

Kernel Density Estimation

STAT/BIOSTAT 527, University of Washington Emily Fox April 17th, 2014

©Emily Fox 2014

Kernels

- Could spend an entire quarter (or more!) just on kernels
- Will see them again in the Bayesian nonparametrics portion
- For now, the following definition suffices

$$K(\cdot)$$
 is a kernel if

 $K(x) \ge 0 \quad \forall x$

$$\int K(u) du = 1$$

$$\int u K(u) du = 0 \quad \delta_{k}^{2} = \int u^{2} k(u) du < \infty$$

©Emily Fox 2014

Example Kernels

Gaussian

$$K(x) = \frac{1}{2\pi}e^{-\frac{x}{2}}$$
 ind on -1, 1

Epanechnikov

$$K(x) = \frac{3}{4}(1-x)^2 I(x)$$

Tricube

$$K(x) = \frac{70}{81}(1 - |x|^3)^3 I(x)$$

Boxcar

$$K(x) = \frac{1}{2}I(x)$$

©Emily Fox 2014

Nadaraya-Watson Estimator

Return to Nadaraya-Watson kernel weighted average

$$\hat{f}(x_0) = \frac{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i) y_i}{\sum_{i=1}^{n} K_{\lambda}(x_0, x_i)}$$

$$\underbrace{\frac{\sum K_{\lambda}(x_{0},x_{\lambda})}{\sum K_{\lambda}(x_{0},x_{\lambda})}}_{\ell:(x_{\lambda})}$$

■ Linear smoother:
$$\hat{F}(x_o) = \sum_{i=1}^{n} \frac{K_{\lambda}(x_i, x_i)}{\sum K_{\lambda}(x_i, x_i)} \quad y_i = \sum_{i=1}^{n} L_{\lambda}(x_o) y_i$$

$$\hat{f} = L_{\lambda} + \sum_{i=1}^{n} \frac{L_{\lambda}(x_i, x_i)}{\sum K_{\lambda}(x_i, x_i)} \quad \text{equates to fitting notes}$$

$$V_{\lambda} = \text{tr}(L_{\lambda}) \quad \text{equates to makes}$$

$$V_{\lambda} = \text{tr}(L_{\lambda}) \quad \text{equates to makes}$$

$$V_{\lambda} = \text{tr}(L_{\lambda}) \quad \text{equates}$$

Local Polynomial Regression

 $\begin{array}{l} \bullet \quad \text{Consider local polynomial of degree d centered about x_0} \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \star \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \star \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \bullet \quad & \bullet \bullet \quad & \bullet \bullet \\ P_{x_0}(x;\beta_{x_0}) = \quad & \bullet \bullet \quad & \bullet \quad & \bullet \quad & \bullet \bullet \quad & \bullet \quad &$

- Equivalently:

 min $(Y X_{V_0} B_{X_0})^T W_{X_0} (Y X_{X_0} B_{X_0})$ windred $(X_1 X_0)^d$ Least $(X_1 X_0)^d$ $(X_1 X_0)^d$ Cor each $(X_1 X_0)^d$
- Bias only has components of degree d+1 and higher

Kernel Density Estimation

- Kernel methods are often used for density estimation (actually, classical origin)
- XI,..., Xn iid P Assume random sample
- Choice #1: empirical estimate? $\hat{\rho} = \frac{1}{2} \sum_{k} \sum_{k$
- Choice #2: as before, maybe we should use an estimator $\hat{\rho}(x_0) = \frac{\pm x_1 \in Nbhd(x_0)}{0}$ width which
- Choice #3: again, consider kernel weightings instead

$$\hat{\rho}(X_0) = \frac{1}{n\lambda} \sum_{\lambda} K_{\lambda}(X_0, X_{\lambda}^{*}) \quad \text{Parzen} \quad \text{est.}$$

Kernel Density Estimation

■ Popular choice = Gaussian kernel → Gaussian KDE

$$\hat{p}(x) = \frac{1}{n} \geq \frac{\hat{p}_{\lambda}(x - x_{\lambda})}{\hat{p}_{\lambda}(x - x_{\lambda})}$$

$$= (\hat{p} * \hat{p}_{\lambda})(x)$$

$$= (\hat{p} * \hat{p}_{\lambda})(x)$$

$$= (\hat{p} * \hat{p}_{\lambda})(x)$$

$$= (\hat{p} * \hat{p}_{\lambda})(x)$$

©Emily Fox 2014

KDE Properties
$$\hat{p}^{\lambda}(x) = \frac{1}{n\lambda} \sum_{i=1}^{n} K\left(\frac{x - x_i}{\lambda}\right)$$

