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Kernels
" JEE
m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices
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Example Kernels

m Gaussian K(x) = ¢ 3 A
2 '«V‘J' o T
m Epanechnikov 3 2 "
K(z) = Z(l —z)°I(r)
m Tricube 70 33
K(@) = (1= o) 1(2)
1
m Boxcar K(z) = 5I(ac)
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Nadaraya-\Watson Estimator
" JEE—
m Return to Nadaraya-Watson kernel weighted average
f(ao) = > iy Ko (o, i)y
Z?:l K)\(:UOa x’L)

m Linear smootr}\er:
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Local Polynomial Regression
" S

m Consider local polynomial of degree d centered about x,
Pa?o(x;éwo) = /g“‘o * )g"/s (X’Ya)“ ,3}{;0_ ()(,)(”)l.l -

4
* }3/3}_: (X"Xp}

Minimize: min Kx(xo,2:)(yi — Pry (3 Bwo))é

i=1
n Equwalentlywn (\/ Xv,, /y'x Wy, (\/ )(yoﬁ )
A U ﬁp_ \"f,,ns
n A I Xa-¥, X)J % ¢FC"\
= Return: § (X-) /50"0 (é‘_;ni (”f)(o

Bias only has components of degree d+7 and higher
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Kernel Density Estimation
" S

m Kernel methods are often used for density estimation
(actually, classical origin)
-4
"

m Assume random sample YRy )( P
m Choice #1: empirical estimate? = Z{ U__L“__J—\——

m Choice #2: as before, maybe we should use an estimator
%, € Nbhd (%) wibth wbhd

m P )(A = 4.\_,_/
—_ N
m Choice #3: again, consider kernel weightings instead

‘S(Xo) - -7‘5 2 K, (%o, X:) ?“Zfﬁ
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Kernel Density Estimation

" JEEE
m Popular choice = Gauss(i;n kernel > Gaussian KDE

Density Estimate
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KDE Properties 7= 53 3% (57

" JEE
, : : PRI Ciat
m Let's examine the hias of the KDE Y177 g S
K(

Bt @) = 4 Zefk (K8)]: 12 ) K(EE) pld

- 3 _ -l
- Sk[xf )p(UJ% - ()\ K, ¥ p) (x)
Uame
Amsd‘7
m Smoothing leads to biased estimator with mean a smoother

version of the true density

m For kernel estimate to concentrate about x and bias=>0, want
V=0 oas n>0

1 )\V\'l
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KDE Properties ﬁk<w>=$§f<(“§
= JEE

m Assuming smoothness properties of the target distribution,
it's straightforward to show that b‘)

Bl @) = PO+ Lo 008y + 0(m) obs,

. o5 nIv i€ ’\n"'D/ then this 50
V,y\lolasa,(‘
% \/
In peaks, negative bias and KDE underestimates p
In troughs, positive bias and KDE over estimates p i
Again, “trimming the hills” and “filling the valleys” - K)
m For var->0, require n)n - ®
m More details, including IMSE, in Wakefield book

m Fun fact: There does not exist an estimator that converges faster
than KDE assuming only existence of p” (smoothnes< of )
Aevrsmf

ka(gl-"‘
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Connecting KDE and N-W Est.
" JEE—

m Recall task: t
)= BV o) = [t o)y = g [ 3900104y

m Estimate joint density p(x y) W|th product kernel >

7 s 5“7

A%\

AN\
P (2, y) %xky

m Estimate margin p(y) by

P (x) = F\Xx i\_l kx (%)
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Connecting KDE and N-W Est.
" S
m Then, __\_ ky X-¥i k Y_fh 1
fw) = M (A)X:( £y
%50

- 7 \Kx(_ ) (Yi*mky)l(y(u)(lu
/ZTX((’U SNPNE.

A
= Z Kx (% 3 \/{ %U'EV»UA&V

Z kx a(yx—;-‘ v 2
m Equivalent to Narad a-\Kl tson weighted average estimator
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Reading

" JE——
m Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
m \Wakefield: 11.3
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What you should know...
* JEE

m Definition of a kernel and examples

Nearest neighbors vs. local averages

Nadarya-Watson estimation
Interpretation as local 4i regression
p g 10

Local polynomial regression
Definition
Properties/ rules of thumb

Kernel density estimation his
Definition Qows
w(@
Properties \ee
Relationship to Nadarya-Watson estimation
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Confidence Bands ~ {-*¢ 4. |

m So far we have focused on point estimation: f'(x)
m Often, we want to define a confidence_interval for which
f(x) is in this interval with some pre-specified probability
m Looking over all x, we refer to these as confidence bands
homoSCl-J}SﬁC 6(x): 0 -

| pkerosce Jastic o(x)
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Bias Problem

0(: ﬁk‘A‘V

i k. n
m Typically, ’Ehese are okfﬁ.e-fm:mw of QW\)

f(x) £ ¢ se(x)

m This is really not a confidence band for f(x), but for
f(z) = Elf(z)]

m In parametric inference, these are normally equivalent
m More generally,

fa)—f@) - 50, £0-F6)
s@ T s(x)
binc (F04D)

Sk' Mﬁ'lﬂ = 20 * -
- R
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, @)~ f(z) _
Bias Problem s(@)

"
m Typically, Z,(x) > standard normal

m |n parametric inference, 2" term normally - 0 as n increases

m In nonparametric settings, P i
optimal smoothing = balance between bias and variance o
27 term does not vanish, even with large n / w"gl
st
n
= So, what should we do? 1. lead kem £"(x)
ald-

