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Module 2: Splines and Kernel Methods 

Kernels 
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n  Could spend an entire quarter (or more!) just on kernels 
n  Will see them again in the Bayesian nonparametrics portion 

n  For now, the following definition suffices 
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Example Kernels 
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n  Gaussian 
 
n  Epanechnikov 
 
n  Tricube 

n  Boxcar 
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The Epanechnikov kernel has the form

K(x) =
3

4
(1 − x)2I(x), (67)

while the Tricube kernel is

K(x) =
70

81

(
1 − |x|3

)3
I(x). (68)

Finally, the Boxcar kernel is

K(x) =
1

2
I(x). (69)

All four kernels are displayed in Figure 31.

The simplest use of kernel methods in nonparametric regression is

based on direct kernel density estimation.
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Figure 31: Pictorial representation of four commonly-used kernels.
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Nadaraya-Watson Estimator 
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n  Return to Nadaraya-Watson kernel weighted average 

n  Linear smoother: 

f̂(x0) =

Pn
i=1 K�(x0, xi)yiPn
i=1 K�(x0, xi)
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Local Polynomial Regression 
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n  Consider local polynomial of degree d centered about x0 

 
n  Minimize: 
 
n  Equivalently: 

n  Return: 
n  Bias only has components of degree d+1 and higher 

P

x0(x;�x0) =

min
�

x0

nX

i=1

K

�

(x0, xi

)(y
i

� P

x0(x;�x0))
2

Kernel Density Estimation 
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n  Kernel methods are often used for density estimation 
(actually, classical origin) 

n  Assume random sample 

n  Choice #1: empirical estimate? 

n  Choice #2: as before, maybe we should use an estimator 

n  Choice #3: again, consider kernel weightings instead 



4 

Kernel Density Estimation 
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n  Popular choice = Gaussian kernel  à Gaussian KDE 
208 6. Kernel Smoothing Methods

Systolic Blood Pressure (for CHD group)
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FIGURE 6.13. A kernel density estimate for systolic blood pressure (for the
CHD group). The density estimate at each point is the average contribution from
each of the kernels at that point. We have scaled the kernels down by a factor of
10 to make the graph readable.

we can produce, as shown in the plot, estimated pointwise standard-error
bands about our fitted prevalence.

6.6 Kernel Density Estimation and Classification

Kernel density estimation is an unsupervised learning procedure, which
historically precedes kernel regression. It also leads naturally to a simple
family of procedures for nonparametric classification.

6.6.1 Kernel Density Estimation

Suppose we have a random sample x1, . . . , xN drawn from a probability
density fX(x), and we wish to estimate fX at a point x0. For simplicity we
assume for now that X ∈ IR. Arguing as before, a natural local estimate
has the form

f̂X(x0) =
#xi ∈ N (x0)

Nλ
, (6.21)

where N (x0) is a small metric neighborhood around x0 of width λ. This
estimate is bumpy, and the smooth Parzen estimate is preferred

f̂X(x0) =
1

Nλ

N∑

i=1

Kλ(x0, xi), (6.22)

From Hastie, Tibshirani, Friedman book 

KDE Properties 

©Emily Fox 2014 8 

n  Let’s examine the bias of the KDE 

n  Smoothing leads to biased estimator with mean a smoother 
version of the true density 

n  For kernel estimate to concentrate about x and biasà0, want 

p̂

�(x) =
1

n�

nX

i=1

K

✓
x� xi

�

◆

E[p̂�(x)] =
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KDE Properties 
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n  Assuming smoothness properties of the target distribution, 
it’s straightforward to show that 

 
 

¨  In peaks, negative bias and KDE underestimates p  
¨  In troughs, positive bias and KDE over estimates p 
¨  Again, “trimming the hills” and “filling the valleys” 

n  For varà0, require  
n  More details, including IMSE, in Wakefield book 
n  Fun fact: There does not exist an estimator that converges faster 

than KDE assuming only existence of  

p̂

�(x) =
1

n�

nX

i=1

K

✓
x� xi

�

◆

E[p̂�(x)] =

p00

Connecting KDE and N-W Est. 
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n  Recall task: 

n  Estimate joint density p(x,y) with product kernel 

n  Estimate margin p(y) by 

f(x) = E[Y | x] =
Z

yp(y | x)dy

p̂

�
x

,�
y (x, y) =

p̂

�
x(x) =
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Connecting KDE and N-W Est. 
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n  Then, 