- Let's examine the bias of the KDE $E[\hat{p}^{\lambda}(x)] = \frac{1}{n\lambda} \sum_{i=1}^{\infty} E\left[k\left(\frac{\chi-\chi_{i}}{\lambda}\right)\right] = \frac{1}{n\lambda} \sum_{i=1}^{\infty} \int k\left(\frac{\chi-t}{\lambda}\right) p(t)dt$ $= \frac{1}{\lambda} \int k \left(\frac{x-t}{\lambda} \right) p(t) dt = \left(\int_{-\infty}^{\infty} K_{\lambda} * P \right) (x)$
- Smoothing leads to biased estimator with mean a smoother version of the true density
- For kernel estimate to concentrate about x and bias → 0, want

KDE Properties
$$\hat{p}^{\lambda}(x) = \frac{1}{n\lambda} \sum_{i=1}^{n} K\left(\frac{x - x_i}{\lambda}\right)$$

0(n-4/5)

Assuming smoothness properties of the target distribution, it's straightforward to show that

$$E[\hat{p}^{\lambda}(x)] = p(x) + \frac{1}{2} \lambda_n^2 p''(x) \delta_k^2 + O(\lambda_n^2)$$
abs.
cont.

- □ In peaks, negative bias and KDE underestimates p
- ☐ In troughs, positive bias and KDE over estimates p
- □ Again, "trimming the hills" and "filling the valleys"
- For var $\rightarrow 0$, require $n \nmid_n \rightarrow \omega$
- More details, including IMSE, in Wakefield book
- Fun fact: There does not exist an estimator that converges faster than KDE assuming only existence of p'' (smoothness p

Connecting KDE and N-W Est.

Recall task:

$$f(x) = E[Y \mid x] = \int yp(y \mid x)dy = \frac{1}{P(x)} \int y P(x,y) dy$$

Estimate joint density p(x,y) with product kernel

$$\hat{p}^{\lambda_x,\lambda_y}(x,y) = \frac{1}{n\lambda_x\lambda_y} \sum_{i\in I}^n \left(\frac{x-\chi_i}{\lambda_x} \right) \mathsf{K}_{\mathsf{y}} \left(\frac{y-y_i}{\lambda_y} \right)$$

Estimate margin p(y) by

$$\hat{p}^{\lambda_x}(x) = \frac{1}{N \lambda_x} \sum_{i=1}^n \left(\chi_x \left(\frac{\chi_x \chi_i}{\lambda_x} \right) \right)$$

Connecting KDE and N-W Est.

- Inen, $\hat{f}(x) = \underbrace{\frac{1}{\sqrt{\lambda_{x}}} \underbrace{\sum_{i=1}^{N} K_{x} \left(\frac{x-y_{i}}{\lambda_{x}} \right) K_{y} \left(\frac{y-y_{i}}{\lambda_{y}} \right) \delta_{y}}_{\frac{1}{\sqrt{\lambda_{x}}}} \underbrace{\sum_{i=1}^{N} K_{x} \left(\frac{x-x_{i}}{\lambda_{x}} \right)}$ = Z Kx(·) ((yi+u)) Ky(u) du

 Z Kx(·)

 [use guklu) du=0

 (klu) du=1 = $\frac{\sum k_x \left(\frac{x-y_x}{\lambda_x}\right) y_x}{\sum k_x \left(\frac{x-x_x}{\lambda_x}\right)}$ Equivalent to Naradaya-Watson weighted average estimator

Reading

- Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
- Wakefield: 11.3

What you should know...

- - Definition of a kernel and examples
 - Nearest neighbors vs. local averages
 - Nadarya-Watson estimation
 - ☐ Interpretation as local linear regression
 - Local polynomial regression
 - Definition
 - □ Properties/ rules of thumb
 - Kernel density estimation
 - Definition
 - Properties
 - □ Relationship to Nadarya-Watson estimation

focus this lecture

©Emily Fox 2014

13

Module 2: Splines and Kernel Methods

STAT/BIOSTAT 527, University of Washington Emily Fox April 17th, 2014

©Emily Fox 2014

14

Confidence Bands

- So far we have focused on point estimation: $\hat{f}(x)$
- Often, we want to define a *confidence interval* for which f(x) is in this interval with some pre-specified probability
- Looking over all x, we refer to these as **confidence bands**

