses/stat527/s14 
 
n  Catalyst: 

¨ Used for all discussions 
¨ Post all questions there (unless personal) 
¨ Completed assignments submitted via Catalyst 

dropbox 
¨ Homework solutions and feedback on assignments 

posted through Catalyst 
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Reading 
n  Primary reference: 

¨  Hastie, Tibshirani, Friedman “The Elements of  
Statistical Learning”, Springer 2009 

n  Other strongly suggested textbooks (on website): 

¨  Wakefield, “Bayesian and Frequentist Regression 
Methods", Springer 2012 

 
 
¨  Wasserman, “All of Nonparametric Statistics”,  

Springer 2005 
 

     
n  Papers linked on course website 
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Homework 

n  Roughly 5 HWs total 
n  Assigned and due on *Thursdays* 

¨ Starting weekly then biweekly 

n  Collaboration allowed, but write-ups and coding 
must be done individually 

n  Submitted via Catalyst before start of lecture 
n  Allowed 2 “late days” for entire quarter 
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Project 

n  Options: 
¨ Choose project from specified list 
¨ Re-implement existing paper from specified list 
¨ Propose own project idea 

n  Individual 
n  New work, but can be connected to research 
n  Schedule: 

¨ Proposal (1 page) – April 24 
¨ Progress report (3 pages) – May 15 
¨ Project presentation – TBD (poster or in-class) 
¨ Final report (8 pages, NIPS format) – June 10 
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Grading 

n  HWs (60%) 
¨ One HW treated as “midterm” and worth more 

n  Final project (40%) 
¨ Midway report (20%) 
¨ Project presentation (20%) 
¨ Final paper (60%) 
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Support/Resources 

n  Office Hours 
¨ TA:  W 12:30-2:30pm in Padelford B-302 
¨ Emily: Th 10:30-11:30am in CSE 346 

n  Recitations 
¨ Optional tutorial/example-based sections will be held 

*every other* week  
¨ Very helpful for homework! 
¨ Location TBD 

©Emily Fox 2014 25 

26 

What to Report?, 
Model Selection, 
Model Assessment 

 
STAT/BIOSTAT 527, University of Washington 

Emily Fox 
April 1st, 2014 
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Module 1: Nonparametric Preliminaries 
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The Optimal Prediction 

n  Assume we know the data-generating mechanism 

n  If our task is prediction, which summary of the 
distribution Y | x  should we report? 
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The Optimal Prediction 

n  Taking a decision-theoretic framework, consider the 
expected loss 

n  What are loss functions we might consider? 
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Continuous Responses 

n  Expected loss 

n  Example:  L2 

 
    Solution: 

n  Example: L1 

    Solution: 

n  More generally: Lp 
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EX

�
EY |X [L(Y, f(x)) | X = x]

 

General Responses 

n  Expected loss 

n  Example: log-likelihood 

    When Gaussian: 
 
 
 
 
    When Laplace: 

©Emily Fox 2014 30 

EX

�
EY |X [L(Y, f(x)) | X = x]
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Incorporating Models into Prediction 

n  We don’t actually know the data-generating mechanism 
n  Need an estimator            based on a random sample  

Y1,…, Yn , also known as training data 

n  Statistical models can be used to encode knowledge 
about aspects of the data-generating mechanism 

n  Models can provide simplifying assumptions 
¨  Can help cope with estimation issues due to limited data 
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f̂n(·)

Incorporating Models into Prediction 

n  Assume some form for how the data are generated 
¨  E.g.,  

¨  For non-constant variance, can consider GLMs 
n  Then, typically assume some form for f(x) 

n  Model + loss function à some estimator 

©Emily Fox 2014 32 

Y = f(x) + ✏ E[✏] = 0 var(✏) = �2
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n  Parametric inference assumes parametric form for 

n  Advantages: 
¨  Efficient estimation 
¨  Concise summarization 

n  What is the right parametric form for          ?  
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f(x)

f(x)

Parametric Regression 

n  Goals of nonparametric inference: 
¨  Assume little prior knowledge of data-generating mechanism 
¨  More flexibly model f  (i.e., relationship between x and Y) 
¨  Maintain “reasonable” efficiency of estimation 

n  Often actually assume parametric forms with large 
numbers of parameters  
¨  Constrained to avoid overfitting the data 

n  Particularly useful when task is prediction 
¨  Focus on accuracy of prediction rather than parameter values 

n  Let’s discuss this idea of “complexity” more… 
©Emily Fox 2014 34 

Goals of Nonparam Regression 
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Model Complexity 

n  How complex of a function should we choose?  

¨  To increase flexibility, using many parameters is attractive 

¨  However, wide prediction intervals… 

¨  Leads to wild predictions 
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Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 

©Emily Fox 2014 36 
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Example: Polynomial Regression 

n  For added flexibility, allow for high order polynomial, right? 
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Measuring Predictive Performance 

n  Having chosen a model, how do we assess its 
performance? 

n  Assume estimate           based on training data y1,…, yn  

n  The generalization error provides a measure of 
predictive performance 
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f̂n(·)

GE(f̂n) = EY,X

h
L(Y, f̂n(X))

i



20 

Measuring Predictive Performance 

n  Assume L2 loss 
n  Averaging over repeat training sets Yn = Y1,…, Yn we get 

the predictive risk at x* 

 
 

n  Recall  
©Emily Fox 2014 39 

EY ⇤,Yn

h
(Y ⇤ � f̂n(x

⇤))2
i
=

MSE[f̂n(x)] = bias(f̂n(x))
2 + var(f̂n(x))

Measuring Predictive Performance 

n  Finally, let’s average over covariates x 

¨  Integrated MSE 

 
¨  Average MSE 

n  Note:    avg. pred. risk =        + avg. MSE 
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Bias-Variance Tradeoff 

n  Minimizing risk = balancing bias and variance 

n  Note: f(x) is unknown, so cannot actually compute MSE 

©Emily Fox 2014 41 

In Practice… 

n  Minimizing risk = balancing bias and variance 
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220 7. Model Assessment and Selection
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

From Hastie, Tibshirani, Friedman 
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n  Often framed as learning functions with a complexity penalty 
¨  Regular behavior in small neighborhoods of the input 
¨  E.g., locally linear or low-order polynomial…estimator results from 

averaging over these local fits 

n  Choice of neighborhood = strength of constraint 
¨  Large neighborhood can lead to linear fit (very restrictive) whereas small 

neighborhoods can lead to interpolation (no restriction) 
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More on Nonparam Regression 

n  Different restrictions lead to different nonparametric approaches 
¨  Roughness penalty à splines 
¨  Weighting data locally à kernel methods 
¨  Etc. 

n  Each method has associated smoothing or complexity param 
¨  Magnitude of penalty 
¨  Width of kernel (defining “local”) 
¨  Number of basis functions 
¨  … 

n  Bias-variance tradeoff 

n  Will explore methods for choosing smoothing parameters 
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More on Nonparam Regression 



23 

n  Wakefield: 10.3-10.4 
n  Hastie, Tibshirani, Friedman: 7.1-7.3 
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Reading 

n  What to report when data-generating mechanism is: 
¨  Known (optimal prediction) 
¨  Unknown and constrained to a specified model + loss fcn 

n  Example loss functions for 
¨  Continuous RVs 
¨  General RVs 

n  Goals of parametric vs. nonparametric methods 

n  Bias-variance tradeoff 

n  Measures of performance of estimators 
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What you should know 