n  Equivalent to Naradaya-Watson weighted average estimator 

f̂(x) =

Reading 
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n  Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6 
n  Wakefield: 11.3 
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What you should know… 
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n  Definition of a kernel and examples 

n  Nearest neighbors vs. local averages 

n  Nadarya-Watson estimation 
¨  Interpretation as local linear regression 

n  Local polynomial regression 
¨  Definition 
¨  Properties/ rules of thumb 

n  Kernel density estimation 
¨  Definition 
¨  Properties 
¨  Relationship to Nadarya-Watson estimation 
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Inference for  
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Module 2: Splines and Kernel Methods 
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Confidence Bands 
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n  So far we have focused on point estimation: 
n  Often, we want to define a confidence interval for which 

         is in this interval with some pre-specified probability 
n  Looking over all x, we refer to these as confidence bands 

f̂(x)

f(x)

6.5 Local Likelihood and Other Models 205
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FIGURE 6.11. The intercept and slope of age as a function of distance down
the aorta, separately for males and females. The yellow bands indicate one stan-
dard error.

6.5 Local Likelihood and Other Models

The concept of local regression and varying coefficient models is extremely
broad: any parametric model can be made local if the fitting method ac-
commodates observation weights. Here are some examples:

• Associated with each observation yi is a parameter θi = θ(xi) = xT
i β

linear in the covariate(s) xi, and inference for β is based on the log-

likelihood l(β) =
∑N

i=1 l(yi, x
T
i β). We can model θ(X) more flexibly

by using the likelihood local to x0 for inference of θ(x0) = xT
0 β(x0):

l(β(x0)) =
N∑

i=1

Kλ(x0, xi)l(yi, x
T
i β(x0)).

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.

5.2 Piecewise Polynomials and Splines 147
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FIGURE 5.4. Fitted natural-spline functions for each of the terms in the final
model selected by the stepwise procedure. Included are pointwise standard-error
bands. The rug plot at the base of each figure indicates the location of each of the
sample values for that variable (jittered to break ties).

From Hastie, Tibshirani, Friedman book 

Bias Problem 
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n  Typically, these are of the form 

n  This is really not a confidence band for         , but for  

n  In parametric inference, these are normally equivalent 
n  More generally,  

f̂(x)± c se(x)

f(x)

f̄(x) = E[f̂(x)]

f̂(x)� f(x)

s(x)
=
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Bias Problem 
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n  Typically, Zn(x) à standard normal 

n  In parametric inference, 2nd term normally à 0 as n increases 
n  In nonparametric settings,  

¨  optimal smoothing = balance between bias and variance 
¨  2nd term does not vanish, even with large n 

n  So, what should we do? 
¨  Option #1: Estimate the bias 
¨  Option #2: Live with it and just be clear that the CI’s are for           not  

f̂(x)� f(x)

s(x)
= Zn(x) +

bias(f̂(x))q
var(f̂(x))

f̄(x) f(x)

CIs for Linear Smoothers 
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n  For linear smoothers, and assuming constant variance 

n  Consider confidence band of the form 

n  Using this, let’s solve for c 

f̂(x) =
nX

i=1

`i(x)yi
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CIs for Linear Smoothers 
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n  Based on approach of Sun and Loader (1994) 
¨  Case #1: Assume     known  

n  Good news: max of GP is well studied! 

n  Assuming confidence level    , set equal to     and solve for c   

�

P (

¯

f(x) 62 CI(x) for some x 2 [a, b]) =

W (x) =
X

i

ZiTi(x) Zi =
✏i

�

⇠ N(0, 1) Ti(x) =
`i(x)

||`(x)||

P (max

x

|
X

i

Z

i

T

i

(x)| > c) ⇡ 2(1� �(c)) +

0

⇡

e

�c2

2

↵ ↵

CIs for Linear Smoothers 
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n  Based on approach of Sun and Loader (1994) 
¨  Case #2: Assume     unknown 

¨  Case #3: Assume            non-constant 

 
 
¨  If           varies slowly with x, then  (Faraway and Sun 1995) 