Bias Problem

- Typically, these are of the form f(x) + c so(x) $\hat{f}(x) \pm c \operatorname{se}(x)$
- This is really not a confidence band for f(x), but for
- $\bar{f}(x) = E[\hat{f}(x)]$
- In parametric inference, these are normally equivalent
- More generally,

$$\frac{\hat{f}(x) - f(x)}{s(x)} = \frac{\hat{f}(x) - \hat{f}(x)}{s(x)} + \frac{\hat{f}(x) - \hat{f}(x)}{s(x)}$$

$$\frac{\hat{f}(x) - f(x)}{s(x)} = \frac{\hat{f}(x) - \hat{f}(x)}{s(x)} + \frac{\hat{f}(x) - \hat{f}(x)}{s(x)}$$

$$\frac{\hat{f}(x) - f(x)}{s(x)} = \frac{\hat{f}(x) - \hat{f}(x)}{s(x)} + \frac{\hat{f}(x) - \hat{f}(x)}{s(x)}$$

Bias Problem

$$\frac{\hat{f}(x) - f(x)}{s(x)} = Z_n(x) + \frac{\operatorname{bias}(\hat{f}(x))}{\sqrt{\operatorname{var}(\hat{f}(x))}}$$

- Typically, $Z_n(x) \rightarrow$ standard normal
- In parametric inference, 2^{nd} term normally $\rightarrow 0$ as n increases
- In nonparametric settings,
 - □ optimal smoothing = balance between bias and variance
 - \Box 2nd term does *not* vanish, even with large *n*

- So, what should we do?
 - □ Option #1: Estimate the bias
- ightharpoonup Option #2: Live with it and just be clear that the Cl's are for $\bar{f}(x)$ not f(x)

CIs for Linear Smoothers

■ For linear smoothers, and assuming constant variance 🎁 🛣

$$\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) y_i \qquad \hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) f(x_i)$$

$$\forall w(\hat{f}(x)) = \sigma^2 || \ell(x) ||^2$$

Consider confidence band of the form

CT(x)= $\hat{f}(x)$ + $\hat{f}(x)$ | $\hat{f}(x)$ | $\hat{f}(x)$ | $\hat{f}(x)$ | $\hat{f}(x)$ | $\hat{f}(x)$ |

■ Using this, let's solve for c

Cls for Linear Smoothers

$$W(x) = \sum_{i} Z_i T_i(x) \quad Z_i = \frac{\epsilon_i}{\sigma} \sim N(0, 1) \quad T_i(x) = \frac{\ell_i(x)}{||\ell(x)||}$$

Good news: max of GP is well studied!

$$P(\max_{x} |\sum_{i} Z_{i}T_{i}(x)| > c) \approx 2(1-\phi(c)) + \frac{\kappa_{0}}{\pi}e^{\frac{-c^{2}}{2}}$$
 formula (ssuming confidence level α , set equal to α and solve for c

• Assuming confidence level α , set equal to α and solve for c

Cls for Linear Smoothers $\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x)y_i$

$$\hat{f}(x) = \sum_{i=1}^{n} \ell_i(x) y_i$$

- Based on approach of Sun and Loader (1994)
 - \square Case #2: Assume σ unknown
 - \square Case #3: Assume $\sigma(x)$ non-constant

$$\operatorname{var}(\hat{f}(x)) = \sum_{\lambda} \sigma^{2}(x_{\lambda}) \mathcal{L}_{\lambda}^{2}(x)$$

$$\operatorname{CI}(x) = \hat{f}(x) \pm \mathcal{L}_{\lambda} \sqrt{\sum_{\lambda} \sigma^{2}(x_{\lambda}) \mathcal{L}_{\lambda}^{2}(x)}$$

 \Box If $\hat{\sigma}(x)$ varies slowly with x, then (Faraway and Sun 1995)

$$\sigma(x_i) \sim \sigma(x)$$
 for those $x \in \mathcal{U}$ large $\Rightarrow c \tau(x) = \hat{\varphi}(x) + c \hat{\sigma}(x) || \mathcal{U}(x) ||$

CIs for Linear Smoothers

- Example from Wakefield textbook
 - ☐ Fit penalized cubic regression spline (penalty on trunc. power basis coef.)
 - \square For $\alpha=0.05$, we calculate $c\approx 3.11$
 - □ Estimate both constant and non-constant variance

- Notes: Ignored uncertainty introduced by choice of λ
 - ☐ Restrict search to finite set and do Bonferroni correction
 - □ Sophisticated bootstrap techniques
 - $\hfill\Box$ Bayesian approach treats λ as a parameter with a prior and averages over uncertainty in λ for subsequent inferences

