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Kernels
" JEE
m Could spend an entire quarter (or more!) just on kernels
m Will see them again in the Bayesian nonparametrics portion

m For now, the following definition suffices
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Example Kernels
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Nadaraya-\Watson Estimator
" JEE

m Return to Nadaraya-Watson kernel weighted average
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Local Polynomial Regression
" S

m Consider local polynomial of degree d centered about x,
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Kernel Density Estimation
" SN

m Kernel methods are often used for density estimation
(actually, classical origin)

Assume random sample

Choice #1: empirical estimate?

Choice #2: as before, maybe we should use an estimator

Choice #3: again, consider kernel weightings instead
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Kernel Density Estimation
* JEE

m Popular choice = Gaussian kernel - Gaussian KDE
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From Hastie, Tibshirani, Friedman book
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KDE Properties 7= > 5 (*5")
" JEE

m Let's examine the bias of the KDE

E[p*(x)] =

m Smoothing leads to biased estimator with mean a smoother
version of the true density

m For kernel estimate to concentrate about x and bias=>0, want
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KDE Properties ﬁ*@):%iff(x}xi)
* JE

m Assuming smoothness properties of the target distribution,
it's straightforward to show that

E[p* («)] =

In peaks, negative bias and KDE underestimates p
In troughs, positive bias and KDE over estimates p
Again, “trimming the hills” and “filling the valleys”
m For var->0, require
m More details, including IMSE, in Wakefield book
m Fun fact: There does not exist an estimator that converges faster
than KDE assuming only existence of p"
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Connecting KDE and N-W Est.
* JEE—

m Recall task:

f@) = EIY |2 = [ uply | 2)dy
m Estimate joint density p(x,y) with product kernel
Pt (a,y) =

m Estimate margin p(y) by

P (z) =
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Connecting KDE and N-W Est.

" JE—
m Then,

A

flz) =

m Equivalent to Naradaya-Watson weighted average estimator
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Reading

" JEE—
m Hastie, Tibshirani, Friedman: 6.1-6.2, 6.6
m \Wakefield: 11.3
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What you should know...
* JEE

m Definition of a kernel and examples

Nearest neighbors vs. local averages

Nadarya-Watson estimation
Interpretation as local linear regression

Local polynomial regression
Definition
Properties/ rules of thumb

Kernel density estimation
Definition
Properties
Relationship to Nadarya-Watson estimation
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Confidence Bands
= JEE

= So far we have focused on point estimation: f (x)

m Often, we want to define a confidence interval for which
f(x) is in this interval with some pre-specified probability

m Looking over all x, we refer to these as confidence bands
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Bias Problem
" JEEE
m Typically, these are of the form
f(x) £ ¢ se(x)
m This is really not a confidence band for f(x), but for

f(z) = E[f(x)]

m In parametric inference, these are normally equivalent
m More generally,

f(z) - f(x)
s(z)
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_ fl@)— fla) _
Bias Problem s(@)

" JEE
m Typically, Z,(x) > standard normal

Zn(x) +

m |n parametric inference, 2" term normally - 0 as n increases

m In nonparametric settings,
optimal smoothing = balance between bias and variance
2 term does not vanish, even with large n

m So, what should we do?
Option #1: Estimate the bias ~
Option #2: Live with it and just be clear that the CI's are for f(z) not f(x)
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Cls for Linear Smoothers
= JEEE

m For linear smoothers, and assuming constant variance

fla) =3 tilalw,

m Consider confidence band of the form

m Using this, let’s solve for ¢
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Cls for Linear Smoothers

" JEE
m Based on approach of Sun and Loader (1994)
Case #1: Assume 0 known

P(f(x) € CI(z) for some x € [a,b]) =

W)=Y ZTix) Zi="~N0.1) Ti2)=

m Good news: max of GP is well studied!

_c2

P(max| Z Z.Ti(x)] > ¢) ~ 2(1 — ¢(c)) + %e ;

m Assuming confidence level ¢, set equal to & and solve for ¢
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Cls for Linear Smoothers - xwn

" JEE
m Based on approach of Sun and Loader (1994)

Case #2: Assume 0 unknown

Case #3: Assume U(ZL’) non-constant
var(f(z)) =

Cl(z) =

If ?7(m) varies slowly with x, then (Faraway and Sun 1995)
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Cls for Linear Smoothers
= JEE

m Example from Wakefield textbook
Fit penalized cubic regression spline (penalty on trunc. power basis coef.)
For o« = 0.05, we calculate ¢ ~ 3.11
Estimate both constant and non-constant variance

Log Ratio
Log Ratio

Pointvise Pointvise
--- Simuaneous --- Simutaneous

T T T T T T T T T T T T T T
400 450 50 S0 600 650 700 40 450 500 S0 600 60 700

m Notes: Ignored uncertainty introduced by choice of A
Restrict search to finite set and do Bonferroni correction
Sophisticated bootstrap techniques

Bayesian approach treats A as a parameter with a prior and averages over
uncertainty in A for subsequent inferences
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Variance Estimation
= JEEE

m |n most cases o is unknown and must be estimated
m For linear smoothers, consider the following estimator

52 — Z:-L:l(yi - f(fﬁi))z

- n—2v—+v

If target function is sufficiently smooth, v = o(n), 7 = o(n)
Then &2 is a consistent estimator of o2
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Variance Estimation
= JEE

m Proof outline:

Recall that .
Y- f=

and
EYTQY] =t(QV) + 1" Qu

Then,

52 — Z?:l(yi - J?(xz))g
n—2v+v
E[6?) =

Therefore, bias>0 for large n if fis smooth.
Likewise for variance.
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Alternative Estimator
" JEE

m Estimator:
A2 _ Z
o n N 1) (yz—i-l yz

m Motivation:

Yi+1 —Yi =

El(yit1 — y¢)2] ~

m Estimator will be inflated
m Other estimators exist, too. See Wakefield or Wasserman.
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Heteroscedasticity
* JEE

m The point estimatef(a:) is relatively insensitive to heterosced.,
but confidence bands need to account for non-constant variance

m Re-examine model ¥y; = f(xz) + G(ZBZ‘)Ez‘

Define 2 2
Z; =log(y; — f(x;))* d; =loge;
Then,

m Algorithm: .
Estimate f () using a nonparametric method w/ constant var to get f ()

Define Z; = log(yl — fA(J;Z))2
Regress Zs on x;'s to get estimate §(z) of logo?(x)
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Heteroscedasticity
" JEE

m Drawbacks:

Taking log of a very small residual leads to a large outlier
A more statistically rigorous approach is to jointly estimate f, g

m Alternative = Generalized linear models
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Reading

= JEE
m Wasserman: 5.6-5.7
m Wakefield: 11.2.7, 11.4
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What you should know...
" JEE—
m Concept of confidence band for nonparametric inference
Confidence band for *mean* of estimator of f(x): f(xz) = E[f(z)]

m Confidence bands for linear smoothers under assumption of
Homoscedasticity
= Treating variance as known
= Treating variance as unknown
Heteroscedasticity

m Variance estimators for linear smoothers
Homoscedastic: 2 estimators
Heteroscedastic: via transformations
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