�

�(x)

var(f̂(x)) =

CI(x) =

�̂(x)

f̂(x) =
nX

i=1

`i(x)yi
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CIs for Linear Smoothers 
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n  Example from Wakefield textbook 
¨  Fit penalized cubic regression spline (penalty on trunc. power basis coef.) 
¨  For           , we calculate  
¨  Estimate both constant and non-constant variance 

 

n  Notes: Ignored uncertainty introduced by choice of λ 
¨  Restrict search to finite set and do Bonferroni correction 
¨  Sophisticated bootstrap techniques 
¨  Bayesian approach treats λ as a parameter with a prior and averages over 

uncertainty in λ for subsequent inferences 

↵ = 0.05 c ⇡ 3.11

2012 Jon Wakefield, Stat/Biostat 527

Example: Light Detection and Ranging

We fit a cubic penalized regression spline, with penalization λ
PK

k=1 b2
k,

and λ estimated using generalized cross-validation.

Figure 26(a) gives pointwise confidence intervals and simultaneous

confidence bands under the assumption of constant variance.

Figure 26(b) presents the more appropriate intervals with allowance for

non-constant variance (for details on how σ(x) is estimated, see later).

The coverage probability is 0.95, and the critical value for c is 1.96 for

the pointwise intervals, and 3.11 for the simultaneous intervals, as

calculated from (59), with κ0 estimated as 30.

Under a non-constant assumption the intervals are very tight for low

ranges and increase in width as the range increases.

196

2012 Jon Wakefield, Stat/Biostat 527

(a) (b)

Figure 26: Pointwise confidence intervals and simultaneous confidence

bands for the LIDAR data, under the assumption of: (a) homoscedas-

tic errors, (b) heteroscedastic errors.

197

Variance Estimation 
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n  In most cases     is unknown and must be estimated 
n  For linear smoothers, consider the following estimator  

¨  If target function is sufficiently smooth, 
¨  Then       is a consistent estimator of     

�

�̂

2 =

Pn
i=1(yi � f̂(xi))2

n� 2⌫ + ⌫̃

⌫ = o(n), ⌫̃ = o(n)
�̂2 �2
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Variance Estimation 
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n  Proof outline: 
¨  Recall that 

 
and 

¨  Then, 

 
 
 
¨  Therefore, biasà0 for large n if f is smooth. 
¨  Likewise for variance. 

�̂

2 =

Pn
i=1(yi � f̂(xi))2

n� 2⌫ + ⌫̃

Y � f̂ =

E[Y TQY ] = tr(QV ) + µTQµ

E[�̂2] =

Alternative Estimator 
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n  Estimator: 

n  Motivation: 

n  Estimator will be inflated 
n  Other estimators exist, too.  See Wakefield or Wasserman. 

�̂2 =
1

2(n� 1)

n�1X

i�1

(yi+1 � yi)
2

yi+1 � yi =

E[(yi+1 � yi)
2] ⇡
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Heteroscedasticity 
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n  The point estimate          is relatively insensitive to heterosced., 
but confidence bands need to account for non-constant variance 

n  Re-examine model 
¨  Define 

¨  Then, 

n  Algorithm: 
1.  Estimate           using a nonparametric method w/ constant var to get 
2.  Define 
3.  Regress Zi’s on xi’s to get estimate           of     

f̂(x)

yi = f(xi) + �(xi)✏i

Zi = log(yi � f(xi))
2

�i = log ✏

2
i

f̂(x)f(x)
Zi = log(yi � ˆ

f(xi))
2

ĝ(x) log �

2
(x)

Heteroscedasticity 
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n  Drawbacks:  
¨  Taking log of a very small residual leads to a large outlier 
¨  A more statistically rigorous approach is to jointly estimate f, g 

n  Alternative = Generalized linear models 
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Reading 
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n  Wasserman: 5.6-5.7 
n  Wakefield: 11.2.7, 11.4 

What you should know… 
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n  Concept of confidence band for nonparametric inference 
¨  Confidence band for *mean* of estimator of f(x): 

n  Confidence bands for linear smoothers under assumption of  
¨  Homoscedasticity 

n  Treating variance as known 
n  Treating variance as unknown 

¨  Heteroscedasticity 

n  Variance estimators for linear smoothers 
¨  Homoscedastic: 2 estimators 
¨  Heteroscedastic: via transformations 

f̄(x) = E[f̂(x)]