Variance Estimation

- In most cases σ is unknown and must be estimated
- For linear smoothers, consider the following estimator

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{f}(x_i))^2}{n - 2\nu + \tilde{\nu}}$$

$$\mathbf{v} = \mathbf{v} \cdot (\mathbf{v}) \quad \mathbf{v} = \mathbf{v} \cdot (\mathbf{v}) = \mathbf{v} \cdot (\mathbf{v}) \cdot \mathbf{v}$$
 If target function is sufficiently smooth, $\nu = o(n)$, $\tilde{\nu} = o(n)$ Then $\hat{\sigma}^2$ is a consistent estimator of σ^2

Variance Estimation

- Proof outline: (ץון ייין אר)
 - Recall that $\hat{f} = \hat{f} = \hat{f} = \hat{f} = (I L)y = \hat{f}$

□ Then,

Then, $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{f}(x_i))^2}{n - 2\nu + \tilde{\nu}} = \underbrace{\frac{\sum_{i=1}^n (y_i - \hat{f}(x_i))^2}{r - 2\nu + \tilde{\nu}}}_{\text{Er}(\mathcal{A})} = \underbrace{\frac{\sum_{i=1}^n (y_i - \hat{f}(x_i))^2}{r - 2\nu + \tilde{\nu}}}_{\text{Er}(\mathcal{A})}$

 $E[\hat{\sigma}^2] = \frac{t(\Lambda \sigma^2)_+ f^{\dagger} \Lambda f}{t(\Lambda \sigma^2)_+ f^{\dagger} \Lambda f} = \sigma^2 + \frac{f^{\dagger} \Lambda f}{\sigma^{-2} V + \gamma^2}$ □ Therefore, bias \rightarrow 0 for large *n* if *f* is smooth.

Likewise for variance.

©Emily Fox 2014

Alternative Estimator

Estimator:

$$\hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (y_{i+1} - y_i)^2$$
 on:

Motivation:

$$y_{i+1} - y_i = \left[f(\mathbf{x}_{i+1}) - f(\mathbf{x}_i) \right] + \left[\epsilon_{i+1} - \epsilon_i \right]$$

$$E[(y_{i+1} - y_i)^2] \approx E[\epsilon_{i+1}] + E[\epsilon_i] = 2\sigma^2$$

$$\Rightarrow \mathbb{E}[\hat{\sigma}^2] = \sigma^2$$

- Estimator will be inflated ignores $f(x_{i+1}) f(x_i)$
- Other estimators exist, too. See Wakefield or Wasserman.

Heteroscedasticity

• The point estimate f(x) is relatively insensitive to heterosced., but confidence bands need to account for non-constant variance

- Re-examine model $y_i = f(x_i) + \sigma(x_i)\epsilon_i$ Fig. 2 var(ϵ)=

 Define redefine obs. $Z_i = \log(y_i f(x_i))^2$ $\delta_i = \log\epsilon_i^2$ Then,
- $Z_i = \log \sigma^2(x_i) + \delta_i$ 1: est. w/ log sq. residuals
 - 1. Estimate f(x) using a nonparametric method w/ constant var to get $\hat{f}(x)$
 - 2. Define $Z_i=\log(y_i-\hat{f}(x_i))^2$ est using fix) to get log. sq. as: 3. Regress Z_i 's on x_i 's to get estimate $\hat{g}(x)$ of $\log\sigma^2(x)$

$$\hat{\sigma}^{2}(x) = e^{\hat{\sigma}(x)}$$

$$Z_{i} = g(x_{i}) + \delta_{i}$$

$$(e^{2}(x_{i}))$$

Heteroscedasticity

- Drawbacks:
 - □ Taking log of a very small residual leads to a large outlier
 - □ A more statistically rigorous approach is to jointly estimate *f*, *g*

Alternative = Generalized linear models

Reading

Wasserman: 5.6-5.7

Wakefield: 11.2.7, 11.4

©Emily Fox 2014

27

What you should know...

- Concept of confidence band for nonparametric inference
 - \Box Confidence band for *mean* of estimator of f(x): $\bar{f}(x) = E[\hat{f}(x)]$
- Confidence bands for linear smoothers under assumption of
 - Homoscedasticity
 - Treating variance as known
 - Treating variance as unknown
 - Heteroscedasticity
- Variance estimators for linear smoothers
 - □ Homoscedastic: 2 estimators
 - □ Heteroscedastic: via transformations

©Emily Fox 2014

28