Option #1: Estimate the bias -
S~ Option #2: Live with it and just be clear that the Cl's are fo@ not f(x)
=/ }
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Cls for Linear Smoothers
= JEEE

m For linear smoothers, and assuming constant variance ¢ (%)= &

Zifi(x)yi P AE Z/zzos;of)

Al

Ny fo0))= o Il

m Consider confidence band of the form
~n r
cT(¥): FX) ¢ UAIW",&/ Xt

A a K \
. T A c70 v.oF &
OIS ) -

] 3,._...,-

oo~

m Using this, let’s solve orc_
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Cls for Linear Smoothers ;#f:, p.o*)

|
m Based on approach of Sun and Loader (1994 / /

[ Case #1: Assume:(g%\@ (?(x) F(X)\ 5 C>

P(f(x) € CI(z) for some x € [a,b]) = ?( ':::E:’b] —B’_m“

X Zé,[‘()() _
c ?(C:}a,b] ST 7(') - P(mzx ,W(X3| 7(_)

=Y ZT) Zi="~NO1) L) =

/ Z [10()]]

Voﬁ. Good news: max of GP is well studied! T L2

( K %02 0\ }I)
o maXyZZT )| >e) ~2(1— ())/"?e Gor"“*

o a\T'(x)\\AX
m Assuming confidence level ¢, set equal to &v and solve for ¢
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Cls for Linear Smoothers -

" JEEE
m Based on approach of Sun and Loader (1994) Var (9.
1 Case #2: Assume 0 unknown sse  est 6 ’J’h’;}

1 Case #3: Assume a(x) non-constant

var(f(z)) = Z 6’“[){;)[?()()
S TOEER P AR

0 If 6(x) varies slowly with x, then (Faraway and Sun 1995)

(Y Y g(x) Cor those x w/l(x\ m’{)é.
2y CTx): cl+c o'Cx) 7723
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Cls for Linear Smoothers

m Example from Wakefield textbook
Fit penalized cubic regression spline (penalty on trunc. power basis coef.)
For &« = (.05, we calculate ¢ ~ 3.11
Estimate both constant and non-constant variance

Log Ratio
Log Ratio

! B ‘;‘::*f?f.ifjji soF

Pointvise

Foi
--- Simuaneous --- Simutaneous }

T T T T T T T T T T T T T T
400 450 50 S0 600 650 700 40 450 500 S0 600 60 700

m Notes: Ignored uncertainty introduced by choice of A 0‘/
Restrict search to finite set and do Bonferroni correction o= ™
Sophisticated bootstrap techniques

Bayesian approach treats A as a parameter with a prior and averages over
uncertainty in A for subsequent inferences
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Variance Estimation

m |n most cases o is unknown and must be estimated
m For linear smoothers, consider the following estimator

52 = Z?:l(yi - f(xl))z
n—2v—+v L
Ve(ly §ew(E L)= Z 26

If target function is sufficiently smooth, v = o(n), 7 = o(n)

Then 672 is a consistent estimat 2
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Variance Estimation

m
= Proof outline: _ ¢y, ‘I»!

1 Recall that,

y(_\/;,\/- (x-L)Y = Jb‘/

EYTQY] =t(QV) + u Qu .
0 Then, y &V',q) keﬂ“ (i- y (5 L?;L
R — . /ZL* ~
52 = E?:l(yi - f(l’z‘))Q - w /'X’JQ;“:LY*V
n—20+7 er (L) ol
T
s W HEAE o, fAE
v =
tr() AR s s s»l\
[ Therefore, bias>0 for large n if fis smooth. For ‘”T' / £ smee

. . . — VM '\3
1 Likewise for variance. o

Alternative Estimator
2 _

n Estlmator

p Swooc
m Motivation:

i1 —yi = |6 0ar0d- @(y)]+ Lesn-€ ]
El(yis1 —vi)2 ~ E[E]+ ew)
% Bl =

m Estimator will be inflated uﬂm)((s (f(v,f\\* £ )
m Other estimators exist, too. See Wakefield or Wasserman.
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Heteroscedasticity
" JEEE

m The point estimate f () is relatively insensitive to heterosced.,
but confidence bands need to account for non-constant variance

E[é); 0 varle)=1

Re- - del vy; = f(@z;) +o(x;)e€;
n es:f?}r:lnerrcr}?&?‘ oé/S' f(z:) \(/l/_, wr gt (%)
;= log(y; — f(z:))* 6 =loger
Then
| loa 604y « §;
% 3 3 ‘Au.a.(S

= Algorithm: k. w log S rest
Estimate f () using a nonparametric method w/_constant var to get f( )
Define 7, = log(y; — f($z))2 esk. “5"‘3 ?N) & 0“0(' loj 59. feS.
Regress Z/'s on x;'s to get estimate §(z) of log o?(x)
) %(x) N S
gz ¢ ’3()(4)
\./\’;/ 1(\(‘\)
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Heteroscedasticity
" JEE

m Drawbacks:

Taking log of a very small residual leads to a large outlier
A more statistically rigorous approach is to jointly estimate f, g

?(6\1‘ u"y < & 7,’<|:w¥ “PP“ALL‘

m Alternative = Generalized linear models

——
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Reading

= JEE
m Wasserman: 5.6-5.7
m Wakefield: 11.2.7, 11.4
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What you should know...
" JEE—
m Concept of confidence band for nonparametric inference
Confidence band for *mean* of estimator of f(x): f(xz) = E[f(z)]

m Confidence bands for linear smoothers under assumption of
Homoscedasticity
= Treating variance as known
= Treating variance as unknown
Heteroscedasticity

m Variance estimators for linear smoothers
Homoscedastic: 2 estimators
Heteroscedastic: via transformations
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